首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Further studies of the Saturnian magnetosphere and planetary magnetic field by Voyager 2 have substantiated the earlier results derived from Voyager 1 observations in 1980. The magnetic field is primarily that of a centered dipole (moment = 0.21 gauss-RS(3); where one Saturn radius, RS, is 60,330 kilometers) tilted approximately 0.8 degrees from the rotation axis. Near closest approach to Saturn, Voyager 2 traversed a kronographic longitude and latitude range that was complementary to that of Voyager 1. Somewhat surprisingly, no evidence was found in the data or the analysis for any large-scale magnetic anomaly in the northern hemisphere which could be associated with the periodic modulation of Saturnian kilometric radiation radio emissions. Voyager 2 crossed the magnetopause of a relatively compressed Saturnian magnetosphere at 18.5 RS while inbound near the noon meridian. Outbound, near the dawn meridian, the magnetosphere had expanded considerably and the magnetopause boundary was not observed until the spacecraft reached 48.4 to 50.9 RS and possibly beyond. Throughout the outbound magnetosphere passage, a period of 46 hours (4.5 Saturn rotations), the field was relatively steady and smooth showing no evidence for any azimuthal asymmetry or magnetic anomaly in the planetary field. We are thus left with a rather enigmatic situation to understand the basic source of Saturnian kilometric radiation modulation, other than the small dipole tilt.  相似文献   

2.
Magnetic fields at uranus   总被引:1,自引:0,他引:1  
The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.  相似文献   

3.
Magnetic field studies by Voyager 1 have confirmed and refined certain general features of the Saturnian magnetosphere and planetary magnetic field established by Pioneer 11 in 1979. The main field of Saturn is well represented by a dipole of moment 0.21 +/- 0.005 gauss-R(s)(3) (where 1 Saturn radius, R(s), is 60,330 kilometers), tilted 0.7 degrees +/- 0.35 degrees from the rotation axis and located within 0.02 R(s) of the center of the planet. The radius of the magnetopause at the subsolar point was observed to be 23 R(s) on the average, rather than 17 R(s). Voyager 1 discovered a magnetic tail of Saturn with a diameter of approximately 80 R(s). This tail extends away from the Sun and is similar to type II comet tails and the terrestrial and Jovian magnetic tails. Data from the very close flyby at Titan (located within the Saturnian magnetosphere) at a local time of 1330, showed an absence of any substantial intrinsic satellite magnetic field. However, the results did indicate a very well developed, induced magnetosphere with a bipolar magnetic tail. The upper limit to any possible internal satellite magnetic moment is 5 x 10(21) gauss-cubic centimeter, equivalent to a 30-nanotesla equatorial surface field.  相似文献   

4.
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator.  相似文献   

5.
Observations of energetic electrons ( greater, similar 0.07 million electron volts) show that the outer magnetosphere of Jupiter consists of a thin disklike, quasitrapping region extending from about 20 to 100 planetary radii (R(J)). This magnetodisk is confined to the vicinity of the magnetic equatorial plane and appears to be an approximate figure of revolution about the magnetic axis of the planet. Hard trapping is observed within a radial distance of about 20 R(J). The omnidirectional intensity J(0) of electrons with energy greater, similar 21 million electron volts within the region 3 r 20 R(J) is given by the following provisional expression in terms of radial distance r and magnetic latitude theta: J(0) = 2.1 x 10(8) exp[-(r/a) - (theta/b)(2)]. In this expression J(0) is particles per square centimeter per second; a = 1.52 R(J) for 3 相似文献   

6.
The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.  相似文献   

7.
The Pioneer 11 vector helium magnetometer provided precise, contititious measurements of the magnetic fields in interplanetary space, inside Jupiter's magnetosphere, and in the near vicinity of Jupiter. As with the Pioneer 10 data, evidence was seen of the dynanmic interaction of Jupiter with the solar wind which leads to a variety of phenomena (bow shock, upstream waves, nonlinear magnetosheath impulses) and to changes in the dimension of the dayside magnetosphere by as much as a factor of 2. The magnetosphere clearly appears to be blunt, not disk-shaped, with a well-defined outer boundary. In the outer magnetosphere, the magnetic field is irregular but exhibits a persistent southward component indicative of a closed magnetosphere. The data contain the first clear evidence in the dayside magnetosphere of the current sheet, apparently associated with centrifugal forces, that was a donminatnt feature of the outbound Pionieer 10 data. A modest westward spiraling of the field was again evident inbound but not outbound at higher latitudes and nearer the Sun-Jupiter direction. Measurements near periapsis, which were nearer the planet and provide better latitude and longitude coverage than Pioneer 10, have revealed a 5 percent discrepancy with the Pioneer 10 offset dipole mnodel (D(2)). A revised offset dipole (6-parameter fit) is presented as well as the results of a spherical harmonic analysis (23 parameters) consisting of an interior dipole, quadrupole, and octopole and an external dipole and quadrupole. The dipole moment and the composite field appear moderately larger than inferred from Pioneer 10. Maximum surface fields of 14 and 11 gauss in the northern and southern hemispheres are inferred. Jupiter's planetary field is found to be slightly more irregular than that of Earth.  相似文献   

8.
9.
The plasma science experiment on Voyager 2 made observations of the plasma environment in Neptune's magnetosphere and in the surrounding solar wind. Because of the large tilt of the magnetic dipole and fortuitous timing, Voyager entered Neptune's magnetosphere through the cusp region, the first cusp observations at an outer planet. Thus the transition from the magnetosheath to the magnetosphere observed by Voyager 2 was not sharp but rather appeared as a gradual decrease in plasma density and temperature. The maximum plasma density observed in the magnetosphere is inferred to be 1.4 per cubic centimeter (the exact value depends on the composition), the smallest observed by Voyager in any magnetosphere. The plasma has at least two components; light ions (mass, 1 to 5) and heavy ions (mass, 10 to 40), but more precise species identification is not yet available. Most of the plasma is concentrated in a plasma sheet or plasma torus and near closest approach to the planet. A likely source of the heavy ions is Triton's atmosphere or ionosphere, whereas the light ions probably escape from Neptune. The large tilt of Neptune's magnetic dipole produces a dynamic magnetosphere that changes configuration every 16 hours as the planet rotates.  相似文献   

10.
The first of at least nine bow shock crossings observed on the inbound pass of Voyager 2 occurred at 98.8 Jupiter radii (R(J)) with final entry into the magnetosphere at 62 R(J). On both the inbound and outbound passes the plasma showed a tendency to move in the direction of corotation, as was observed on the inbound pass of Voyager 1. Positive ion densities and electron intensities observed by Voyager 2 are comparable within a factor of 2 to those seen by Voyager 1 at the same radial distance from Jupiter; the composition of the magnetospheric plasma is again dominated by heavy ions with a ratio of mass density relative to hydrogen of about 100/1. A series of dropouts of plasma intensity near Ganymede may be related to a complex interaction between Ganymede and the magnetospheric plasma. From the planetary spin modulation of the intensity of plasma electrons it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40 to 50 R(J) and deviates from it toward the rotational equator at larger distances. The longitudinal excursion of the plasma sheet lags behind the rotating dipole by a phase angle that increases with increasing radial distance.  相似文献   

11.
During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.  相似文献   

12.
The intrinsic magnetic field of Saturn measured by the high-field fluxgate magnetometer is much weaker than expected. An analysis of preliminary data combined with the preliminary trajectory yield a model for the main planetary field which is a simple centered dipole of moment 0.20 +/- 0.01 gauss-Rs(3) = 4.3 +/- 0.2 x 10(28) gauss-cm(3) (1 Rs = 1 Saturn radius = 60,000 km). The polarity is opposite that of Earth, and, surprisingly, the tilt is small, within 2 degrees +/- 1 degrees of the rotation axis. The equatorial field intensity at the cloud tops is 0.2 gauss, and the polar intensity is 0.56 gauss. The unique moon Titan is expected to be located within the magnetosheath of Saturn or the interplanetary medium about 50 percent of the time because the average subsolar point distance to the magnetosphere is estimated to be 20 Rs, the orbital distance to Titan.  相似文献   

13.
The plasma and field perturbations of magnetospheres that would surround magnetized galilean satellites embedded in the corotating jovian plasma differ from those produced by interaction with an unmagnetized conductor. If the intrinsic satellite dipole is antiparallel to that of Jupiter, the magnetosphere will be open. It is predicted that Io has an internal magnetic field with a dipole moment of 6.5 x 10(22) gauss-cubic centimeters antiparallel to Jupiter's, and Io's special properties can be interpreted on the basis of a reconnecting magnetosphere.  相似文献   

14.
Fluxes of high energy electrons and protons are found to be highly concentrated near the magnetic equatorial plane from distances of ~ 30 to ~ 100 Jovian radii (R(J)). The 10-hour period of planetary rotation is observed as an intensity variation, which indicates that the equatorial zone of high particle fluxes is inclined with respect to the rotation axis of the planet. At radial distances [unknown] 20 R(J) the synchrotron-radiation-producing electrons with energies greater, similar 3 million electron volts rise steeply to a maximum intensity of ~ 5 x 10(8) electrons per square centimeter per second near the periapsis at 2.8 R(J). The flux of protons with energies greater, similar 30 million electron volts reaches a maximum intensity of ~ 4 x 10(6) protons per square centimeter per second at ~ 3.5 R(J) with the intensity decreasing inside this radial distance. Only for radial distances [unknown] 20 R(J) does the radiation behave in a manner which is similar to that at the earth. Burst of electrons with energies up to 30 million electron volts, each lasting about 2 days, were observed in interplanetary space beginning approximately 1 month before encounter. This radiation appears to have escaped from the Jovian bow shock or magnetosphere.  相似文献   

15.
The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii) There are large fluxes of electrons of approximately 1.5 million electron volts and smaller fluxes of electrons of approximately 10 million electron volts and of protons greater, similar 54 million electron volts inside the orbits of Enceladus and Mimas; all were sharply peaked perpendicular to the local magnetic field. (viii) In general, observed satellite absorption signatures were not located at positions predicted on the basis of dipole magnetic field models.  相似文献   

16.
Measurements of the hot (electron and ion energies >/=20 and >/= 28 kiloelectron volts, respectively) plasma environment at Jupiter by the low-energy charged particle (LECP) instrument on Voyager 2 have revealed several new and unusual aspects of the Jovian magnetosphere. The magnetosphere is populated from its outer edge into a distance of at least approximately 30 Jupiter radii (R(J)) by a hot (3 x 10(8) to 5 x 10(8) K) multicomponent plasma consisting primarily of hydrogen, oxygen, and sulfur ions. Outside approximately 30 R(J) the hot plasma exhibits ion densities from approximately 10(-1) to approximately 10(-6) per cubic centimeter and energy densities from approximately 10(-8) to 10(-13) erg per cubic centimeter, suggesting a high beta plasma throughout the region. The plasma is flowing in the corotation direction to the edge of the magnetosphere on the dayside, where it is confined by solar wind pressure, and to a distance of approximately 140 to 160 R(J) on the nightside at approximately 0300 local time. Beyond approximately 150 R(J) the hot plasma flow changes into a "magnetospheric wind" blowing away from Jupiter at an angle of approximately 20 degrees west of the sun-Jupiter line, characterized by a temperature of approximately 3 x 10(8) K (26 kiloelectron volts), velocities ranging from approximately 300 to > 1000 kilometers per second, and composition similar to that observed in the inner magnetosphere. The radial profiles of the ratios of oxygen to helium and sulfur to helium (相似文献   

17.
The low-energy charged particle instrument on Voyager was designed to measure the hot plasma (electron and ion energies greater, similar 15 and greater, similar 30 kiloelectron volts, respectively) component of the Jovian magnetosphere. Protons, heavier ions, and electrons at these energies were detected nearly a third of an astronomical unit before encounter with the planet. The hot plasma near the magnetosphere boundary is predominantly composed of protons, oxygen, and sulfur in comparable proportions and a nonthermal power-law tail; its temperature is about 3 x 10(8) K, density about 5 x 10(-3) per cubic centimeter, and energy density comparable to that of the magnetic field. The plasma appears to be corotating throughout the magnetosphere; no hot plasma outflow, as suggested by planetary wind theories, is observed. The main constituents of the energetic particle population ( greater, similar200 kiloelectron volts per nucleon) are protons, helium, oxygen, sulfur, and some sodium observed throughout the outer magnetosphere; it is probable that the sulfur, sodium, and possibly oxygen originate at 1o. Fluxes in the outbound trajectory appear to be enhancedfrom approximately 90 degrees to approximately 130 degrees longitude (System III). Consistent low-energy particle flux periodicities were not observed on the inbound trajectory; both 5-and 10-hour periodicities were observed on the outbound trajectory. Partial absorption of > 10 million electron volts electrons is observed in the vicinity of the Io flux tube.  相似文献   

18.
Within distances to Uranus of about 6 x 10(6) kilometers (inbound) and 35 x 10(6) kilometers (outbound), the planetary radio astronomy experiment aboard Voyager 2 detected a wide variety of radio emissions. The emission was modulated in a period of 17.24 +/- 0.01 hours, which is identified as the rotation period of Uranus' magnetic field. Of the two poles where the axis of the off-center magnetic dipole (measured by the magnetometer experiment aboard Voyager 2) meets the planetary surface, the one closer to dipole center is now located on the nightside of the planet. The radio emission generally had maximum power and bandwidth when this pole was tipped toward the spacecraft. When the spacecraft entered the nightside hemisphere, which contains the stronger surface magnetic pole, the bandwidth increased dramatically and thereafter remained large. Dynamically evolving radio events of various kinds embedded in these emissions suggest a Uranian magnetosphere rich in magnetohydrodynamic phenomena.  相似文献   

19.
Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 are described. These results concern the large-scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction. This is much like Earth's magnetosphere but is a new configuration for Jupiter's magnetosphere not previously considered from earlier Pioneer data. We report on the analysis and interpretation of magnetic field perturbations associated with intense electrical currents (approximately 5 x 10(6) amperes) flowing near or in the magnetic flux tube linking Jupiter with the satellite Jo and induced by the relative motion between Io and the corotating Jovian magnetosphere. These currents may be an important source of heating the ionosphere and interior of Io through Joule dissipation.  相似文献   

20.
On the basis of the absence of energetic electrons (E(e) 45 kiloelectron volts) and protons (E(p) 320 kiloelectron volts) associated with Venus to within a radial distance of 10,150 kilometers from the center of the planet and using a physical similitude argument and the observational and theoretical knowledge of the magnetosphere of Earth, we conclude that the intrinsic magnetic dipole moment of Venus is almost certainly less than 0.01 and probably less than 0.001 of that of Earth. Corresponding upper limits on the magnetic field at the equatorial surface of Venus are about 350 and 35 x 10(-5) gauss, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号