首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solar cycle variability, ozone, and climate   总被引:1,自引:0,他引:1  
Results from a global climate model including an interactive parameterization of stratospheric chemistry show how upper stratospheric ozone changes may amplify observed, 11-year solar cycle irradiance changes to affect climate. In the model, circulation changes initially induced in the stratosphere subsequently penetrate into the troposphere, demonstrating the importance of the dynamical coupling between the stratosphere and troposphere. The model reproduces many observed 11-year oscillations, including the relatively long record of geopotential height variations; hence, it implies that these oscillations are likely driven, at least in part, by solar variability.  相似文献   

2.
In contrast to the relatively stable climate of the past 10,000 years, during glacial times the North Atlantic region experienced large-amplitude transitions between cold (stadial) and warm (interstadial) states. In this modeling study, we demonstrate that hydrological interactions between the Atlantic thermohaline circulation (THC) and adjacent continental ice sheets can trigger abrupt warming events and also limit the lifetime of the interstadial circulation mode. These interactions have the potential to destabilize the THC, which is already more sensitive for glacial conditions than for the present-day climate, thus providing an explanation for the increased variability of glacial climate.  相似文献   

3.
Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, several large, brief, negative excursions (up to -6 per mil) coinciding with smaller shifts (up to -3 per mil) in depth-stratified planktonic foraminiferal species indicate massive releases of methane from basin sediments. Gas hydrate stability was modulated by intermediate-water temperature changes induced by switches in thermohaline circulation. These oscillations were likely widespread along the California margin and elsewhere, affecting gas hydrate instability and contributing to millennial-scale atmospheric methane oscillations.  相似文献   

4.
Pahnke K  Zahn R 《Science (New York, N.Y.)》2005,307(5716):1741-1746
Intermediate water variability at multicentennial scales is documented by 340,000-year-long isotope time series from bottom-dwelling foraminifers at a mid-depth core site in the southwest Pacific. Periods of sudden increases in intermediate water production are linked with transient Southern Hemisphere warm episodes, which implies direct control of climate warming on intermediate water conversion at high southern latitudes. Coincidence with episodes of climate cooling and minimum or halted deepwater convection in the North Atlantic provides striking evidence for interdependence of water mass conversion in both hemispheres, with implications for interhemispheric forcing of ocean thermohaline circulation and climate instability.  相似文献   

5.
Evidence from high-sedimentation-rate South Atlantic deep-sea cores indicates that global and Southern Ocean carbon budget shifts preceded thermohaline circulation changes during the last ice age initiation and termination and that these were preceded by ice-sheet growth and retreat, respectively. No consistent lead-lag relationships are observed during abrupt millennial warming events during the last ice age, allowing for the possibility that ocean circulation triggered some millenial climate changes. At the major glacial-interglacial transitions, the global carbon budget and thermohaline ocean circulation responded sequentially to the climate changes that forced the growth and decline of continental ice sheets.  相似文献   

6.
Reconstruction of an 83-year record (1903 to 1985) of the discharge of the Amazon River shows that there has been no statistically significant change in discharge over the period of record and that the predominant interannual variability occurs on the 2- to 3-year time scale. Oscillations of river discharge predate significant human influences in the Amazon basin and reflect both extrabasinal and local factors. Cross-spectrum analyses of Amazon flow anomalies with indicators of the El Ni?o-Southern Oscillation phenomenon suggest that the oscillations in the hydrograph are coupled to the tropical Pacific climate cycle.  相似文献   

7.
Oscillations of Pinus (pine) pollen in a 50,000-year sequence from Lake Tulane, Florida, indicate that there were major vegetation shifts during the last glacial cycle. Episodes of abundant Pinus populations indicate a climate that was more wet than intervening phases dominated by Quercus (oak) and Ambrosia-type (ragweed and marsh-elder). The Pinus episodes seem to be temporally correlated with the North Atlantic Heinrich events, which were massive, periodic advances of ice streams from the eastern margin of the Laurentide Ice Sheet. Possible links between the Tulane Pinus and Heinrich events include hemispheric cooling, the influences of Mississippi meltwater on sea-surface temperatures in the Gulf of Mexico, and the effects of North Atlantic thermohaline circulation on currents in the Gulf.  相似文献   

8.
Central Greenland ice cores provide evidence of abrupt changes in climate over the past 100,000 years. Many of these changes have also been identified in sedimentary and geochemical signatures in deep-sea sediment cores from the North Atlantic, confirming the link between millennial-scale climate variability and ocean thermohaline circulation. It is shown here that two of the most prominent North Atlantic events-the rapid warming that marks the end of the last glacial period and the Bolling/Allerod-Younger Dryas oscillation-are also recorded in an ice core from Taylor Dome, in the western Ross Sea sector of Antarctica. This result contrasts with evidence from ice cores in other regions of Antarctica, which show an asynchronous response between the Northern and Southern Hemispheres.  相似文献   

9.
800,000 years of abrupt climate variability   总被引:1,自引:0,他引:1  
We constructed an 800,000-year synthetic record of Greenland climate variability based on the thermal bipolar seesaw model. Our Greenland analog reproduces much of the variability seen in the Greenland ice cores over the past 100,000 years. The synthetic record shows strong similarity with the absolutely dated speleothem record from China, allowing us to place ice core records within an absolute timeframe for the past 400,000 years. Hence, it provides both a stratigraphic reference and a conceptual basis for assessing the long-term evolution of millennial-scale variability and its potential role in climate change at longer time scales. Indeed, we provide evidence for a ubiquitous association between bipolar seesaw oscillations and glacial terminations throughout the Middle to Late Pleistocene.  相似文献   

10.
A low-order physical-biogeochemical climate model was used to project atmospheric carbon dioxide and global warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all global warming simulations and collapses at high levels of carbon dioxide. Projected changes in the marine carbon cycle have a modest impact on atmospheric carbon dioxide. Compared with the control, atmospheric carbon dioxide increased by 4 percent at year 2100 and 20 percent at year 2500. The reduction in ocean carbon uptake can be mainly explained by sea surface warming. The projected changes of the marine biological cycle compensate the reduction in downward mixing of anthropogenic carbon, except when the North Atlantic thermohaline circulation collapses.  相似文献   

11.
Atlantic Ocean forcing of North American and European summer climate   总被引:6,自引:0,他引:6  
Recent extreme events such as the devastating 2003 European summer heat wave raise important questions about the possible causes of any underlying trends, or low-frequency variations, in regional climates. Here, we present new evidence that basin-scale changes in the Atlantic Ocean, probably related to the thermohaline circulation, have been an important driver of multidecadal variations in the summertime climate of both North America and western Europe. Our findings advance understanding of past climate changes and also have implications for decadal climate predictions.  相似文献   

12.
郝玲  赵亮 《安徽农业科学》2014,(25):8662-8664,8713
通过对淮河流域18个站点近50年的历史降水资料分析,阐述其暴雨的时空分布特点及其对农业生产的影响。结果表明,1958~2007年淮河流域暴雨日数和暴雨量的年际变化幅度均较剧烈,尤其20世纪90年代末,暴雨日数和暴雨量均明显增加;且淮河流域暴雨呈准2年周期振荡。从空间角度分析,暴雨中心主要集中在淮河流域西南部地区,北部地区相对较少。  相似文献   

13.
Simulations with a synchronously coupled atmosphere-ocean-vegetation model show that changes in vegetation cover during the mid-Holocene, some 6000 years ago, modify and amplify the climate system response to an enhanced seasonal cycle of solar insolation in the Northern Hemisphere both directly (primarily through the changes in surface albedo) and indirectly (through changes in oceanic temperature, sea-ice cover, and oceanic circulation). The model results indicate strong synergistic effects of changes in vegetation cover, ocean temperature, and sea ice at boreal latitudes, but in the subtropics, the atmosphere-vegetation feedback is most important. Moreover, a reduction of the thermohaline circulation in the Atlantic Ocean leads to a warming of the Southern Hemisphere.  相似文献   

14.
Solar forcing of drought frequency in the Maya lowlands   总被引:1,自引:0,他引:1  
We analyzed lake-sediment cores from the Yucatan Peninsula, Mexico, to reconstruct the climate history of the region over the past 2600 years. Time series analysis of sediment proxies, which are sensitive to the changing ratio of evaporation to precipitation (oxygen isotopes and gypsum precipitation), reveal a recurrent pattern of drought with a dominant periodicity of 208 years. This cycle is similar to the documented 206-year period in records of cosmogenic nuclide production (carbon-14 and beryllium-10) that is thought to reflect variations in solar activity. We conclude that a significant component of century-scale variability in Yucatan droughts is explained by solar forcing. Furthermore, some of the maxima in the 208-year drought cycle correspond with discontinuities in Maya cultural evolution, suggesting that the Maya were affected by these bicentennial oscillations in precipitation.  相似文献   

15.
A glacial varve chronology from New England spanning the 4000-year period from 17,500 to 13,500 calendar years before the present was analyzed for evidence of climate variability during the late Pleistocene. The chronology shows a distinct interannual (3 to 5 years) band of enhanced variability suggestive of El Nino-Southern Oscillation (ENSO) teleconnections into North America during the late Pleistocene, when the Laurentide ice sheet was near its maximum extent and climatic boundary conditions were different than those of today. This interannual variability largely disappears by the young end of the 4000-year chronology, with only the highest frequency components (roughly 3-year period) persisting. This record provides evidence of ENSO-like climate variability during near-peak glacial conditions.  相似文献   

16.
During the last glacial period, Earth's climate underwent frequent large and abrupt global changes. This behavior appears to reflect the ability of the ocean's thermohaline circulation to assume more than one mode of operation. The record in ancient sedimentary rocks suggests that similar abrupt changes plagued the Earth at other times. The trigger mechanism for these reorganizations may have been the antiphasing of polar insolation associated with orbital cycles. Were the ongoing increase in atmospheric CO2 levels to trigger another such reorganization, it would be bad news for a world striving to feed 11 to 16 billion people.  相似文献   

17.
A 194-year annual record of skeletal delta(18)O from a coral growing at Malindi, Kenya, preserves a history of sea surface temperature (SST) change that is coherent with instrumental and proxy records of tropical Pacific climate variability over interannual to decadal periods. This variability is superimposed on a warming of as much as 1.3 degrees C since the early 1800s. These results suggest that the tropical Pacific imparts substantial decadal climate variability to the western Indian Ocean and, by implication, may force decadal variability in other regions with strong El Nino-Southern Oscillation teleconnections.  相似文献   

18.
Status and improvements of coupled general circulation models   总被引:1,自引:0,他引:1  
Grassl H 《Science (New York, N.Y.)》2000,288(5473):1991-1997
Coupled general circulation models (CGCMs) integrate our knowledge about atmospheric and oceanic circulation. Different versions of CGCMs are used to provide a better understanding of natural climate variability on interannual and decadal time scales, for extended weather forecasting, and for making seasonal climate scenario projections. They also help to reconstruct past climates, especially abrupt climate change processes. Model intercomparisons, new test data (mainly from satellites), more powerful computers, and parameterizations of atmospheric and oceanic processes have improved CGCM performance to such a degree that the model results are now used by many decision-makers, including governments. They are also fundamental for the detection and attribution of climate change.  相似文献   

19.
Two hypotheses have been put forward to explain the large and abrupt climate changes that punctuated glacial time. One attributes such changes to reorganizations of the ocean's thermohaline circulation and the other to changes in tropical atmosphere-ocean dynamics. In an attempt to distinguish between these hypotheses, two lines of evidence are examined. The first involves the timing of the freshwater injections to the northern Atlantic that have been suggested as triggers for the global impacts associated with the Younger Dryas and Heinrich events. The second has to do with evidence for precursory events associated with the Heinrich ice-rafted debris layers in the northern Atlantic and with the abrupt Dansgaard-Oeschger warmings recorded in the Santa Barbara Basin.  相似文献   

20.
The last deglaciation was marked by large, hemispheric, millennial-scale climate variations: the B?lling-Aller?d and Younger Dryas periods in the north, and the Antarctic Cold Reversal in the south. A chronology from the high-accumulation Law Dome East Antarctic ice core constrains the relative timing of these two events and provides strong evidence that the cooling at the start of the Antarctic Cold Reversal did not follow the abrupt warming during the northern B?lling transition around 14,500 years ago. This result suggests that southern changes are not a direct response to abrupt changes in North Atlantic thermohaline circulation, as is assumed in the conventional picture of a hemispheric temperature seesaw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号