首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Aphids (Aphididae) are major agricultural pests that cause significant yield losses of crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring harmful plant viruses. Expression of double‐stranded RNA (dsRNA) directed against suitable insect target genes in transgenic plants has been shown to give protection against pests through plant‐mediated RNA interference (RNAi). Thus, as a potential alternative and effective strategy for insect pest management in agricultural practice, plant‐mediated RNAi for aphid control has received close attention in recent years. In this review, the mechanism of RNAi in insects and the so far explored effective RNAi target genes in aphids, their potential applications in the development of transgenic plants for aphid control and the major challenges in this regard are reviewed, and the future prospects of using plant‐mediated RNAi for aphid control are discussed. This review is intended to be a helpful insight into the generation of aphid‐resistant plants through plant‐mediated RNAi strategy. © 2016 Society of Chemical Industry  相似文献   

2.
BACKGROUND: RNA interference (RNAi) is a breakthrough technology for conducting functional genomics studies and also as a potential tool for crop protection against insect pests. The major challenge for efficient pest control using RNAi in the field is the development of efficient and reliable methods for production and delivery of double‐stranded RNA (dsRNA). In this paper, the potential of feeding dsRNA expressed in bacteria or synthesized in vitro to manage populations of Colorado potato beetle, Leptinotarsa decemlineata (Say) (CPB), was investigated. RESULTS: Feeding RNAi successfully triggered the silencing of all five target genes tested and caused significant mortality and reduced body weight gain in the treated beetles. This study provides the first example of an effective RNAi response in insects after feeding dsRNA produced in bacteria. CONCLUSION: These results suggest that the efficient induction of RNAi using bacteria to deliver dsRNA is a possible method for management of CPB. This could be also a promising bioassay approach for genome‐wide screens to identify effective target genes for use as novel RNAi‐based insecticides. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
RNA interference (RNAi) is an endogenous, sequence‐specific gene‐silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi‐based pest management strategies is currently hindered by inefficient and highly variable results when different insect species, strains, developmental stages, tissues, and genes are targeted. Mechanistic studies have shown that double‐stranded ribonucleases (dsRNases), endosomal entrapment, deficient function of the core machinery, and inadequate immune stimulation contribute to limited RNAi efficiency. However, a comprehensive understanding of the molecular mechanisms limiting RNAi efficiency remains elusive. Recent advances in dsRNA stability in physiological tissues, dsRNA internalization into cells, the composition and function of the core RNAi machinery, as well as small‐interfering RNA/double‐stranded RNA amplification and spreading mechanisms are reviewed to establish a global understanding of the obstacles impeding wider understanding of RNAi mechanisms in insects. © 2018 Society of Chemical Industry  相似文献   

4.
Owing to the expanding industry of medical Cannabis, we discuss recent milestones in RNA interference (RNAi)-based crop protection research and development that are transferable to medical Cannabis cultivation. Recent and prospective increases in pest pressure in both indoor and outdoor Cannabis production systems, and the need for effective nonchemical pest control technologies (particularly crucial in the context of cultivating plants for medical purposes), are discussed. We support the idea that developing RNAi tactics towards protection of medical Cannabis could play a major role in maximizing success in this continuously expanding industry. However, there remain critical knowledge gaps, especially with regard to RNA pesticide biosafety from a human toxicological viewpoint, as a result of the medical context of Cannabis product use. Furthermore, efforts are needed to optimize transformation and micropropagation of Cannabis plants, examine cutting edge RNAi techniques for various Cannabis–pest scenarios, and investigate the combined application of RNAi- and biological control tactics in medical Cannabis cultivation. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

5.
RNA interference is a phenomenon in which the introduction of double‐stranded RNA (dsRNA) into cells triggers the degradation of the complementary messenger RNA in a sequence‐specific manner. Suppressing expression of vital genes could lead to insect death, therefore this technology has been considered as a potential strategy for insect pest control. There are three main routes of dsRNA administration into insects: (i) injections to the hemolymph, (ii) topical, and (iii) feeding. In this review, we focus on dsRNA administration through feeding. We summarize novel strategies that have been developed to improve the efficacy of this method, such as the use of nano‐based formulations, engineered microorganisms, and transgenic plants. We also expose the hurdles that have to be overcome in order to use this technique as a reliable pest management method. © 2019 Society of Chemical Industry  相似文献   

6.
RNAi (RNA干扰) 是指由诱导分子siRNA (小干扰 RNA)、miRNA (微小RNA)或piRNA (P 转座子诱导互作 RNA) 特异性降解或者抑制同源mRNA,引起靶标基因沉默的现象。RNAi技术具有操作简便、特异性和选择性强等显著特点,是目前农业生命科学领域最有可能应用于病虫害防控的新技术之一。本文通过综述近年来RNAi在农业病虫害防控领域应用的最新研究成果,并对RNAi技术在新靶标基因筛选、高效dsRNA载体开发、与传统农药相结合以及拓宽应用范围等诸多方面的发展前景进行了展望,同时还针对RNAi干扰效率、稳定性、成本控制、抗性发展及抗性治理等方面所面临的挑战进行了深入探讨,提出了合理建议。基于RNAi技术的病虫害防控策略将继续焕发新的活力,为综合防控提供新理念。  相似文献   

7.
Li J  Chen Q  Lin Y  Jiang T  Wu G  Hua H 《Pest management science》2011,67(7):852-859
BACKGROUND: An efficient and convenient RNA interference (RNAi) technique involving double‐stranded RNA (dsRNA) ingestion is useful for gene function studies of non‐model insects. RESULTS: Three dsRNAs targeting different sites within a gene encoding vacuolar ATP synthase subunit E (V‐ATPase‐E, 21E01) were synthesised for RNAi in Nilaparvata lugens. dsRNA was found to be stable in 0.1 g mL?1 sucrose solution, but unstable in artificial fodder. Therefore, dsRNAs were orally delivered into N. lugens in 0.1 g mL?1 sucrose solution. RNAi was induced by all three of the dsRNAs at 0.05 µg µL?1 in N. lugens. Time dynamics analysis of gene silencing indicated that significant suppression of the target gene began as early as 2 days after ingestion of ds2‐21E01 and ds3‐21E01. However, significant repressive effects were recorded up to 10 days after exposure to ds1‐21E01. The maximum reduction in target gene mRNA was observed after 10 days of treatment, with suppression ratios induced by ds1‐21E01, ds2‐21E01 and ds3‐21E01 of 41, 55 and 48% respectively. CONCLUSION: An efficient and convenient RNAi technique involving dsRNA ingestion has been successfully developed for N. lugens. This will be a useful tool for further functional genomic investigation in this organism. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Several problems limit the productivity and acceptance of crop protection, including pesticide overuse, pesticide resistance, poor adoption of integrated pest management (IPM), declining funding for research and extension, and inefficiencies of scale. We discuss the proposition that alternative business models for crop protection can address these problems by incentivizing and benefiting from efficiency of pesticide use. Currently, business models are not linked to the adoption of IPM and are sometimes at odds with IPM practices. We explore a business model based on the provision of pest management adequacy through services rather than the sale of pesticide products. Specifically, we advocate for establishment of crop protection adequacy standards that would allow a market system to maximize efficiency. Changing some of the relationships between agricultural companies and producers from one based on products to one based on services is an idea worthy of debate and evaluation for improving the efficiency of pest management. Contemporary information technology enhancing monitoring and coordination warrants attention in this debate. © 2019 Society of Chemical Industry  相似文献   

9.
每年重大病虫害的流行和暴发都会对农业产生重大的影响,进而造成严重的经济损失,随着化学试剂的施用其抗药性也逐渐增强,因此探索新的绿色、安全、高效的害虫防治技术具有十分重要的意义。RNAi作为一种研究基因功能的工具,在开发新的害虫防治策略方面显示出巨大的潜力,但RNAi的效率受限于核酸酶的降解作用,为了改善dsRNA的有效递送,研发了纳米载导技术且被广泛应用于害虫防治。同时,基于工程菌高效合成靶向昆虫dsRNA的技术为田间推广提供了可行性及技术支撑。本文主要对RNAi技术及纳米载导RNAi技术在害虫防治中的研究和应用进行了总结和归纳。  相似文献   

10.
RNA干扰又称转录后基因沉默,是一种能有效沉默或抑制目标基因表达的新兴基因工程技术。基于RNA干扰的生物农药被认为是未来植保领域的颠覆性技术,将极大改变人类防治农业病、虫、草等有害生物的思路和策略。本文我们简单回顾了RNA干扰的基本作用机制和发展历程,全面总结了RNAi生物农药的研究水平和应用现状,深入分析了RNAi生物农药发展面临的机遇和挑战,以及未来的发展前景。以期为我国RNAi生物农药的研发提供参考。  相似文献   

11.
RNAi (RNA interference) 是一种由dsRNA参与、对靶基因表达进行干扰或沉默的现象。由此发展起来的RNAi基因沉默技术已成为当今植物基因功能研究和遗传改良的一个重要手段。该技术已经在靶向病原物(真菌、细菌、病毒和线虫)基因沉默方面得到了广泛的应用,并且产生了一批抗病性增强的转基因植物。人工设计和合成的amiRNAs和ata siRNAs的成功研发加快了RNAi技术的应用。本文对RNAi基因沉默机制、RNAi技术研发进展及其在植物抗病性遗传改良中的应用进行综述,并对其应用策略进行探讨。  相似文献   

12.
BACKGROUND: RNA interference (RNAi) is commonly used in insect functional genomics studies and usually involves direct injection of double‐stranded RNA (dsRNA). Only a few studies have involved exposure to dsRNAs through feeding. For western corn rootworm (Diabrotica virgifera virgifera) larvae, ingestion of dsRNA designed from the housekeeping gene, vacuolar ATPase (vATPase) triggers RNAi causing growth inhibition and mortality; however, the effect of dsRNA feeding on adults has not been examined. In this research, WCR adults were fed with vATPase‐dsRNA‐treated artificial diet containing a cucurbitacin bait, which is a proven feeding stimulant for chrysomelid beetles of the subtribe Diabroticina to which rootworms belong. RESULTS: Real‐time PCR confirmed suppression of vATPase expression and western blot analysis indicated reduced signal of a protein that cross‐reacted with a vATPase polyclonal antiserum in WCR adults exposed to artificial diet treated with dsRNA and cucurbitacin bait. Continuous feeding on cucurbitacin and dsRNA‐treated artificial diet resulted in more than 95% adult mortality within 2 weeks while mortality in control treatments never exceeded 20%. CONCLUSIONS: This research clearly demonstrates the effect of RNAi on WCR adults that have been exposed to dsRNA by feeding and establishes a tool to screen dsRNAs of potential target genes in adults. This technique may serve as an alternative to target screening of larvae which are difficult to maintain on artificial diets. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
为了让农户能够直观了解及掌握常见病虫害的防治信息,帮助农户通过智能手机在农田、果园和茶园等现场方便快捷地获取作物病虫害图文识别要点与科学防治方法,为农户提供在线植保技术服务,本研究采用RESTful Web 服务架构设计,运用HTML5移动Web开发技术,借助微信平台作为用户访问入口,开发了一款跨平台 (android/iOS) 的农药速查软件系统,实现了农药信息查询、病虫害图谱查询及后台数据管理等功能。通过建立农药与病虫害间的关联关系,实现了从农药名称和病虫害名称两个途径查询农药信息;所构建的数据库涵盖了蔬菜、果树、水稻、茶叶及烟草等共30种福建省常规种植作物上的重要病虫害农药防治技术。初步运用验证结果表明,该系统整体实用性和稳定性较好,适合在农村基层推广应用。基于微信平台的农药速查系统能够满足植保新技术普及和应用的需求,可为农户提供简单便捷、对症下药的在线植保科技服务,对提高用户安全施药和科学防控能力、推进农药的增效减量均具有重要意义。  相似文献   

14.
Products containing microorganisms (bacteria, fungi and viruses) can be used in plant production as an intervention as well as a prevention method for pest control. Their utilisation is strictly in line with the principles of integrated pest management, provided that they are effective and safe. The rules of registration of microorganisms for crop production in the European Union differ, depending on whether they are placed on the market as plant protection products or not. For over 20 years, uniform rules for registration of plant protection products have been in force. Currently, 36 microorganisms marked up to the strain are approved for use in pest control in the Community. The decision concerning market placement of plant protection products containing approved microorganisms is issued for each member state separately. The approaches to market placement of other products with microorganisms differ within the EU, ranging from a complete lack of requirements to long and costly registration procedures. © 2015 Society of Chemical Industry  相似文献   

15.
F. BIGLER 《EPPO Bulletin》1997,27(1):95-102
The use of macroorganisms (insects, mites and entomopathogenic nematodes) for biological pest control is increasing worldwide. Out of 281 products based on bacteria, fungi, viruses, protozoa, nematodes and insects available for crop protection in 1992, 151 products (53.8%) consisted of macroorganisms. In Switzerland, 65.5% of the 58 products registered for biological pest control in 1995 are macroorganisms. According to published literature and personal information, it is estimated that at least 150 species of entomophagous insects and mites are mass-produced and released worldwide for biological control. While microorganisms are registered similarly to plant protection products, macroorganisms need registration only in a few countries. An increasing tendency towards regulation of macroorganisms for biological control is obvious. Based on the plant protection act of 1986, Switzerland was the first country where registration of macroorganisms became compulsory. The evaluation criteria for registration include a set of information on the bioecology of the organism, experimental data on efficacy, a simple risk assessment for environmental and human hazards and information on evaluation/registration in neighbouring countries. Positive effects of the registration are: (1) inefficacious products are kept away from the market, (2) quality control rules are respected, and (3) environmental risks and possible human hazards are assessed. Disadvantages are higher costs and sometimes delayed implementation of products. Indirect and direct costs for registration can be a serious problem for small producers and for products with minor markets. Therefore, authorities should consider the development of pragmatic and simplified registration procedures for macroorganisms that support efficacious and high-quality products on the market, minimize environmental risks and yet do not hamper the implementation of new biological products.  相似文献   

16.
In this paper, we explore the application of weather index insurance to plant pest and disease management strategies using two distinct models: (1) insuring crop loss due to disease incidence (“Crop Insurance”) and (2) insuring the use of pesticides (“Pesticide Insurance”). We find that despite the seeming ease of applying weather-based pest incidence models to an insurance product, insuring plant disease incidence models is presently unsuitable for the insurance market for both scientific and behavioral reasons. However, derivative-like applications of weather index insurance to insure pesticide use offer a means to introduce financial leverage into pesticide usage decisions. Risk management with weather index insurance would thus function as a complement to existing risk management strategies using pesticides, and offer a market-based mechanism for pesticide abatement. We conclude that more interdisciplinary collaboration is needed to develop weather index insurance for remuneration of losses due to plant pests and diseases, but weather index insurance offers a potential mechanism to reduce inefficiencies and negative externalities in agricultural markets if pesticide expenditures are insured instead of crop losses.  相似文献   

17.
18.
Information about pesticide use and perceptions of their risks among farmers is important for identifying problems associated with pest-control decisions and developing appropriate management practices in given crops. In tobacco, a plant sensitive to many pests and diseases, such information is lacking. The patterns of pesticide use in oriental tobacco, as well as the most important factors for farmers’ decisions relating to chemical pest control were studied among randomly selected farmers in northern Greece on the basis of self-reported information acquired through a pre-tested questionnaire. High reliance of farmers on pesticides and field use of all well-known classes of chemical pesticides were reported. While all the active ingredients reported were registered for pest control in tobacco, they differed considerably in terms of toxicity. A normal cropping season received at least 14–16 pesticide applications for soil disinfection, pest control, and weed control. Most farmers stated that they usually spray chemicals on a calendar basis or on the first appearance of a pest. Efficacy on target pests and market price of the pesticide products to be used were the most important criteria for selection of pesticides, i.e. products that are considered to be highly effective and/or that are cheap are more likely to be selected. Better-educated and more experienced farmers were found to pay more attention to environmental safety and pesticide toxicity. Most farmers felt that pesticide use can reduce crop damage by more than 75%, assuring high yields. Main determinants of pesticide use were primarily the fear of severe yield and economic losses and the doubts about the effectiveness and the correct implementation of alternative pest-control methods. Pesticide use could be reduced by exposing farmers to improved pest-control practices such as site-specific integrated pest management.  相似文献   

19.
十三五期间以植保无人机低容量施药技术为代表的现代航空植保产业发展迅速。科研协作研究与大量田间试验示范表明,采用植保无人机施药技术能够提高靶标作物上药液沉积量并减少农药流失,实现精准减量施药;同时能够解决地面机具无法作业时的病虫害防治问题。航空植保技术实现了人机分离作业,避免了农药中毒,降低了劳动强度,极大地提高了作业效率,达到减少农药使用量、提高农药利用率的目的。以水稻为对象,综述植保无人机在农药减量、水稻病虫害防效、技术简易性、农药利用率提升、水稻增产以及成本效益提升等发面发挥的作用。航空植保产业的迅速发展加快了植保无人机智能精准控制系统质量的提升和新技术的研发步伐,且植保无人机的普及性提出了飞防药剂、助剂和施药飘移风险控制技术研发的迫切需求,基于此进一步梳理总结了植保无人机低容量喷雾技术在农药减施增效中的作用和未来发展方向。  相似文献   

20.
以农药减量控害助力农业绿色发展   总被引:7,自引:0,他引:7  
本文从历史、农民和市场等三个维度分析了我国农药过量使用产生的原因,指出农药减量控害的必要性和重要意义,分析了农药减量控害的可行性,提出了"底线思维、系统思维、创新思维"工作思路以及通过替代化学防控、调整优化农药产品结构、集成绿色防控技术、转变防控方式、构建农产品优质优价机制等路径实施农药减量控害的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号