首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In 2 experiments involving 151 non-lactating and 107 lactating Brahman or Brahman-cross cows, the effects of progesterone treatments (PRID) of 2 durations (7 v 14 days) and injections of pregnant mare serum gonadotrophin (PMSG) at 3 doses (O v 375 v 750 IU) were examined. All cows were inseminated with frozen/thawed semen 54 to 58 and 70 to 74 hours after PRID removal. Calving rates of non-lactating cows (38%) were unaffected by breed or treatment but were higher in previously cyclic than acyclic cows (44% v 19%, P less than 0.025) and in cows which exhibited oestrus after treatment (52% v 23%, P less than 0.001). Calving rates of lactating cows were not affected by these factors but were affected by treatment; PMSG produced no significant effect after a 7-day PRID treatment (33% overall) but increased calving rates after 14-day PRID treatments (22% v 46% v 37% for 0, 375 and 750 IU respectively, P less than 0.10). Comparisons of calving rates of lactating cows treated with 14-day PRID and PMSG and artificially inseminated, and untreated naturally mated cows, showed that treatment significantly increased the proportion of cows conceiving in the first 35 days of the mating period (50% v 23%, P less than 0.025). The results show that treatment with PRID for 14 days and PMSG can overcome post-partum anoestrus in lactating Brahman and Brahman-cross cows leading to significant reductions in the calving to conception interval.  相似文献   

2.
AIM: To compare 2 treatments for anovulatory anoestrus (AA) in postpartum dairy cows. The treatments were combinations of gonadotropin-releasing hormone (GnRH) and prostaglandin F2𝛂 (PG) or progesterone (P4) and oestradiol benzoate (ODB).

METHODS: Forty AA cows from each of 5 herds were blocked by age (2 or >2 years old) and randomly assigned to 1 of 2 treatments. The first group (GPG) were treated with 250 𝛍g of a GnRH analogue, gonadorelin, followed 7 days later by 15 mg of the PG analogue, luprostiol. Two days later the cows were injected with 250 𝛍g of gonadorelin. Cows were artificially inseminated 16–24 h after the second GnRH injection. The second group (P4+ODB) were treated with an intravaginal P4 releasing device for 6 days, followed 24 h after device removal by injection of 1 mg of ODB. Cows were pregnancy tested 35–40 days after the initial insemination and twice again at 6–8 week intervals thereafter.

RESULTS: There was no significant difference between P4+ODB and GPG groups in the percentage of cows submitted for insemination in the first 7 days (94.0% vs 100% for P4+ODB vs GPG, respectively; p>0.3), in conception rate to first insemination within the first 7 days (43.6% vs 35.0% for P4+ODB vs GPG, respectively; p>0.2), in the percentage of cows conceiving in the first 28 days of the breeding period (68.0% vs 58.3%, P4+ODB vs GPG, respectively; p>0.1), or in median interval from the end of treatment to conception (20 vs 21days;p>0.1).

CONCLUSIONS: No differences in the reproductive performance of AA cows treated with either P4+ODB or GPG were detected. However, given the small number of animals enrolled, further data are required before the GPG protocol can be recommended for treatment of AA cows.  相似文献   

3.
AIM: To compare 2 treatments for anovulatory anoestrus (AA) in postpartum dairy cows. The treatments were combinations of gonadotropin-releasing hormone (GnRH) and prostaglandin F2 (PG) or progesterone (P4) and oestradiol benzoate (ODB). METHODS: Forty AA cows from each of 5 herds were blocked by age (2 or 2 years old) and randomly assigned to 1 of 2 treatments. The first group (GPG) were treated with 250 mug of a GnRH analogue, gonadorelin, followed 7 days later by 15 mg of the PG analogue, luprostiol. Two days later the cows were injected with 250 mug of gonadorelin. Cows were artificially inseminated 16-24 h after the second GnRH injection. The second group (P4+ODB) were treated with an intravaginal P4 releasing device for 6 days, followed 24 h after device removal by injection of 1 mg of ODB. Cows were pregnancy tested 35-40 days after the initial insemination and twice again at 6-8 week intervals thereafter. RESULTS: There was no significant difference between P4+ODB and GPG groups in the percentage of cows submitted for insemination in the first 7 days (94.0% vs 100% for P4+ODB vs GPG, respectively; p>0.3), in conception rate to first insemination within the first 7 days (43.6% vs 35.0% for P4+ODB vs GPG, respectively; p>0.2), in the percentage of cows conceiving in the first 28 days of the breeding period (68.0% vs 58.3%, P4+ODB vs GPG, respectively; p>0.1), or in median interval from the end of treatment to conception (20 vs 21 days; p>0.1). CONCLUSIONS: No differences in the reproductive performance of AA cows treated with either P4+ODB or GPG were detected. However, given the small number of animals enrolled, further data are required before the GPG protocol can be recommended for treatment of AA cows.  相似文献   

4.
AIM: To determine whether conception rates of anoestrous dairy cows treated with progesterone and oestradiol benzoate (ODB) could be increased by treating them with additional progesterone following insemination at the induced oestrus. METHODS: Cows which had not been detected in oestrus for at least 21 days after calving in 18 herds were confirmed anovulatory anoestrus (AA) by veterinary examination, due to the absence of a detectable corpus luteum in the ovaries. All cows were treated with intra-vaginal progesterone (CIDR insert) for 6 days and injected with 1 mg ODB 24 h after insert removal (Day 0). Only cows which were seen in oestrus on Days 0, 1 or 2 were enrolled in the trial. These cows were either treated with a second CIDR insert on Day 8, for 7 days (P4+; n=422), or remained untreated (Control; n=756). Milk progesterone concentrations were measured in a subset of enrolled cows (n=669) on Day 8 to determine the proportion of cows that ovulated following the induced oestrus. RESULTS: Conception rates to first insemination were similar in P4+ and Control cows (40.3% and 37.2%, p=0.59). Of cows which had milk progesterone concentrations measured on Day 8, 78.6% displayed oestrus and ovulated, (range: 53.8% to 94.6% among herds). Of the cows that ovulated, conception rate to first insemination was 46.8% and 43.5% in P4+ and Control cows, respectively (p=0.86). CONCLUSION: Conception rates to first insemination in AA cows treated with progesterone and ODB were not increased by progesterone supplementation using CIDR inserts following insemination. KEY WORDS: dairy cattle, postpartum anoestrus, reproduction, progesterone treatment, CIDR insert.  相似文献   

5.
The effects of calf isolation and restricted suckling on LH pulse characteristics and interval to first ovulation (postpartum interval) were studied in 52 multiparous beef cows, with or without exogenous progesterone. At 30 d postpartum, cows were randomly allocated to one of four treatments (n = 13/treatment): 1) Ad lib, ad libitum access of cows to calves; 2) CI/RS, calf isolation/restricted suckling, where suckling was restricted to once daily; 3) CI/RS+P4, same as CI/RS but cows received an intravaginal progesterone-releasing device at calf isolation for 6 d; or 4) CI/RS+P4+E2, as CI/RS+P4 but the intravaginal progesterone-releasing device had a 10-mg estradiol capsule attached. Daily ovarian scanning and twice-daily blood sampling were performed from d 25 postpartum until the day of second ovulation. A random sample of cows from each treatment (n = 31 in total) were blood-sampled at 15-min intervals for 10 h on d 29, 32, 35, and 38. Ovulatory response to treatment was regarded as ovulation of either the dominant follicle growing at d 30 or the subsequent DF. There was a treatment x day effect (P = .09) on LH pulse frequency, but neither progesterone (CI/ RS+P4) nor progesterone and estradiol (CI/RS+P4+E2) treatment suppressed the calf isolation/restricted suckling-induced increase in LH pulse frequency. The estradiol capsule (CI/RS+P4+E2) delivered sufficient estradiol to delay new follicle wave emergence (treatment x stage; P < .001) and the associated preemergence increase in concentrations of FSH (treatment, P < .05) in cows treated at the postselection stage of follicle wave development, prolonging dominance of the dominant follicle present at treatment initiation (P < .001). The number of cows that ovulated in response to treatment was greater (P < .001) in cows with calf isolation/restricted suckling than in cows suckled ad libitum. Hence, cows assigned to the Ad lib treatment had a longer postpartum interval (P < .001) than cows of the other treatments. Exogenous progesterone treatment increased the frequency of cows exhibiting clinical signs of estrus at first ovulation (P < .001) and reduced the frequency of short estrous cycles (P < .001). We conclude that, in beef cows with calves, a 6-d progesterone treatment does not suppress the calf isolation/restricted suckling-induced increase in LH pulse frequency. Hence, on progesterone withdrawal, the LH pulse frequency is sufficient to stimulate first ovulation, accompanied by overt estrous expression and elimination of a short estrous cycle in most cows.  相似文献   

6.
Twelve anestrous, postpartum beef cows were used to determine the effect of calf removal on the effect of naloxone on serum luteinizing hormone (LH) concentrations. On d 1, six cows were injected iv with saline and six with 200 mg naloxone dissolved in saline. Blood samples were taken at 15-min intervals for 2 h before and 2 h after naloxone or saline administration. At the beginning of blood sampling, calves were removed from three cows in each treatment. At 48 h after calf removal (d 3), all cows were injected iv with 200 mg naloxone and blood samples were collected as on d 1. On d 1, naloxone treatment increased (P less than .01) serum LH concentrations from 1.2 +/- .3 ng/ml at time 0 to 4.3 +/- .6 ng/ml and 4.7 +/- .8 ng/ml at 15 and 30 min, respectively. Injection of saline had no effect on serum LH concentrations. Forty-eight-hour calf removal increased (P less than .01) serum LH concentrations in five of six cows (1.7 +/- .8 vs 4.4 +/- 1.2 ng/ml). Naloxone treatment failed to increase serum LH concentrations in these cows. Injection of naloxone increased (P less than .01) serum LH concentrations in the one cow that did not exhibit an LH increase after calf removal and in six cows whose calves were not removed (1.4 +/- .2 vs 4.4 +/- .5 ng/ml). The present study provides additional evidence that endogenous opioids regulate LH in the postpartum beef cow. We hypothesize that suckling stimulates an opioid inhibition of LH secretion and removal of the suckling stimulus removes the opioid inhibitory tone.  相似文献   

7.
Cows with ovarian follicular cysts were treated with progesterone to determine whether a reduction in LH concentrations and initiation of ovulatory follicular waves would occur. Cysts were diagnosed using transrectal ultrasonography when single follicular structures > 20 mm or multiple structures > 15 mm in diameter were present for 7 d in the presence of low progesterone concentrations. Three groups were studied: 1) cows with normal estrous cycles (CYC, n = 8); 2) cows with untreated cysts (CYST, n = 7); and 3) cows with cysts treated with two progesterone-releasing intravaginal devices (PRID, n = 8) for 9 d. Ovaries were examined with transrectal ultrasonography, and blood samples were collected daily for analysis of progesterone and FSH. Serial blood samples for determination of mean LH and LH pulse frequency were collected on d 0 (CYST and PRID cows only), 1, 5, 9, and 10. Progesterone concentrations were higher in PRID cows than in CYST cows throughout the PRID treatment period (P < .002). On d 0, LH pulse frequency was similar (P = .10) in PRID (6.6+/-.6 pulses/8 h) and CYST cows (5.1+/-.6 pulses/8 h), but mean LH tended to be higher (P = .054) on d 0 in PRID cows (2.5+/-.2 ng/mL) than in CYST cows (1.9+/-.2 ng/mL). Mean LH and LH pulse frequency decreased (P < .002) by d 1 in PRID cows (1.1+/-.2 ng/mL, 1.8+/-.6 pulses/8 h) compared with CYST cows (2.1+/-.2 ng/mL, 5.6+/-.6 pulses/8 h) and remained lower throughout most of the experimental period. The FSH concentrations were higher (P < .01) in PRID cows than in CYC and CYST cows on d 3 and 4. The increase in FSH concentrations preceded emergence of the PRID-induced follicular wave. All PRID cows and four of seven CYST cows initiated new follicular waves during the period of PRID treatment. Follicular waves were initiated later (P < .05) in CYST cows (d 5.2+/-1.7) and PRID cows (d 5.5+/-.6) than in CYC cows (d 1.8+/-.3). Cysts were smaller (P < .01) at the end of the treatment period in PRID cows compared with CYST cows. No CYST cows ovulated, but all PRID cows ovulated newly developed follicles 3 or 4 d after PRID removal. Treatment with exogenous progesterone reduced LH in cows with cysts, and this was followed by development of normal ovulatory follicles.  相似文献   

8.
The objective of this study was to test the hypothesis that supra-basal concentrations of progesterone during the follicular phase are associated with the development of follicular cysts. Twenty-five non-lactating dairy cows were used in the study, which was performed over five identical replicate trials. Luteolysis was induced during the mid-luteal phase. Transrectal ultrasonography was performed daily to determine the occurrence/timing of ovulation. Plasma samples were collected for progesterone, oestradiol and luteinizing hormone (LH) analysis. Three cows failed to ovulate (cystic anovulatory) but did ovulate in a subsequent replicate (cystic ovulatory). Eight cows from the appropriate replicates were used as control cows (normal group). Follicular growth patterns and plasma oestradiol concentrations were similar between the three groups. However, the plasma progesterone concentrations during the follicular phase were twofold higher in the cystic anovulatory group (P < 0.01). Furthermore, no LH surge was detected in these animals. While LH pulse amplitude was similar between groups, LH pulse frequency in the cystic anovulatory group was attenuated (P < 0.05). In conclusion, the formation of follicular cysts were preceded by elevated plasma progesterone concentrations and the suppression of the LH surge.  相似文献   

9.
Nutritionally induced anovulatory cows (n = 28) were used to determine the effect of steroids on regulation of synthesis and secretion of gonadotropins. Anovulatory cows were ovariectomized and received intravaginal inserts containing estradiol (E2), progesterone (P4), E2 and P4 (E2P4), or a sham intravaginal insert (C) for 7 d. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were quantified in serum and E2 and P4 were quantified in plasma. Cows were exsanguinated within 1 to 2 h after removal of intravaginal inserts and pituitary glands were collected and stored at -80 degrees C until messenger ribonucleic acid (mRNA) for gonadotropin-releasing hormone receptor (GnRH-R) and gonadotropin subunits, pituitary content of GnRH-R, and LH and FSH were quantified. Pituitary glands from five proestrous cows were harvested to compare gonadotropin characteristics between ovariectomized, anovulatory cows and intact cows. Plasma concentrations of E2 were greater (P < 0.05) in E2-treated cows than in sham-treated cows. Concentrations of P4 were greater (P < 0.05) in cows treated with P4 than in sham-treated cows. Mean serum concentrations of LH and FSH were not significantly influenced by steroid treatments. However, frequency of LH pulses of ovariectomized, nutritionally induced anovulatory cows was increased (P < 0.05) by treatment with E2 and amplitude of LH pulses was greater (P < 0.05) in cows treated with E2 or P4 than in cows treated with E2P4 or sham-treated. Quantity of mRNA for LHbeta in the pituitary gland was greater when cows were treated with P4. Concentrations of LH in the pituitary gland were not affected by steroid treatments; however, pituitary concentrations of FSH were less (P < 0.1) in E2 cows than in sham-treated cows. The number of GnRH-R was increased (P < 0.05) in cows treated with E2, but P4 treatment did not influence the number of GnRH-R. Abundance of mRNA for GnRH-R, common alpha-subunit, and FSHbeta were not affected by treatments. Pituitary concentrations of LH were greater (P < 0.05) and concentrations of FSH were less (P < 0.05) in proestrous cows than in ovariectomized, anovulatory cows treated with or without steroids. Abundance of mRNA for GnRH-R, common alpha-subunit, LHbeta and FSHbeta were similar for proestrous and anovulatory cows. We conclude that treatment of nutritionally induced anovulatory cows with progesterone and estradiol may cause pulsatile secretion of LH.  相似文献   

10.
An experiment was conducted to examine the effect of progesterone (P(4)) and oestradiol benzoate (ODB) on fertility of repeat-breeder lactating dairy cows during summer. One hundred repeat-breeder lactating dairy cows were randomly allocated to four groups (Tr1, Tr2, Tr3 and C) in a study conducted at a private dairy farm. All cows were injected with 2 mg ODB (day 0), which were at random stages of their oestrous cycles. Cows in Tr1, Tr2 and Tr3 were administered with intravaginal progesterone-releasing devices (controlled internal drug-releasing, CIDR) at the time of ODB injection for 7 days and those in group C were untreated and served as controls. Following CIDR removal, all cows were given an intramuscular injection of 25 mg Prostaglandin (PGF(2 alpha)). Twenty-four hours after the PGF(2 alpha) injection, cows in Tr1, Tr2 and C groups were injected with 1 mg ODB. Cows in Tr3 group were injected with 10 microg gonadotropin-releasing hormone (GnRH) agonist 48 h after CIDR removal. Artificial insemination was performed between 24 and 30 h following the second ODB injection for cows in Tr1 group and at the time of GnRH injection for cows in Tr3 group. Cows in Tr2 and C groups were inseminated at detected oestrus. Plasma P(4) and oestradiol 17beta (E(2)) concentrations were determined for all cows daily from day 0 to day 9. Plasma concentrations of P(4) and E(2) among cows of groups Tr1, Tr2 and Tr3 were increased and reached maximum values within 48 h following administration and were greater (p < 0.001) than those of group C cows. The proportion of cows detected in oestrus based on P4 concentration on day 9 was 88%, 72%, 88% and 60% in groups Tr1, Tr2, Tr3 and C, respectively. Oestrous detection rate differed (p < 0.01) significantly between time-inseminated groups (Tr1 and Tr3) and those inseminated at observed oestrous (Tr2 and C) groups. Pregnancy rates based on ultrasonography performed on day 28 were 52%, 56%, 60% and 40%, and those based on rectal palpation on day 45 were 32%, 44%, 36% and 28% for Tr1, Tr2, Tr3 and C cows (p > 0.1), respectively. Whereas pregnancy rates for cows with four or more previous services in all groups (54.55%) were higher (p < 0.03) than those for cows with three previous services (29.49%). In pregnant cows, mean days from calving to the day of insemination were higher (p < 0.01) among cows with four or more previous services (204 +/- 8.0 days) than those with three previous services (157 +/- 6.0 days). Results indicate that treatment with a combination of ODB and CIDR in repeat-breeder dairy cows causes elevation in plasma concentrations of E(2) and P(4). Oestrous detection rate was better in cows that were primed with P(4) than those without P(4) priming. Cows with four or more previous services had significantly higher pregnancy rates than those with three previous services.  相似文献   

11.
Reproductive management programmes based on strategic use of prostaglandin F2 alpha (PGF2 alpha) to induce and synchronize oestrus in post-partum dairy cows are widespread. Repeated shortening of the oestrous cycle during early lactation in high-yielding dairy cows, however, could impair corpus luteum function and thus decrease fertility. The objective of this study was to analyse the effect of repeated treatments with the prostaglandin F2 alpha analogue D (+) cloprostenol sodium on progesterone concentrations indicative of a functional corpus luteum in post-partum dairy cows. Furthermore, the influence of milk production, parity and endometritis on progesterone concentrations under these circumstances were studied. Eighty-four cows of a commercial dairy operation were treated three to four times with D (+) cloprostenol sodium (Preloban; Hoechst Roussel Vet, Wiesbaden, Germany) at 14-day intervals, starting 22-28 days post-partum. Blood samples were collected prior to treatment 1 (sample 1) and 14 days after treatments 1, 2 and 3 (samples 2-4) and serum progesterone (P4) levels were determined. The percentage of cows with P4 levels < 1 ng/ml decreased from 51% in sample 1 to 23% in samples 3 and 4. More primiparous cows had low P4 levels 14 days after the second treatment than older cows (P < 0.05). Cows with low progesterone levels in sample 3 or 4 had lower protein contents in milk on the second milk test day post-partum and in their cumulative milk yield of the first 100 days of lactation. Clinical endometritis at post-partum examination did not influence progesterone levels after treatment with PGF2 alpha. Repeated application of PGF2 alpha (more than twice) in the post-partum period does not influence serum progesterone levels 14 days after treatment. Failure to develop luteal tissue after treatment contributed to the conception failures after first service.  相似文献   

12.
The present study was designed to assess progesterone profiles at the secreted (caudal vena cava) and circulating levels (jugular vein) and luteinizing hormone (LH) secretion pattern in lactating and non-lactating cows with reference to feeding. Four lactating and four non-lactating cycling Holstein cows were examined. Blood samples were collected simultaneously from the caudal vena cava (via a catheter inserted from the coccygeal vein) and the jugular vein every 15 min for 12 h (0500–1700 h) during the functional luteal phase. Cows were fed 50% of the daily diet 6 h after the start of blood sampling. During the 12-h sampling period, mean progesterone concentrations in the caudal vena cava did not differ between lactating and non-lactating cows (49.0 ± 2.9 and 53.3 ± 3.7 ng/ml; mean ± SE), whereas mean progesterone concentrations in the jugular vein in lactating cows were higher than those in non-lactating cows (6.4 ± 0.1 and 5.6 ± 0.1 ng/ml, P < 0.001). Lactating cows had a higher frequency of LH pulses than non-lactating cows (7.0 ± 0.7 and 4.3 ± 0.9 pulses/12 h, P<0.05). The influence of feeding was not observed on LH profiles but was observed on progesterone profiles in both veins. Progesterone concentrations in the caudal vena cava increased after feeding in both groups. Progesterone concentrations in the jugular vein decreased after feeding in lactating cows but not in non-lactating cows. These results indicate the difference in feeding-related changes in progesterone dynamics between lactating and non-lactating cows.  相似文献   

13.
A study was conducted to determine the effect of the milk-ejection reflex on exogenous gonadotropin releasing hormone (GnRH)-induced release of luteinizing hormone (LH) after short-term calf removal. Twenty-four postpartum multiparous beef cows were assigned randomly to groups arranged in a 2(3) factorial arrangement. Factors consisted of two levels of suckling [suckled (S) or nonsuckled (NS)], treatment with GnRH [saline (C) or 200 micrograms GnRH] and days postpartum (d 1 and 14). Dams were isolated from their calves for 4 h on d 1 and 14 postpartum. At the end of 4 h dams were reunited with their calves in S + C and S + GnRH groups, while dams of calves in NS + C and NS + GnRH groups remained separated an additional 2 h. Cows were injected iv with saline or GnRH following the 4-h isolation period, 5 min after calves had begun suckling or nuzzling the udder. Sera from jugular blood samples collected 15 min prior to the end of the 4-h isolation period, immediately prior to injection (0 h) and at 15 min intervals thereafter for 120 min were analyzed for LH. Serum concentrations of LH in control cows did not differ due to suckling or stage of the postpartum period and averaged 2.3 +/- .1 ng/ml. Pituitary response to GnRH was determined by computing the rate of LH release. Rate of LH release (ng LH.ml-1.min-1) in response to GnRH on d 14 was greater (P less than .001) than on d 1 in both suckled and nonsuckled groups (S + GnRH, 37.1 +/- 3.9 vs 18.3 +/- 5.0; NS + GnRH, 34.7 +/- 5.9 vs 14.5 +/- 1.1). However, GnRH-induced release of LH did not differ between suckled and nonsuckled cows on either d 1 or 14 postpartum. These data indicate that response of the bovine pituitary to GnRH during the postpartum period is not influenced by the act of suckling but is enhanced with time after parturition.  相似文献   

14.
ABSTRACT: Cycling (n = 16) and noncycling (n = 24), early postpartum, suckled beef cows of three breeds were assigned randomly to three treatments: 1) 100-microg injection of GnRH plus a 6-mg implant of norgestomet administered on d -7 before 25 mg of PGF2alpha and implant removal on d 0 (GnRH+NORG); 2) 100 microg of GnRH given on d -7 followed by 25 mg of PGF2alpha on d 0 (GnRH); or 3) 2 mL of saline plus a 6-mg implant of norgestomet administered on d -7 followed by 25 mg of PGF2, and implant removal on d 0 (NORG). All cows were given 100 microg of GnRH on d +2 (48 h after PGF2alpha). Blood sera collected daily from d -7 to d +4 were analyzed for progesterone and estradiol-17beta, and ovaries were monitored daily by transrectal ultrasonography to assess changes in ovarian structures. Luteal structures were induced in 75% of noncycling cows in both treatments after GnRH, resulting in elevated (P < .01) progesterone on d 0 for GnRH+NORG-treated cows. Concentrations of estradiol-17beta (P < .01) and LH (P < .05) were greater on d +2 after GnRH for cows previously receiving norgestomet implants. Pregnancy rates after one fixed-time AI at 16 h after GnRH (d +2) were greater (P < .05) in GnRH+NORG (71%) than in GnRH (31%) and NORG (15%) cows. Difference in pregnancy rate was due partly to normal luteal activity after AI in over 87% of GnRH+NORG cows and no incidence of short luteal phases. The GnRH+NORG treatment initially induced ovulation or turnover of the largest follicle, induction of a new follicular wave, followed later by increased concentrations of estradiol-17beta and progesterone. After PGF2alpha, greater GnRH-induced release of LH occurred in GnRH+NORG cows before ovulation, and pregnancy rates were greater after a fixed-time AI.  相似文献   

15.
AIM: To determine if the reproductive performance of dairy cows not previously detected in oestrus but with a detectable corpus luteum before the planned start of mating (PSM), could be improved by treatment with progesterone, oestradiol benzoate (ODB) and prostaglandin F2alpha (PGF). METHODS: Cows in 18 herds which had not been detected in oestrus, but which had a detectable corpus luteum present at veterinary examination 7 days prior to the PSM (Day -7), were allocated to 1 of 2 groups. Treated cows (n=232) received an injection of 2 mg ODB and an intravaginal progesterone releasing device (CIDR insert) on Day -7, and an injection of PGF on the day of insert removal 7 days later (Treated group). The Control group (n=243) remained untreated. Cows were mated to detected oestrus from Day 0, and conception dates confirmed by manual palpation or transrectal ultrasonography. RESULTS: During the first 7 days of mating, 37.4% of Control cows and 65.9% of Treated cows were inseminated on detection of oestrus (p<0.001). Pregnancy rates for this period were 20.4% and 36.3%, respectively (p=0.001). Conception rates to first insemination, pregnancy rates after 21 days of mating and at the end of the mating period were similar between groups (p>0.1). Median interval from the PSM to conception did not differ between treatment groups (24 and 23 days for Control and Treated, respectively, p>0.1). CONCLUSION: Treating postpartum dairy cows which had not previously been detected in oestrus but which had a detectable corpus luteum, with progesterone, ODB and PGF did not significantly improve their reproductive performance compared with no hormonal intervention. KEY WORDS: dairy cattle, postpartum, anoestrous, reproduction, progesterone treatment.  相似文献   

16.
OBJECTIVE: To compare the use of gonadotrophin releasing hormone (GnRH) and oestradiol benzoate (ODB) administered following a synchronised pro-oestrus on reproductive performance of lactating dairy cows and the submission rates of non-pregnant cows following resynchronisation. DESIGN: Cohort study. PROCEDURE: Lactating Holstein cows enrolled in a controlled breeding program were first treated with an intravaginal progesterone releasing insert (IVP4) for 8 days, 2.0 mg of ODB intramuscular (i.m.) at device insertion (Day 0), an analogue of PGF2alpha at device removal and either 1.0 mg of ODB i.m., 24 h after device removal (ODB group, n = 242), or 0.25 mg of a GnRH agonist (GnRH group, n = 152) injected i.m. approximately 34 h after device removal. Every cow was artificially inseminated between 49 and 56 h after removal of its insert (Day 10). Cows detected in oestrus 1 day after artificial insemination (AI) that were not detected in oestrus on the previous day were re-inseminated on that day. All cows treated on Day 0 were resynchronised for reinsemination by insertion of a used IVP4 device on Day 23. Oestradiol benzoate at a dose of 1.0 mg was administered i.m. at the time of device insertion. Inserts were removed 8 days later (Day 31) and 1.0 mg of ODB was injected i.m. 24 h later. Those cows detected in oestrus between Days 31 and 35 were artificially inseminated. On Day 46 these cows were resynchronised for a third round of AI by insertion of an IVP4 device, used previously to synchronise cows for the first and second rounds of AI, and administration of 1.0 mg of ODB i.m.. Eight days later inserts were removed. Cows detected in oestrus between Days 54 and 58 were artificially inseminated. Bulls were run with the herd between rounds of AI and removed after 21 weeks of mating. RESULTS: Treatment with ODB or GnRH at the first synchronised pro-oestrus did not significantly alter the reproductive performance over three rounds of AI or over a 21-week breeding period. Treatment also did not alter submission rates at the second round of AI or the proportion of non-pregnant and non-return cows ('phantom' cows) detected and did not result in significant differences in concentrations of progesterone in plasma 10 and 18 days after removal of inserts at the first round of AI. Treatment with GnRH reduced the proportion of cows detected in oestrus at the first round of AI (36.2 vs 97.5%; P < 0.001). CONCLUSION: Administration of GnRH compared to ODB at a synchronised pro-oestrus results in similar reproductive performance. Treatment with GnRH reduced the proportion of cows detected in oestrus following treatment. This may offer advantages to the way AI is managed by enabling insemination at a fixed-time and removing the need for the detection of oestrus.  相似文献   

17.
AIMS: (a) To compare the reproductive performance of anovulatory anoestrous (AA) postpartum dairy cows following treatment with 1 of 2 progesterone (P4) and oestradiol benzoate (ODB)-based treatment regimens; (b) To determine whether resynchronisation of cows initially treated for AA would improve reproductive performance and; (c) to determine whether cows not detected in oestrus but with a corpus luteum (CL) present (NDO/CL+), treated with P4 and ODB, would conceive earlier than untreated controls. METHODS: Cows (n=1386) from 11 herds, that had not been detected in oestrus before the start of the seasonal mating period (PSM) and in which a CL was not detected were diagnosed AA, blocked by age (2 or >2 years old), then randomly assigned to be treated with an intravaginal P4-releasing device for either 6 (6-Day group) or 8 days (8-Day group). Cows in the 8-Day group were injected intramuscularly (IM) with 2 mg ODB at device insertion and all cows were injected with 1 mg ODB 24 h after device removal (Day 0). Cows detected in oestrus from Days 0-3 were subsequently assigned to be either resynchronised or left as untreated controls. Resynchronised cows had a used P4-releasing device reinserted on Day 14 for 8 days and were injected with 1 mg ODB at device reinsertion and again 24 h after device removal. NDO/CL+ cows were assigned to be either treated the same as the 8-Day group or left as untreated controls. All cows were inseminated on detection of oestrus and pregnancy tested approximately 10 weeks after the PSM and again 6-8 weeks after the end of the mating period. RESULTS: For AA cows, the 14-day submission rate was similar between 6-Day and 8-Day groups (p0.1). However, the pregnancy rate by Day 14 was higher for the 8-Day than the 6Day group (43.0% vs 35.2%; p=0.006). Resynchrony treatment decreased the 14-day pregnancy rate compared with untreated controls (35.2% vs 42.5%; p=0.026). The resynchrony treatment increased the submission rate between Days 14-28 for non-pregnant cows compared with untreated controls (80.6% vs 57.4%; p=0.049). However, conception rate to resynchronised heats was lower than for cows that returned to oestrus naturally (56.6% vs 67.9%; p=0.025). Neither initial treatment type nor resynchrony treatment increased the 28-day pregnancy rate (p>0.1). There were no differences between treatment groups in the final non-pregnant rate (4.5% vs 4.6%; p>0.1). Treated NDO/CL+ cows had a higher 14-day submission rate (88.1% vs 49.4%; p>0.001), higher 14-day and 28-day pregnancy rates (42.9% vs 20.7%, p>0.001 and; 56.0% vs 42.5%, p=0.094, respectively) and conceived earlier (21 vs 36 days from PSM to median day of conception; p>0.05), than untreated NDO/CL+ cows. CONCLUSIONS: The 8-Day, ODB-P4-ODB treatment regimen resulted in a higher pregnancy rate by 14 days but not 28 days than the 6-Day, P4-ODB treatment. The resynchrony treatment increased the proportion of non-pregnant cows inseminated on days 14-28, but did not increase the 28-day pregnancy rate or final pregnancy rate. Treatment of NDO/CL+ cows with the 8-Day, ODB-P4-ODB treatment improved reproductive performance compared with no treatment.  相似文献   

18.
The timing of the post-ovulatory progesterone rise is critical to the embryonic development and survival. The aim of this study was to determine the underlying causes of delayed post-ovulatory progesterone rises. Two groups of non-lactating dairy cows with early (n = 11) or late (n = 9) post-ovulatory progesterone rises were created by inducing luteolysis in the presence of either a large (> 10 mm) or small (< 10 mm) follicle, respectively. LH pulses were measured on days 4 (all cows) and 7 (n = 7, early; n = 5, late) (day 1= ovulation). The cows were slaughtered on day 5 (n = 4 each group) or 8 (n = 7, early; n = 5, late). Immunohistochemical analysis for endothelial cells (von Willebrand Factor, VWF), steroidogenic cells (3beta-HSD) and proliferation marker (Ki67) were performed. The basal progesterone production and LH responsiveness (0.001-100 ng/ml) of dispersed luteal cells was investigated. The luteal concentrations of FGF-2 and VEGF were measured by ELISA and RIA, respectively. There were no differences in LH pulse characteristics, area of VWF staining, proliferation index, steroidogenic cell characteristics, basal or LH-stimulated progesterone production by luteal cells between cows with an early or late progesterone rise (P > 0.10). However, the area of VWF staining increased from days 5 to 8, while the proliferation index decreased (P < 0.05). Furthermore, the luteal cells were more responsive to LH on day 8 (P < 0.01). Luteal concentrations of FGF-2 were higher on day 5 (P = 0.05), while VEGF was greater on day 8 (P < 0.01). In conclusion, we have clearly shown that LH support, degree of vascularization or luteal cell steroidogenic capacity were not the major factors responsible for inadequate secretion of progesterone by the developing bovine CL.  相似文献   

19.
A possible role for endogenous opioid peptides (EOP) in the control of luteinizing hormone (LH) and prolactin (PRL) secretion was studied by injecting the opioid antagonist, naloxone (NAL), into postpartum ewes and cows. Twelve ewes that lambed during the fall breeding season and nursed their lambs were injected iv with NAL (1.0 mg/kg) on d 10, 14, 18, 22 and 26 postpartum. Blood samples were collected at 15-min intervals from 2 h before to 2 h after NAL, and serum concentrations of LH and PRL were quantified. Following treatment on d 10, suckling lambs were removed from 6 of the 12 ewes, creating non-suckled (NS) and suckled (S) treatment groups for subsequent study on d 14 through 26. On d 10, NAL treatment increased LH (P less than .01) but concentrations of PRL were not affected. When averaged across d 14 to 26, post-NAL concentrations of LH were greater (P less than .001) than pre-NAL concentrations (6.5 +/- .7 vs 1.9 +/- .4 ng/ml). In contrast, concentrations of PRL in the post-NAL period were lower (P less than .001) than pre-NAL concentrations (129 +/- 15 vs 89 +/- 10 ng/ml). Compared with S ewes over d 14 to 26, those in the NS group had similar pre-NAL concentrations of LH, tendencies for higher (P less than .10) post-NAL concentrations of LH, lower (P less than .001) mean serum concentrations of PRL (pre- and post-NAL) and similar pre-NAL vs post-NAL differences in serum PRL. Six suckled beef cows on d 24 to 35 were injected iv with either saline or NAL (.5 mg/kg) in a replicated crossover design. Injections of NAL increased serum concentrations of LH (P less than .05), when averaged over all 12 injections in the six cows, but serum PRL was not changed. However, three of six cows did not respond to NAL with increases in serum LH. These non-responding cows were similar to the responding cows in their pre-injection concentrations of LH and PRL, but they tended (P = .10) to have higher serum concentrations of cortisol than responding cows.  相似文献   

20.
Effects of testosterone propionate (TP) treatment on plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) before and after an injection of gonadotropin releasing hormone (GnRH) were studied using ovariectomized cows and pony mares. An initial injection of GnRH (1 microgram/kg of body weight) was followed by either TP treatment or control injections for 10 (cows) or 11 (ponies) d. A second GnRH injection was administered 1 d after the last TP or oil injection. Concentrations of LH and FSH were determined in samples of plasma taken before and after each GnRH injection. Control injections did not alter the response to GnRH (area under curve) nor the pre-GnRH concentrations of LH and FSH in ovariectomized cows or ponies. Testosterone treatment increased (P less than .01) the FSH release in response to GnRH in ovariectomized mares by 4.9-fold; there was no effect in cows, even though average daily testosterone concentrations were 59% higher than in pony mares. Testosterone treatment reduced the LH release in response to GnRH by 26% in ovariectomized mares (P less than .05) and by 17% in ovariectomized cows (P approximately equal to .051). These results are consistent with a model that involves ovarian androgens in the regulation of FSH secretion in the estrous cycle of the mare, but do not support such a model in the cow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号