首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to describe the responses of the plasma progesterone and cortisol concentrations in ovariectomized lactating cows to low doses of adrenocorticotropic hormone (ACTH). The estrous cycles in 3 lactating cows were synchronized, and the cows were ovariectomized in the luteal phase. ACTH challenge tests were conducted at doses of 3, 6, 12 and 25 IU. Blood samples were collected at 30 min intervals, and the plasma progesterone and cortisol concentrations were analyzed by EIA. A concomitant rise in plasma progesterone and plasma cortisol was observed in cows treated with 12 IU or higher doses of ACTH. Significant increments in the plasma cortisol concentrations were observed at all doses of ACTH. The means (+/- SE) of the peak plasma progesterone concentrations after the 3, 6, 12 and 25 IU ACTH challenge tests were 0.6 +/- 0.1, 1.3 +/- 0.4, 1.5 +/- 0.3 and 2.4 +/- 0.3 ng/ml, respectively. The means of the peak plasma cortisol concentrations in the 3 cows after the ACTH challenge were 14.0 +/- 1.5, 17.0 +/- 2.5, 23.3 +/- 3.0, and 33.3 +/- 7.0 ng/ml, respectively. The effects of the doses, time after treatment, and their interaction on the plasma progesterone concentrations after the ACTH challenge were significant (P<0.01). Likewise, the effects of the doses, time after treatment, and their interaction on the plasma cortisol concentrations after the ACTH challenge were significant (P<0.01). The mean AUC values for the plasma progesterone and cortisol concentrations after the ACTH treatments were also significantly affected by the dose of ACTH (P<0.01 and P<0.05, respectively). A significantly positive correlation was obtained between the peak plasma progesterone and cortisol concentrations after different doses of ACTH (r=0.7, P<0.05). The results suggest that lactating dairy cows are capable of secreting a significant amount of adrenal progesterone, reaching up to the minimal concentration necessary to cause suppression of estrus in response to 12 IU ACTH (P<0.01). The concomitant plasma cortisol concentration was 23.3 ng/ml.  相似文献   

2.
Cortisol and luteinizing hormone (LH) were measured in serum after the administration of adrenocorticotropic hormone (ACTH) to suckled (S) and nonsuckled (NS) beef cows. Blood was sampled on 2 consecutive days every 2 weeks for four bleeding periods starting 14 days after calving. Cows were injected with 200 IU ACTH or saline in a 2-day switchback design. Serum was collected before ACTH or saline injection and at 30-min intervals thereafter for 8 hours. Average cortisol concentrations in serum were similar in S and NS cows (6.4 +/- .6 and 6.1 +/- .8 ng/ml, respectively) after saline. Average cortisol concentrations in serum collected during an 8-hr period after ACTH on days 14, 28, 42 and 56 postpartum were 24.7 +/- 2.4, 31.8 +/- 3.5, 36.4 +/- 4.2 and 40.7 +/- .5 ng/ml, respectively, for S cows, and 31.1 +/- 2.9, 44.7 +/- 5.2, 45.0 +/- 5.7 and 46.0 +/- 5.4 ng/ml, respectively, for NS cows. Cortisol response to ACTH, measured as area under the response curve, was greater (P less than .05) in NS than in S cows. Amount of cortisol released by 200 IU ACTH was maximal by days 28 to 29 postpartum in NS cows, but the response increased gradually between days 14 to 15 and days 56 to 57 in S cows. overall, LH in serum averaged .55 +/- .08 ng/ml for S cows and .92 +/- .06 ng/ml for NS cows after saline, and .49 +/- .07 ng/ml for S cows and .94 +/- .06 ng/ml for NS cows after ACth. Although mean and peak serum LH concentrations did not differ between cows given ACTH and those given saline, the number of LH peaks and the number of cows having LH after saline. Mean serum LH concentrations were lower (P less than. 05) in S than in NS cows at 28 days postpartum. The number of LH peaks was lower (P less than .05) and the magnitude of the largest LH peak tended to be lower (P less than .06) in S cows at all sampling periods.  相似文献   

3.
The effect of ACTH (16 units) on plasma cortisol and corticosterone concentrations in healthy psittacine birds was evaluated. Plasma corticosterone significantly increased (P less than 0.01) from a mean (+/- SD) basal concentration of 3.25 +/ 3.6 ng/ml to 26.47 +/- 9.25 (one hour after ACTH administration) and 25.69 +/- 13.23 ng/ml (2 hours after ACTH administration). For maximal increase in plasma corticosterone as measured by radioimmunoassay (RIA), heat denaturation was necessary to release corticosteroids from steroid-binding proteins. As measured by RIA, plasma cortisol concentrations did not increase, whether or not the heat denaturation step was included. Addition of cortisol to avian plasma did not prevent accurate quantification of cortisol as measured by RIA. Plasma corticosterone concentrations in cockatoos, macaws, Amazon parrots, conures, and lorikeets before and after ACTH administration indicated that the ACTH stimulation test could be used to evaluate adrenal secretory capacity in psittacine birds.  相似文献   

4.
Doses of 0.005-1.0 mg of ACTH1-24 given intravenously, intramuscularly or as an intramuscular depot injection caused increases in cortisol concentrations within 15 min in the plasma of ewes. There was, however, considerable animal-to-animal variation in maximum concentrations achieved. A curvilinear dose-response relationship to ACTH1-24 was obtained which was similar for each route of administration when expressed in terms of maximum cortisol concentrations. However, for a given dose, more prolonged release of cortisol occurred after i.m. injection compared to i.v., with maximum concentrations occurring 6 h after the depot formulation injection. Five repeated daily doses of 1.0 mg depot ACTH1-24 resulted in no diminution of cortisol response indicating considerable synthesizing capacity of the adrenals in clinically normal ewes. Comparison of cortisol concentrations after an acute stressor (shearing) suggests that doses of ACTH1-24 greater than 0.25 mg are excessive for simulation of stress-induced adrenal activity.  相似文献   

5.
Previous results from this laboratory have demonstrated that in preterm fetal sheep (117-131 days gestation), stimulated ACTH secretion is highly sensitive and that in term fetal sheep (129-143 days), stimulated ACTH secretion is insensitive to the negative feedback effects of cortisol. The purpose of this study was to quantitate cortisol negative feedback inhibition of stimulated ACTH secretion in adult sheep. Adult, conscious, nonpregnant ewes, chronically prepared with carotid arterial loops, were infused intravenously with vehicle or cortisol at 4 different rates (denoted Groups I, II, III, and IV) for 5 hours. These infusions increased total and unbound plasma cortisol concentrations within the range observed after stimulation of the hypothalamus-pituitary-adrenal axis. One hour after termination of the cortisol or vehicle infusions, ACTH secretion was stimulated by intravenous infusion of sodium nitroprusside for 10 min at a rate of 20 micrograms/kg.min. Cortisol infusions suppressed ACTH responses to nitroprusside in a dose-related manner. After vehicle infusion, nitroprusside increased plasma ACTH to 735 +/- 229 pg/ml. After cortisol infusions, nitroprusside increased plasma ACTH to 292 +/- 63, 101 +/- 30, 73 +/- 12, and 67 +/- 24 in Groups I, II, III, and IV, respectively. Overall, there was a significant negative exponential relationship between plateau plasma cortisol concentration during the cortisol or vehicle infusion and the peak plasma ACTH concentration during the response to nitroprusside infusion (r = -0.81). The highest rate of cortisol infusion increased total and unbound plasma cortisol concentrations to 40.1 +/- 5.7 and 19.5 +/- 5.9 ng/ml and completely suppressed the subsequent ACTH response to nitroprusside.  相似文献   

6.
A review is given of the available literature concerning the relationship between the bovine pituitary-adrenocortical axis and milk yield in dairy cattle. A severe drop in milk yield (more than 50%) can be induced by a single or repeated intramuscular injection of at least 200 IU ACTH or by a single intramuscular injection of 14.6 mg dexamethasone. Sixty minutes after an intravenous injection, both 200 IU ACTH and 100 mg cortisol are equivalent to a plasma cortisol concentration of at least 31 ng/ml. Thus the decrease in milk yield after an intramuscular injection of more than 200 IU ACTH can hardly be induced by cortisol only. The fact that bovine plasma hardly binds any dexamethasone, in sharp contrast with bovine mammary epithelial tissue, is a possible explanation of the special part which dexamethasone plays in milk yield.  相似文献   

7.
Summary

A review is given of the available literature concerning the relationship between the bovine pituitary‐adrenocortical axis and milk yield in dairy cattle. A severe drop in milk yield (more than 50%) can be induced by a single or repeated intramuscular injection of at least 200 IU ACTH or by a single intramuscular injection of 14.6 mg dexamethasone. Sixty minutes after an intravenous injection, both 200 IU ACTH and 100 mg cortisol are equivalent to a plasma cortisol concentration of at least 31 ng/ml. Thus the decrease in milk yield after an intramuscular injection of more than 200 IU ACTH can hardly be induced by cortisol only. The fact that bovine plasma hardly binds any dexamethasone, in sharp contrast with bovine mammary epithelial tissue, is a possible explanation of the special part which dexamethasone plays in milk yield.  相似文献   

8.
Healthy mature cows (n = 6) were injected intrauterinally (IU) with gentamicin (50 ml of a 5% injectable solution) daily for 3 consecutive days. Venous blood and milk samples were collected at postinjection (initial) hours (PIH) 1, 3, 6, 9, 12, 24, 28, 31, 34, 37, 48, 51, 54, 57, 60, and 71, and endometrial biopsies were performed at PIH 6, 25, 48, 73, 95, and 119. Skeletal muscle biopsy samples were taken at PIH 25 and 73, and urine was collected every 1 or 2 hours during 12 consecutive hours after the first IU injection. Serum, milk, urine, and tissue concentrations of gentamicin were measured by radioimmunoassay. The highest mean serum concentration of gentamicin occurred during the 3 hours after each injection (2.49 +/- 1.46, 6.60 +/- 5.47, and 4.98 +/- 2.70 micrograms/ml). The mean peak concentration of gentamicin in milk occurred 3 to 6 hours after each injection. Mean peak urine concentration of gentamicin (256.8 +/- 127.9 micrograms/ml) was measured at PIH 6. The mean percentage of the first dose of gentamicin excreted in the urine within 12 hours was 14.78 +/- 3.56. The highest concentration of gentamicin in endometrial tissue (639.16 +/- 307.22 micrograms/g) was measured at PIH 6, decreasing to 9.64 +/- 3.55 micrograms/g before the next IU dose. Gentamicin was still detectable in endometrial tissue (0.86 +/- 0.43 microgram/g) 71 hours after the 3rd (last) IU injection.  相似文献   

9.
Plasma cortisol (hydrocortisone) was measured by radioimmunoassay in 6 normal cats. Blood was collected from the cats by venipuncture at intervals of 3 hours for 3 days. Resting plasma cortisol concentrations averaged 17.0 +/- 2.8 (SD) ng/ml and ranged from nondetectable (less than 3 ng/ml) to 82.8 ng/ml. Of 144 plasma samples, 95% contained less than 40 ng of cortisol/ml. Circadian rhythm of cortisol secretion was not detected, suggesting that adrenal function tests may be started in feline patients at any time of day. Intramuscular injection of 2.2 U of ACTH gel/kg of body weight caused detectable increase in plasma cortisol concentrations at 1 and 2 hours after injection. Maximal response to ACTH in the 6 cats ranged from 41.6 to 178.4 ng/ml. Oral administration of 0.1 mg of dexamethasone/kg suppressed plasma cortisol to nondetectable concentrations for 32 hours in 5 of the 6 cats.  相似文献   

10.
By inoculating Klebsiella pneumoniae into the teat canals of mammary glands, coliform mastitis was induced experimentally in 6 lactating cows. Release of eicosanoids, histamine, and serotonin in plasma and milk was studied in response to 2 doses of K pneumoniae. A low dose (mean, 5,000 organisms/ml) was inoculated into cows 1 through 4, and a high dose (mean, 200,000 organisms/ml) was inoculated into cows 5 and 6. Milk and blood samples were collected before inoculation (0 hours), and hourly, from 3 to 24 hours after inoculation. Concentrations of prostaglandin F2 alpha (PGF2 alpha), prostaglandin E (PGE), thromboxane B2 (TxB2), histamine, and serotonin were measured in plasma and milk obtained from control (NaCl solution-inoculated) and infected quarters. Fluorometric analysis of milk from infected quarters revealed significantly increased histamine and serotonin concentrations regardless of the dose of K pneumoniae. The mean (+/- SEM) peak concentrations of histamine were significantly (P less than 0.01) increased from the preinoculation value of 44 (+/- 12) ng/ml to 312 (+/- 104) ng/ml in milk from infected quarters and 72 (+/- 24) ng/ml in milk from control quarters. The mean peak concentration of serotonin increased significantly from the preinoculation concentration of 436 (+/- 37) ng/ml to 1,754 (+/- 662) ng/ml and 4,867 (+/- 1,248) ng/ml in milk from control (P less than 0.02) and infected (P less than 0.001) quarters, respectively. However, serotonin concentration in milk from infected quarters was approximately 2.8 times greater than that in milk from control quarters. Concentrations of PGF2 alpha, PGE, and TxB2 in milk and plasma were evaluated by radioimmunoassay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The relationships among exogenous adrenocorticotropin (ACTH), plasma corticosteroids, and circulating leukocytes were studied in 7 lactating cows. Blood samples were obtained from jugular cannulas at -2, -1, and 0 hours before ACTH was injected (base line) and 0.25, 0.50, 1, 2, 3, 6, and 24 hours after injection. Plasma corticosteroids were increased progressively by injecting doses of ACTH between 1 and 200 IU. Plasma corticosteroids reached peak concentrations between 15 and 30 minutes and returned to base line within 1 to 3 hours after 1, 5, and 10 IU doses of ACTH were injected, but required as long as 6 hours after injection of 100 and 200 IU. Base line counts of circulating leukocytes averaged 7.3 X 10(3) cells/mm3 and remained unchanged after injecting 0 and 1 IU of ACTH (P less than 0.05). Significant dose-dependent increases in circulating leukocytes were detected within 2 hours after administering 5, 10, and 100 IU of ACTH. Responses to 100 and 200 IU were similar. The average concentration of leukocytes increased up to 6 hours after ACTH administration and returned to base line values within 12 to 24 hours in cows injected with 5 and 10 IU, but not until 48 hours in cows injected with 100 and 200 IU of ACTH. In contrast to the delayed and sustained responses observed for leukocytes, corticosteroid responses were rapid and transient. Moreover, the administration of 200 IU of ACTH was considered to increase circulating corticosteroids and leukocytes beyond that found in dairy cattle exposed to stress associated with overmilking, acute coliform mastitis, or parturition.  相似文献   

12.
Plasma insulin-like growth factor-I (IGF-I) concentrations were monitored in Holstein females through different periods of their growth, lactation and after acute or chronic growth hormone-releasing factor (GRF) administration. Plasma samples were radioimmunoassayed using a human IGF-I antibody after a 24 hr incubation in a HCl(.1N)-glycine(.2M) buffer (pH 2). In a first study, IGF-I concentrations were measured in Holstein females of different ages and(or) stages of lactation (n = 6 per group). The IGF-I concentrations in newborn calves (102.0 +/- 11.3 ng/ml) markedly decreased (P less than .01) in 1 mo old animals (50.2 +/- 7.1 ng/ml), then increased (P less than .01) to 137.0 +/- 5.1 and 137.4 +/- 11.0 ng/ml in 6 and 10 mo old heifers, respectively. In dairy cows, IGF-I concentrations were low 24 hr post-partum (44.7 +/- 7.6 ng/ml) and then increased (P less than .05) to remain stable throughout lactation (91.3 +/- 4.9, 92.8 +/- 12.9, 96.1 +/- 7.6, 90.7 +/- 8.8 ng/ml at 2, 3, 6 and 9 mo of lactation, respectively). There was a further increase (P less than .05) to 113.7 +/- 3.1 ng/ml during the dry period. In a second trial, blood samples were collected from lactating dairy cows every 2 hr for 24 hr following a sc injection of saline (n = 4) or human (h) GRF (1-29)NH2 (10 micrograms/kg BW, n = 4). The IGF-I peak concentration was reached on average 10 hr after the GRF injection and was higher (P less than .01) in treated cows than in control cows (135.4 vs 86.9 +/- 16.2 ng/ml). In the last trial, daily sc injections of 10 micrograms of hGRF(1-29)NH2 per kg BW to dairy cows (252 days of lactation) for 57 days, which increased milk production by 14% (2 kg/day), also increased (P less than .01) IGF-I concentration: 127.1 +/- 5.3 and 118.0 +/- 1.6 vs 90.7 +/- 4.7 and 96.0 +/- 5.0 ng/ml on days 29 and 57 of treatment for treated (n = 9) and control (n = 8) cows, respectively. Thus, the IGF-I concentration in dairy cattle varies with age and stage of lactation, and is increased by GRF administration in lactating dairy cows.  相似文献   

13.
An investigation was undertaken to demonstrate whether therapeutic treatment with ACTH raises hydrocortisone (cortisol) levels in horse urine above the limit (1000 ng/ml) established by the International Conference of Racing Authorities with the aim of controlling the abuse of cortisol and ACTH in equine sports. ACTH (200 iu) was administered i.m. to 3 Thoroughbred horses; urine and blood samples were collected at intervals afterwards and analysed by an immunoenzymatic system (ELISA) and HPLC-MS. To ascertain post exercise cortisol levels in untreated horses, 101 urine and 103 serum samples were taken from horses immediately after racing and analysed by ELISA. The peak urine level of cortisol, detected 8 h after ACTH administration, was around 600 ng/ml using either ELISA or HPLC-MS. The peak serum cortisol concentration was found to be around 250 ng/ml by ELISA, but consistently less by HPLC-MS. Mean cortisol levels in post race horses were 135.1+/-72.1 ng/ml in urine and 90.1+/-41.7 ng/ml in serum. High levels of the metabolite 20beta-dihydrocortisol in urine and the cortisol precursor 11beta-desoxycortisol in serum were found. The latter showed high cross-reactivity with cortisol on ELISA. In our experiment, treatment with ACTH 200 iu i.m. did not raise urinary cortisol levels above the 1000 ng/ml threshold proposed by the ICRA.  相似文献   

14.
Luteinizing hormone (LH) and ACTH concentrations were measured in plasma from 7 cows to determine whether ACTH secretion changes with the phase of the estrous cycle, and to determine whether any ACTH peaks are associated with LH peaks. Blood was collected every 5 minutes for 190 minutes during the luteal and follicular phases of the estrous cycle. Radioimmunoassays were used to measure ACTH and LH in plasma. Mean concentration of ACTH in all cows did not differ significantly between luteal (35.1 +/- 8.0 pg/ml) and follicular (37.5 +/- 9.4 pg/ml) phases of the estrous cycle. Mean concentration of luteal-phase LH of all cows (2.0 +/- 1.1 ng/ml) was significantly (P less than 0.01) lower than mean concentration of follicular-phase LH (5.4 +/- 1.6 ng/ml). Frequency of peaks in ACTH concentration was low during the sampling period. Mean number of luteal-phase ACTH peaks (0.29 +/- 0.49) was not significantly different from that of follicular-phase samples (0.43 +/- 0.530). Unlike ACTH, mean frequency of LH peaks was significantly (P less than 0.05) higher in plasma from cows in the follicular phase of the estrous cycle (2.9 +/- 0.7), compared with that from cows in the luteal phase (0.29 +/- 0.49).  相似文献   

15.
The present study was designed to evaluate the effects of synthetic ACTH (1-24, tetracosactid) and porcine CRH on the plasma levels of cortisol and PGF2alpha metabolite in cycling gilts (n = 3) and castrated boars (n = 3). The experiments were designed as crossover studies for each gender separately. Each animal received, during three consecutive days; 1) ACTH (Synacthen Depot) at a dose of 10 microg/kg body weight in 5 ml physiological saline, 2) porcine CRH at a dose 0.6 microg/kg body weight in 5 ml physiological saline or 3) physiological saline (5 ml). The test substances were administered via an indwelling jugular cannula in randomized order according to a Latin square. The administration of ACTH to cycling gilts resulted in concomitant elevations of cortisol and PGF2alpha metabolite with peak levels reached at 70.0 +/- 10.0 and 33.3 +/- 6.7 min, respectively. Similarly, the administration of ACTH to castrated boars resulted in concomitant elevation of cortisol and PGF2alpha metabolite with peak levels reached at 60.0 +/- 0.0 and 20.0 +/- 0.0 min, respectively. Cortisol peaked at 20 min after administration of CRH in both cycling gilts and castrated boars with maximum levels of 149.3 +/- 16.5 nmol/l and 138.3 +/- 10.1 nmol/l, respectively. It can be concluded that administration of synthetic ACTH (tetracosactid) to pigs caused a concomitant elevation of cortisol and PGF2alpha metabolite levels in both cycling gilts as well as castrated boars. The administration of CRH to pigs resulted in an elevation of cortisol levels in both cycling gilts and castrated boars. Conversely, PGF2alpha metabolite levels were not influenced by the administration of CRH either in cycling gilts or in castrated boars.  相似文献   

16.
In order to elucidate the effect of stress on reproductive hormones, the present study was designed to investigate the effect of adrenocorticotropic hormone (ACTH) on the plasma levels of cortisol, progesterone, oestradiol-17 beta and prostaglandin F2 alpha metabolite in ovariectomized gilts. Ovariectomy and cannulation of the jugular vein were performed within 1 week of oestrous detection, under general anaesthesia. Approximately 1 week after surgery, two gilts were each administered ACTH (Synacthen Depot) intravenously, at a dose of 0.01 mg/kg body weight, and one gilt was given saline solution (5 ml). The reverse was performed on the following day. The administration of ACTH was followed by a concomitant elevation of cortisol, progesterone and prostaglandin F2 alpha metabolite but not of oestradiol-17 beta. Peak cortisol, progesterone and prostaglandin F2 alpha metabolite levels were reached at 80 +/- 10.0, 80 +/- 10.0 and 46.6 +/- 13.3 min after ACTH administration and the durations of the peaks were 181.8 +/- 19.8, 308.1 +/- 49.7 and 181.8 +/- 7.9 min, respectively. The total area under the curve for cortisol, progesterone and prostaglandin F2 alpha metabolite was significantly higher in the ACTH than in the control group. The present results indicate that during stress, cortisol, progesterone and prostaglandin F2 alpha levels are elevated while the level of oestradiol-17 beta is less affected. It can be concluded that the administration of ACTH to ovariectomized gilts, results in the elevation of cortisol, progesterone and prostaglandin F2 alpha metabolite but not of oestradiol-17 beta.  相似文献   

17.
Angora goats do not cope well with stress compared with goats of other breeds. Our hypothesis that this involves subclinical primary hypoadrenocorticism associated with low cortisol release in response to ACTH stimulation was tested by measuring adrenocortical response (plasma cortisol) in six Spanish (37 +/- 2 kg BW) and six Angora wethers (39 +/- 3 kg BW) under simulated acute and chronic ACTH challenges. In Exp. 1 (acute ACTH challenge), wethers were dosed i.v. with high (2.5 IU/kg BW) or low (.4 IU/kg BW) quantities of ACTH. In Exp. 2 (chronic ACTH challenge), ACTH at the rate of .015 IU/(kg BW x min) or saline (.15 M NaCl) was infused i.v. at 15 mL/h for 6 h. The mean baseline plasma cortisol concentration before ACTH stimulation was similar (P > .05) between Angora and Spanish goats in Exp. 1 (averaged over days) and in Exp. 2. The cortisol concentration response area (ng/ (mL x min) x 10(-3)) above the baseline was similar (P > .05) between Angora and Spanish goats during low (7.6 +/- .5 and 9.0 +/- 1.7, respectively) and high (12.8 +/- 1.0 and 16.0 +/- 1.8, respectively) levels of acute ACTH challenge (Exp. 1) and during chronic ACTH challenge (45.1 +/- 5.9 and 41.8 +/- 7.3, respectively; Exp. 2). In conclusion, these data indicate that, under the conditions of this study, adrenocortical responsiveness to ACTH stimulation is not different between Angora and Spanish goat wethers and, thus, may not contribute to stress susceptibility in Angora goats.  相似文献   

18.
A study was conducted to determine relationships among plasma and milk corticosteroids, milk immunoglobulins, and phagocytosis of Staphylococcus aureus by polymorphonuclear leukocytes (PMN) isolated from milk of cows given injections of 0 (saline solution only), 100, and 200 IU of ACTH. Also determined were the effects of ACTH on mobilization of PMN into milk from the mammary gland irritated by infusion of 100 ml of saline solution containing 0.1% oyster glycogen. Cows (n = 10) were injected 6 times within a 48-hour period with 0, 100, or 200 IU of ACTH. Immediately before cows were given the 5th injection, 2 mammary quarters were infused with the saline-glycogen solution. Five hours after the 6th injection, milk from infused quarters was collected, and PMN were isolated, washed, and resuspended in autologous skimmed milk collected 5 hours after the 4th injection and before the udder was infused. Isolated PMN were incubated with S aureus and percentage of phagocytosis was determined. Concentrations of total corticosteroids in plasma and milk increased after cows were given injections of 100 and 200 IU of ACTH. The concentrations of IgA, IgG1, IgG2, IgM, and bovine serum albumin in milk after 4 injections of 0, 100, and 200 IU of ACTH were similar to preinjection (base line) concentrations. Injections of 100 and 200 IU of ACTH significantly increased the concentrations of total circulating leukocytes. Concentrations of leukocytes in milk tended to increased with increasing doses of ACTH, but the differences were not significant. Injection of 100 and 200 IU of ACTH reduced phagocytosis of S aureus by PMN. After 60 minutes of incubation, phagocytosis averaged 57% and 54%, respectively, for the ACTH treatments and 70% for controls (saline only). Results indicate that injections of ACTH that result in physiologic and pharmacologic plasma concentrations of corticosteroids inhibit phagocytosis. Impairment of phagocytosis appeared to be a direct effect of corticosteroid concentration o PMN and was not due to reduced concentrations of immunolobulins. These data indicate that reduced phagocytosis by PMN could be important in increased susceptibility to disease during stress in lactating dairy cows.  相似文献   

19.
A slowly-absorbed aqueous suspension of betamethasone, intended for use in the induction;of parturition, was administered to 10 cows. Each cow received 2ml (mean individual dose, 44.4 +/- 0.5microg/kg) by subcutaneous injection. Plasma samples were collected on six occasions over a seven-day period before treatment and on 21 occasions over a 29 day period after treatment. The mean concentration of betamethasone in plasma, as measured by radioimmunoassay, peaked at 0.6ng/ml24 hours after injection and was detectable for four days. Depression of the endogenous cortisol levels, as recorded with other long-acting synthetic glucocorticoids, was observed with this preparation of betamethasone. Plasma glucose was significantly elevated for eight days after betamethasone administration.  相似文献   

20.
Two experiments were conducted with the opioid antagonist naloxone to determine the effect of opioid receptor blockade on hormone secretion in postpartum beef cows. In Exp. 1, nine anestrous postpartum beef cows were used to measure the effect of naloxone on serum luteinizing hormone (LH), cortisol and prolactin concentrations. Cows received either saline (n = 4) or 200 mg naloxone in saline (n = 5) iv. Blood samples were collected at 15-min intervals for 2 h before and after naloxone administration. Serum LH concentrations increased (P less than .01) in naloxone-treated cows from 1.8 +/- .04 ng/ml before treatment to 3.9 +/- .7 ng/ml and 4.2 +/- .5 ng/ml at 15 and 30 min, respectively, after naloxone administration. In contrast, LH remained unchanged in saline-treated cows (1.6 +/- .3 ng/ml). Serum cortisol and prolactin concentrations were not different between groups. In Exp. 2, 12 anestrous postpartum beef cows were used to examine the influence of days postpartum on the serum LH response to naloxone. Four cows each at 14 +/- 1.2, 28 +/- .3 and 42 +/- 1.5 d postpartum received 200 mg of naloxone in saline iv. Blood samples were taken as in the previous experiment. A second dose of naloxone was administered 2 h after the first, and blood samples were collected for a further 2 h. Serum LH concentrations increased (P less than .01) only in cows at 42 d postpartum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号