首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The parasitic plant broomrape is entirely dependent on its host for reduced carbon and nitrogen and is also susceptible to inhibition by glyphosate that is translocated to the parasite through a host. Studies were conducted to examine the effect of broomrape parasitism on amino acid concentrations of two hosts: common vetch that is tolerant of low levels of glyphosate and oilseed rape that has been genetically engineered for glyphosate resistance. The influence of glyphosate on the amino acid content of broomrape and the two hosts was also examined. Amino acid concentrations in leaves and roots of parasitized common vetch plants were generally similar to those of the corresponding tissues of nonparasitized plants. Amino acid concentrations in broomrape were lower than those of the parasitized common vetch root. For common vetch, glyphosate applied at rates that selectively inhibited broomrape growth did not alter individual amino acid concentrations in the leaves, but generally increased amino acid levels at 0.18 kg ha-1. Glyphosate application also increased the amino acid concentrations, with the exception of arginine, of broomrape growing on common vetch and did not generally influence concentrations in leaves or roots of common vetch. In oilseed rape, parasitization by broomrape generally led to higher amino acid concentrations in leaves but lower concentrations in roots of parasitized plants. Broomrape had higher amino acid concentrations than roots of the parasitized oilseed rape. Glyphosate applied at 0.25 and 0.5 kg ha-1 generally increased the amino acid concentrations in oilseed rape leaves, but the 0.75 kg ha-1 application caused the amino acid concentrations to decrease compared to those of untreated plants. In oilseed rape root the general trend was an increase in the concentration of amino acids at the two highest rates of glyphosate. Individual amino acid concentrations in broomrape attachments growing on oilseed rape were generally increased following glyphosate application of 0.25 kg ha-1. These results indicate that low rates of glyphosate alter amino acid profiles in both host and broomrape and raise questions about the regulation of amino acid metabolism in the parasite.  相似文献   

2.
Sunflower broomrape (Orobanche cumana Wallr.) is a parasitic plant that infects sunflower (Helianthus annuus L.) plants. In this work, sunflower plants were grown under greenhouse conditions in pots with the substrate infested or non-infested with broomrape seeds. At different numbers of days after sowing, plant height, internode lengths, number of leaves, head diameter, mineral composition of leaves, and potassium (K) concentration in stem were measured. The negative effects of broomrape parasitism were assessed from 57 d after sowing, when broomrape started to emerge. Parasitized plants exhibited lower shoot dry weight, height, and head diameter than control plants. The reduction in internode lengths was associated with a decrease in the gradient of K concentration from basal to apical stem. The mineral composition of leaves was also affected in parasitized plants. The concentrations of calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn) in leaves of parasitized plants were lower than those of the control plants, while there were few differences for K, phosphorus (P), iron (Fe), and copper (Cu). The effects of parasitism are discussed in relation to their competition for resources and to perturbations of the host physiology such as hormonal and water balance.  相似文献   

3.
淹涝胁迫和氮形态对苗期玉米糖、氮代谢底物量的影响   总被引:1,自引:0,他引:1  
采用砂培培养方法,比较研究淹水和不同氮形态(铵态氮、硝态氮以及铵态氮︰硝态氮为1︰1)对苗期玉米根、茎鞘和叶的糖、氮代谢底物——可溶性糖、还原糖、硝态氮和游离氨基酸等物质含量的影响。结果表明,当淹涝胁迫持续7 d时,在非淹涝胁迫条件下,铵态氮处理的根、茎鞘和叶的可溶性糖和游离氨基酸含量均显著高于硝态氮处理(P<0.05);在淹涝胁迫条件下,硝态氮处理的根、茎鞘和叶的生物量干重显著低于铵态氮处理(P<0.05),其根和叶的生物量干重也显著低于铵态氮、硝态氮混合处理(P<0.05)。与非淹涝条件相比,在淹涝胁迫条件下,硝态氮处理的根系和叶的硝态氮含量显著降低(P<0.05),降低幅度分别高达62.6%和30.0%;此外,与非淹涝条件相比,在淹涝胁迫条件下,铵态氮处理的根的可溶性糖、还原糖以及游离氨基酸含量,茎鞘的可溶性糖和还原糖含量以及叶的可溶性糖和游离氨基酸含量均显著升高(P<0.05),而硝态氮处理仅根、茎鞘和叶的还原糖含量以及叶的游离氨基酸含量显著升高(P<0.05)。因此,在本试验条件下,由于糖、氮代谢底物含量充足,铵态氮处理的苗期玉米具有相对较强的耐淹涝胁迫能力。  相似文献   

4.
采用植物化感作用与诱捕作物消除列当土壤种子库   总被引:4,自引:1,他引:3  
研究证明化感作用需要满足如下4个方面:1)供体植物释放化感物质使得受体植物受到连续和定量的影响;2)能从供体植物中分离、鉴定得到化感物质,而且这些化感物质无论是在室内还是在田间,都能对在自然生态系统中邻近的伴生植物产生效应;3)供体植物产生和释放的化感物质在自然条件下能以足够的浓度到达邻近受体植物;4)以足够生物活性到达受体植物的化感物质能够被吸收并能够影响受体植物的生理生化过程,而且这种影响必须排除受体植物的生长发育不是由于竞争、动物侵害、病菌感染以及物理环境等非化感因素产生的影响。列当是列当科(Orobanchaceae)列当属(Orobanche)的根寄生植物,是一种寄生于其他植物根部的全寄生植物。全世界已发现100种列当属根寄生植物,在我国危害较为严重的是向日葵列当(O.cumana)和瓜列当(O.aegyptiace)。向日葵列当主要分布在陕西北部、河北、新疆、山西、内蒙古及东北三省,主要危害向日葵。瓜列当主要分布在新疆,危害瓜类、番茄、马铃薯。列当杂草的种子体积小、重量轻(3~6μg),而且每株植物可以生产大量种子。这些种子数量巨大且在土壤中可以保持生存力长达15~20年以上。成熟后的列当种子需要经过一段时间的后熟过程,完成后熟的列当种子在发芽之前需要1~2周时间在一定的温度和湿度条件下进行预培养,预培养后的列当种子还必须从寄主那里获得一个化学物质才能发芽,在自然条件下这种发芽刺激物质是由寄主或非寄主植物的幼根分泌提供的。获得该物质后,列当种子的"发芽管"可在数日内长出种皮,之后在吸器诱导物质的作用下很快形成吸器,与寄主根吸附并穿入根内后与寄主根的木质部形成联结,从寄主植物那里竞争性地夺取水分、养分及生长激素。由于列当属植物是根寄生杂草,在没有长出地面之前,它已经给作物造成严重的伤害,所以不易控制,有效的途径是尽量减少土壤中的列当种子含量。诱捕作物是指该作物的根系能够分泌列当属植物种子发芽的刺激物质,但是又不会被列当正常寄生,诱捕作物本身可以进行正常收获。由于列当属植物种子的生命只有一次,发芽后不能寄生就会死亡,这种发芽又称之为"自杀发芽",如此可以在列当找不到寄主之前死亡,从而大大降低土壤中列当的种子库。本文介绍了作者项目组从事采用化感作用与诱捕作物(小麦、玉米、棉花、大豆等)消除列当土壤种子库最新研究进展。  相似文献   

5.
表油菜素内酯(EBL)在促进植物生长发育及提高植物抗逆性方面发挥着重要作用。本研究以沟叶结缕草[Zoysia matrella (L.) Merr.]胚性愈伤组织为材料,采用不同浓度NaCl进行盐胁迫处理,并在不同盐胁迫下加入不同浓度的EBL,分析EBL对沟叶结缕草愈伤组织生长和再生,以及愈伤组织和再生植株叶片中过氧化氢酶(CAT)、过氧化物酶(POD)、超氧岐化酶(SOD)活性和丙二醛(MDA)含量的影响。结果表明,当NaCl浓度≥0.6%时,沟叶结缕草愈伤组织生长受到抑制;当NaCl浓度≥0.4%时,沟叶结缕草愈伤组织再生受到抑制。在盐胁迫下,加入0.05 mg·L-1EBL对愈伤组织生长的促进效果最显著,加入0.02 mg·L-1EBL对愈伤组织再生的促进效果最显著。当NaCl浓度为0.6%时,经0.05 mg·L-1 EBL处理,沟叶结缕草愈伤组织的直径增长率升高51.74%,鲜重增长率升高49.73%;当NaCl浓度为0.4%时,经0.02 mg·L-1EBL处理,愈伤再生成苗数提高38.14%,根长≥5 mm数提高20.12%。本研究获得了耐盐性更强的沟叶结缕草植株,表明离体条件下添加EBL可有效缓解盐胁迫,促进沟叶结缕草愈伤组织的生长和再生。该研究结果为沟叶结缕草更广泛地应用于盐碱地改良提供了基础依据。  相似文献   

6.
The nutritive and toxicological values of the dry seeds, germinated seeds, and string beans of Erythrina americana were studied using raw and boiled samples. Raw germinated seeds had a higher protein content and lower fiber content than dry seeds. The whole string bean had lower protein content and higher fiber content. However, the seeds of the green pod showed the same protein concentration as the dry seeds (dry basis). Boiling and elimination of broth was beneficial in diminishing the alkaloid concentration in all the samples. The trypsin inhibitors, lectins, and tannins were also diminished as was expected. The raw string bean showed the lowest LD(50). Although the total essential amino acids content of the boiled germinated seeds was increased, the quality of protein, protein efficiency ratio (PER), was lower than in boiled dry seeds, and in these, the PER was similar to the control (casein). The present results suggest that for the protein quality and low alkaloid content, the boiled dry seeds and string beans could be used for animal feeding. It could be interesting to test the raw string beans in ruminants since in this stage E. americana showed the lowest toxicity.  相似文献   

7.
The Influence of Kinetin and Iron on Nucleic Acid and Protein Metabolism of Carrot Tissue Cultures Carrot-root tissues cultured in a nutrient solution containing Kinetin had a high rate of cell division, that led to an undifferentiated callus, and a relatively low DNA content per cell. The same tissues growing without Kinetin had a smaller rate of cell division and a higher DNA content, and showed the ability to form roots. By addition of 32P to the nutrient solution, the cultures growing with Kinetin showed a higher specific activity of DNA than those growing without Kinetin. From previous experiments and results of other workers the possibility of the occurence of a metabolic labile DNA fraction in the cultures which grew without Kinetin is discussed. A comparison between the influence of iron and Kinetin on cell division activity, root formation, DNA, RNA and amino acid content of the tissue cultures was made on a cell basis. Iron deficiency or absence of Kinetin in the nutrient solution reduced the cell division activity of carrot tissue cultures and increased the content of DNA, RNA and soluble amino acids. The protein content was reduced by iron deficiency but was increased by the absence of Kinetin. Cultures, growing without Kinetin were able to form roots, while those, growing in an iron deficient medium were unable to show the latter phenomenon.  相似文献   

8.
Mycorrhizae are fungal symbionts forming mutualistic relationships with plant roots. This study was undertaken to evaluate the overall influence of arbuscular mycorrhizal fungi (AMF) on the overall growth and development of carrot plant. Surface-sterilized seeds of carrot were sown in earthen pots filled with sterile soil. Half of the pots were inoculated with AMF spores; the other half without any AMF inoculation represented control. After germination inoculated plants, along with the controls, were sampled at 20, 40, 60 and 80 days of growth after seedling emergence. There is a progressive net increase in growth with each 20-day interval after seedling emergence. Storage roots of carrot had a higher level of metabolites and nutrients like nitrogen, phosphorus and potassium in mycorrhiza colonized plants than the control. High performance liquid chromatography analysis indicated an increase in the carbohydrate fractions in AMF-inoculated roots. Thus, mycorrhiza has been found increasing the growth, metabolites and nutrition of carrot plant.  相似文献   

9.
Egyptian broomrape is a root holoparasitic plant that causes severe damage to tomato in Iran. Experiments were conducted in 2013 to investigate the effect of silicon (Si) nutrition on broomrape response in tomato. Si concentration significantly delayed first appearance of broomrape and decreased number of tubercles in both cultivars, although the magnitude of reduction varied with cultivar and Si concentration. Broomrape infection significantly decreased root and shoot dry weights of tomato cultivars. However, Si nutrition at high concentration considerably reduced damage severity of broomrape compared to the treatment that received no Si. Infection of tomato with broomrape resulted in significant increase in peroxidase and catalase activity in the roots of resistant cultivar which led to enhanced crop resistance to oxidative stress and improved growth in this cultivar.  相似文献   

10.
The present study deals with the isolation and characterization of Azospirillum strains isolated from roots and rhizosphere soil of wheat (at tillering and anthesis stages) plants grown under different moisture regimes in the field and in pots. The survival of Azospirillum isolates from plants of irrigated field and those from well-watered pots was higher than that of Azospirillum strains isolated from roots and rhizosphere soils of plants grown under arid and semiarid (14–8% soil moisture) field conditions and under water-stressed (8% soil moisture) conditions in pots. On the basis of carbon/nitrogen source utilization, the Azospirillum strains isolated from wheat under field and pot conditions were grouped in three groups. The unweighted pair group method with arithmetic means cluster analysis based on random amplification of polymorphic DNA showed that two groups of Azospirillum were similar. The strains isolated from plants (at tillering stage) grown under low moisture conditions either in pots or in field were genetically similar to strains isolated from plants grown under well-watered conditions in both pots and field. Inoculation of wheat with isolates from water-stressed plants induced tolerance to water stress in inoculated plants. Isolates from water-stressed conditions exhibited lower production of indole acetic acid, gibberellic acid, and trans zeatin riboside but a higher production of abscisic acid.  相似文献   

11.
Common bean effects on health have been related to its dietary fiber content and other active compounds. This study assessed the content of flavonoids, coumestrol, phenolic acids, galactooligosaccharides, and phytic acid in wild and cultivated Mexican common bean seeds (raw and cooked) and that of flavonoids, coumestrol, and phenolic acids in germinated bean seeds. The presence of isoflavones in raw bean seeds was not confirmed by the UV spectra. Quercetin, kaempferol, p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, and vanillic acid mean contents were 10.9, 52.3, 10.1, 9.6, 5.4, and 18.2 microg/g, respectively; raffinose, stachyose, verbascose, and phytic acid mean contents were 8.5, 56.3, 5.5, and 11.5 mg/g, respectively, in raw seeds. All compounds were affected by autoclaving, and germination resulted in a de novo synthesis of flavonols, phytoestrogens, and phenolic acids. The impact on health of common bean seed is affected by dietary burden, specific compounds content, and processing. On the other hand, germinated bean seed or beans sprouts may be sources of antioxidants and phytoestrogens.  相似文献   

12.
为从细胞水平上揭示刺葡萄3-O-类黄酮葡萄糖基转移酶(UFGT)基因调控花青素合成的功能,以刺葡萄愈伤组织为试验材料,根据刺葡萄愈伤组织转录组UFGT序列片段,利用RT-PCR结合RACE技术克隆得到VdUFGT基因,并对其进行生物信息学和表达特性分析。结果表明,VdUFGT基因cDNA和DNA开放阅读框(ORF)分别为1 371 bp和1 448 bp,包含2个外显子和1个内含子,编码456个氨基酸,为带负电荷的不稳定的亲水性蛋白,具有一个UDPGT结构域,是UDPGT超家族成员,包含UDP-黄酮糖基转移酶特征区域。由UFGT同源基因编码蛋白所构建的系统发育树,与植物进化的关系相一致,6个葡萄属植物聚为一支。RT-qPCR分析表明,刺葡萄红色愈伤组织VdUFGT转录水平极显著高于白色愈伤组织,培养25 d的2个细胞培养物差异可达79倍;在刺葡萄愈伤组织连续培养过程中,红色愈伤组织中VdUFGT转录水平变化幅度较大,在愈伤组织快速生长中期和衰老初期分别出现峰值,而刺葡萄白色愈伤组织VdUFGT转录水平与红色愈伤组织相比变化幅度不大,且始终维持在一个较低的水平。说明VdUFGT对刺葡萄红色愈伤组织细胞培养物中的花青素生物合成有重要的调控作用,这种调控作用主要发生在刺葡萄愈伤组织细胞快速生长中期和细胞衰老初期。本研究结果为进一步阐明VdUFGT调控刺葡萄细胞花青素合成的机制奠定了理论基础。  相似文献   

13.
Comparative physiological studies on iron (Fe) chlorosis of Vicia faba L. and Helianthus annuus L. were carried out. High internal Fe contents in Vicia cotyledons (16–37 μg) were completely used for plant growth and Fe chlorosis was not inducible by the application of nitrate (with or without bicarbonate). In Helianthus, low quantities of Fe in the seeds (4 μg) were insufficient for normal growth and without Fe in the nutrient solution, Fe chlorosis was obtained in all treatments. This chlorosis was an absolute Fe deficiency. Also, the treatment with 1 μM Fe in the nutrient solution and nitrate (with or without bicarbonate) led to severe chlorotic symptoms associated with low leaf Fe concentrations and high Fe concentrations in the roots. In contrast, Helianthus grown with NH4NO3 and 1 μM Fe had green leaves and high leaf Fe concentrations. However, with NO3 supply (with or without bicarbonate), Fe translocation from the roots to the upper plant parts was restricted and leaves were chlorotic. Chlorotic and green sunflower leaves may have the same Fe concentrations, leaf Fe concentration being dependent on Fe translocation into the leaf at the various pH levels in the nutrient solution. At low external pH levels (controlled conditions) more Fe was translocated into the leaf leading to similar leaf Fe concentrations with higher chlorophyll concentrations (NH4NO3) and with lower chlorophyll concentrations (NO3). This indicates a lower utilization of leaf Fe of NO3 grown sunflower plants. Utilization of Fe in faba bean leaves is presumably higher than in sunflower leaves. In Vicia xylem sap pH was not affected by nitrate. In contrast, the xylem sap pH in Helianthus was permanently increased by about 0.4 pH units when fed with nitrate (with or without bicarbonate) compared with NH4NO3 nutrition. The xylem sap pH is indicative of leaf apoplast pH. From our earlier work (Mengel et al., 1994; Kosegarten und Englisch, 1994) we therefore suppose that in Helianthus, Fe immobilization occurs in the leaf apoplast due to high pH levels when grown with nitrate (with or without bicarbonate).  相似文献   

14.
Plants expressing a modified bacterial mercury reductase, merA, are highly resistant to Hg(II) toxicity as a result of the enzymatically catalyzed electrochemical reduction of Hg(II) to the much less toxic and volatile Hg(0). merA expression may allow plants to manifest a suite of responses to mercury exposure, making them more capable than wild-type plants of interacting with and removing mercury from contaminated soil or water. We have engineered merA-expressing Nicotiana tabacum (tobacco) as a model plant for examining these responses. Mercury resistance was demonstrated by germinating and growing merA tobacco seeds on semi-solid medium spiked with a HgCl2 concentration acutely toxic to wild-type plants. On similar growth medium, merA plant roots penetrated a highly concentrated, localized Hg(II) zone of HgS (cinnibar) more readily than wild-type roots. In hydroponic medium spiked with HgCl2, merA plants maintained higher evapotranspiration activity than wild-type plants. The ability of merA Hg(II)-reductive activity to counter typical plant-catalyzed Hg(0) oxidation to Hg(II) was demonstrated by a lower net foliar absorption of atmospheric Hg(0) than wild-type plants. Mercury translocation through merA plants was examined through reciprocally grafted merA and wild-type tobacco grown on HgCl2-spiked hydroponic medium. Elevated mercury concentrations in wild-type shoots grafted to merA roots suggest the vertical movement of mercury within merA tissues or plants may be facilitated by dynamic balance between native Hg(0) oxidation and MerA-catalyzed Hg(II) reduction. These experiments demonstrate that merA-engineered tobacco plants display an array of tissue-level and whole-plant attributes which should allow for more efficient mercury extraction and processing compared to the wild-type.  相似文献   

15.
Caffeoylquinic acids and lignans in the crude extracts of both roots and seeds from different burdock ( Arctium lappa L.) genotypes were simultaneously characterized and systematically compared by LC-MS and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS), and their antioxidant activities were also investigated. A total of 14 lignans were identified in burdock seeds and 12 caffeoylquinic acids in burdock roots. High levels of caffeoylquinic acids were also detected in burdock seeds, but only trace amounts of lignans were found in burdock roots. Burdock seeds contained higher concentrations of lignans and caffeoylquinic acids than burdock roots. Quantitative analysis of caffeoylquinic acids and lignans in roots and seeds of various burdock genotypes was reported for the first time. Great variations in contents of both individual and total phenolic compounds as well as antioxidant activities were found among different genotypes. Burdock as a root vegetable or medicinal plants possessed considerably stronger antioxidant activity than common vegetables and fruits.  相似文献   

16.
In soils, amino acids may be an important source of nitrogen for plants, at least in those where organic matter is not quickly degraded. The physiology of uptake of amino acids by roots was mainly studied in the 70's and 80's, before genes encoding amino acid importers were cloned in the 90's. While two families of amino acid transporters have been identified, yielding a total of about 100 genes, the role of each member is yet to be elucidated. As a tool for studying the role of amino acid transporters from Arabidopsis we set up a new hydroponic system suitable for radioisotope use. This system enables reproducible amino acid uptake by roots and estimation of the transport to the shoots of the amino acid taken up. We show that the rates of glutamine (Gln) uptake by wild‐type roots and transfer to the shoots were linear, and that other tested amino acids were translocated to the shoots with lower efficiency than Gln. A T‐DNA insertion mutant for a Gln exporter was compared to the wild‐type plants. Gln uptake and transfer were similar in both genotypes, showing that the suppression of the exporter did not affect uptake or transfer of amino acids to the shoots. The main advantage of the hydroponic system presented here is that all the materials used to grow Arabidopsis are virtually free and can therefore be discarded, a useful feature when working with radioactivity.  相似文献   

17.
Fourier transform (FT)-Raman spectroscopy was applied to the analysis of genetically modified (GM) plant tissue. Transgenic carrot callus and tobacco plants possessing a novel StSn1 gene coding for a cysteine-rich snakin-1 polypeptide were obtained after Agrobacterium-mediated transformation. The presence of the StSn1 gene and its expression were confirmed by polymerase chain reactions using plant DNA and cDNA as templates for the amplification of the transgenes. Raman measurements were taken from lyophilized GM carrot callus tissue, fresh GM tobacco leaves, and from seeds produced by GM tobacco plants as well as from the nontransformed controls. Cluster analysis applied to the obtained spectra allowed clear separation of the GM samples expressing the StSn1 gene and the nontransformed control to distinct groups. Such discrimination was achieved only when wavenumber ranges around 500 cm (-1) were analyzed. The results indicate that discrimination between the GM and non-GM materials was related to S-S stretching vibrations in snakin-1, as it contained six sulfur bridges. Other introduced genes, neomycine phosphotransferase ( nptII) and Chitinase ( chit36), did not cause any detectable changes by Raman spectroscopy in plant tissue. This is the first report on the use of Raman spectroscopy for a nondestructive analysis of GM plant material expressing the gene coding for a cysteine-rich polypeptide.  相似文献   

18.
Abstract

Soluble amino acids in roots and primary amino acids, which were involved in primary ammonium assimilation, in the metabolites of 14C-glucose fed to roots for 3 h in the dark were analyzed in the roots of non-nodulated soybean and pea plants grown in ammonium, nitrate or nitrogen-free media for 1 day. Compared with the effect of nitrate, ammonium supply strongly affected the content and synthesis of the amino acids in the roots. In both soybean and pea roots, the supply of ammonium increased considerably the concentrations of the primary amino acids, and asparagine was the most predominant amide, followed by glutamine. In nitrate-supplied soybean roots, the concentrations of asparagine, aspartate and alanine increased, but the concentration of glutamine was low. In the roots of pea plants grown in nitrate media, asparagine was the predominant amino acid, although the composition of the primary amino acids was little affected by nitrate supply. The proportion of amino acids synthesized from 14C-glucose increased and asparagine rather than glutamine was predominantly synthesized in ammonium-supplied soybean and pea roots, whereas in nitrate-supplied roots asparagine was more actively synthesized than glutamine, although asparagine was not predominant. The ratio of C4 (asparagine + aspartate) to C5 (glutamine + glutamate) amino acids was twofold higher in ammonium-supplied and nitrate-supplied soybean roots than in roots receiving no nitrogen. In contrast, in pea roots, the C4/C5 ratio was twofold higher only in ammonium nutrition. The results obtained suggest that the roots of leguminous plants might possess an indigenous ability to provide a carbon skeleton for preferential synthesis of asparagine rather than glutamine with a high intensity of ammonium supply.  相似文献   

19.
Abstract

The objective of this study was to evaluate the effects of cobalt (Co) and molybdenum (Mo) doses in the treatment of seeds on the biosynthesis of nitrogen compounds, photosynthetic pigments, sugars, and production of peanut plants. The doses of Co and Mo used were 0, 2, 3, and 4?mL kg?1 seed, which were applied immediately before sowing. Seeds treated with Co and Mo at a dose of 4?mL kg?1 yielded peanut plants with higher concentrations of photosynthetic pigments, carotenoids, and sucrose in leaves. Application of Co and Mo doses also increased biological nitrogen fixation by increasing the concentration of allantoic acid, nitrate, ammonia, and amino acids in leaves. The concentration of total amino acids corresponded to most of the nitrogen compounds (on average 50%), followed by the concentrations of nitrate (35%), ammonia (11%), allantoic acid (7%), and allantoin (0.2%). Application of 4?mL kg?1 increased the production of total amino acids compared with the control treatment. Pod yield was not affected by the Co and Mo doses; however, treatment of peanut seeds with 4?mL kg?1 was the most viable alternative for increased production of primary metabolism compounds, nitrogen forms, and photosynthetic pigments in peanut plants. This study provides important information regarding the role of Co and Mo in the biological nitrogen fixation of peanut plants. Future experiments should be conducted using a dose of 4?mL kg?1 with different genotypes to verify the potential for increasing peanut yield.  相似文献   

20.
Summary Wheat seedlings, treated with the auxine 2,4-dichlor-phenoxy acetic acid (2,4-D) during germination developed only a residual root system. Root elongation was extremely restricted and root tips were deformed to thick club-shaped tumours. When 2,4-D was added in a later stage of plant growth the plants developed additional nodule-like knots along primary roots. Root and shoot dry-matter production was slightly repressed in all 2,4-D treatments and N translocation from roots to shoots was repressed as well. When transferred to an auxine-free growth medium, the 2,4-D-affected roots were not capable of complete recovery. In plants inoculated gnotobiotically with Azospirillum brasilense, either with the wild type or with the NH 4 + -excreting mutant strain C3, a 2,4-D addition increased rhizosphere acetylene-reduction activity at pO2 1.5 kPa. The O2 sensitivity of root-associated nitrogenase activity tended to be reduced. The number of root-colonizing bacteria, at approximately 108 colony-forming units (cfu) per g dry root, was similar in the 2,4-D treatments and untreated controls. Plant treatment with high concentrations of the chemical isomer 3,5-dichlor-phenoxy acetic acid (3,5-D) did not have comparable effects, either on plant development or on rhizosphere-associated nitrogenase activity. Root-tumour tissue inhabited by A. brasilense showed purple staining when subjected to a tetrazolium chloride solution, which may indicate intensive local nitrogenase activity in this tissue. Exposed to an 15N2-enriched atmosphere, plants treated with 2,4-D and with A. brasilense incorporated significantly higher amounts of 15N than untreated controls. In all cases the highest values of 15N enrichment were found following inoculation with the NH 4 + -excreting mutant strain C3. Present address: F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, Willem de Croylan 42, B-3001 Heverlee, Belgium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号