首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A total of 120 barrows (initial BW = 47.9 ± 3.6 kg; PIC 1050) were used in an 83-d study to determine the effects of dietary iodine value (IV) product (IVP) on growth performance and fat quality. Pigs were blocked by BW and randomly allotted to 1 of 6 treatments with 2 pigs per pen and 10 pens per treatment. Dietary treatments were fed in 3 phases and formulated to 3 IVP concentrations (low, medium, and high) in each phase. Treatments were 1) corn-soybean meal control diet with no added fat (low IVP), 2) corn-extruded expelled soybean meal (EESM) diet with no added fat (medium IVP), 3) corn-soybean meal diet with 15% distillers dried grains with solubles and choice white grease (DDGS + CWG; medium IVP), 4) corn-soybean meal diet with low CWG (medium IVP), 5) corn-EESM diet with 15% DDGS (high IVP), and 6) corn-soybean meal diet with high CWG (high IVP). On d 83, pigs were slaughtered and backfat and jowl fat samples were collected and analyzed. The calculated and analyzed dietary IVP values were highly correlated (r(2) = 0.86, P < 0.01). Pigs fed the control diet, EESM, or high CWG had greater (P < 0.05) ADG than pigs fed EESM + DDGS. Pigs fed the control diet had greater (P < 0.05) ADFI than pigs fed all other diets. Pigs fed EESM + DDGS and high CWG had improved (P < 0.05) G:F compared with pigs fed the control diet or DDGS + CWG. Pigs fed diets with DDGS had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA and less SFA than pigs fed all other treatments. Pigs fed EESM had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA than pigs fed the control diet, low CWG, or high CWG. Pigs fed low CWG or high CWG had greater (P < 0.05) jowl fat IV than control pigs. Feeding ingredients high in unsaturated fatty acids, such as DDGS and EESM, had a greater impact on fat IV than CWG, even when diet IVP was similar. Therefore, IVP was a poor predictor of carcass fat IV in pigs fed diets with different fat sources and amounts of unsaturated fats formulated with similar IVP. Dietary C18:2n-6 content was a better predictor of carcass fat IV than diet IVP.  相似文献   

2.
Forty-eight barrows and forty-eight gilts (PIC 337 sires x PIC C22 dams) were evaluated to determine the effects of feeding ractopamine hydrochloride (RAC) and different cereal grains on the carcass and fat quality in late finishing pigs. The study was carried out using four replicates with 24 animals in each replicate (four pigs per pen, six pens per replicate, two replicates per slaughter date, 12 pens per slaughter date). Treatments for the experiment included corn, wheat, and barley (early finisher period); and corn, corn + RAC, wheat, wheat + RAC, barley, and barley + RAC for the late finisher period. Ractopamine was fed at the level of 10 mg/kg (as-fed basis) of feed. Pigs were allotted to early finisher period treatments at approximately 45 kg BW. Pigs were then given late finisher period treatments at approximately 80 kg BW and fed for 28 d. The dietary digestible lysine level for all diets was maintained at 2.7 g/Mcal of ME. Pigs fed the wheat and corn diets during the late finisher period had a greater (P <0.05) G:F than those fed the barley diets. Pigs fed diets with RAC had lower (P <0.05) leaf fat weights, 10th-rib fat, last-rib fat, and belly firmness and had improved (P <0.05) dressing percents and loin muscle areas compared with those not receiving RAC. Pigs fed the wheat diets had a greater (P <0.05) dressing percent than those receiving the barley diets, but pigs fed the barley diets had a higher (P <0.05) Minolta L* for fat color than pigs fed wheat. Pigs fed diets containing RAC produced pork that was less tender (P <0.05) compared with pigs that did not receive RAC. Linoleic acid percent values were higher (P <0.05) for pigs fed diets with RAC than in those that did not. Feeding RAC improved G:F and lowered feed intake of pigs during the late finisher period (P <0.05). Feeding diets equal in lysine (2.7 g/Mcal of ME) but varying in ME, whether based on corn, wheat, or barley with or without RAC, had little to no effect on carcass, meat, or fat quality attributes.  相似文献   

3.
An experiment was conducted to determine growth performance, carcass characteristics, and fat quality of growing-finishing pigs fed diets based on short-season corn hybrids. Twenty-four individually housed, Cotswold, growing pigs with an initial BW of 41.4 (SD = 1.4) kg were blocked by BW and sex and randomly allotted from within block to 1 of 3 diets to give 8 replicate pigs per diet. Experimental diets consisted of a control based on barley and 2 diets based on corn as the main energy sources. A 3-phase feeding program for 20 to 50 kg (phase I), 50 to 80 kg (phase II), and 80 to 110 kg (phase III) of BW was used. Diets for each phase contained approximately 3.5 Mcal/kg of DE, with total lysine of 0.95, 0.75, and 0.64% in phase I, II, and III diets, respectively. Average daily gain, ADFI, and G:F were monitored weekly during each phase. Pigs were slaughtered after reaching a minimum BW of 100 kg to determine carcass characteristics. There were no effects of diet on ADG, ADFI, and G:F (0.45 +/- 0.02, 0.34 +/- 0.02, and 0.31 +/- 0.02 for phase I, II, and III, respectively). Carcass length, dressing percent, LM area, loin depth, backfat thickness, belly firmness, and L*, b*, and a* fat color were not different across dietary treatments. Pigs fed one corn variety had no differences in fatty acid profile with barley-fed pigs, whereas those fed the other variety of corn had a greater (P < 0.05) concentration of PUFA in their backfat. The results indicate that growth performance, carcass characteristics, and fat quality of pigs fed diets based on short-season corn hybrids and those fed the barley-based diet were not different.  相似文献   

4.
A total of 150 weanling pigs [(Yorkshire × Landrace) × Duroc] with an average BW of 7.22 ± 0.80 kg (21 d of age) were used in a 28-d trial to determine the effects of dietary fructan and mannan oligosaccharides on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs. Pigs were allotted randomly to 1 of 5 dietary treatments: 1) negative control (NC), basal diet; 2) positive control (PC), NC + 0.01% apramycin (165 mg/kg); 3) NC + 0.1% fructan (FC); 4) NC + 0.1% mannan oligosaccharide source (MO); and 5) NC + 0.05% fructan + 0.05% mannan oligosaccharide source (FM). There were 3 replications per treatment with 10 pigs per pen (5 barrows and 5 gilts). From d 0 to 14, ADG and ADFI of pigs fed the PC, MO, and FM diets were greater (P < 0.05) than pigs fed the NC diet. From d 15 to 28, there were no differences (P > 0.05) in ADG, ADFI, and G:F. During the overall period (d 0 to 28), pigs fed the MO diet had a greater ADG than pigs fed the NC diet (P < 0.05). Pigs fed the PC and MO diets increased ADFI (P < 0.05) compared with pigs fed the NC diet. However, no differences were detected among dietary treatments in G:F during the overall experimental period. On d 14, the apparent total tract digestibility (ATTD) of DM and N in pigs fed the PC, MO, and FM diets was greater (P < 0.05) than pigs fed the NC diet. The ATTD of DM increased (P < 0.05) in pigs fed the MO and FM diets compared with pigs fed the FC diet. However, at the end of the experiment, pigs fed the FM diet had a greater (P < 0.05) ATTD of DM compared with pigs fed the NC diet. Additionally, there were no differences in IgG, red blood cells, white blood cells, and lymphocyte counts among dietary treatments on d 0, 14, or 28. The diarrhea score in pigs fed the MO diet was reduced (P < 0.05) compared with pigs fed the NC diet. In conclusion, mannan oligosaccharides have a beneficial effect on growth performance and nutrient digestibility in weanling pigs. Furthermore, mannan oligosaccharides can decrease diarrhea score in weanling pigs.  相似文献   

5.
A growth performance and carcass evaluation study was conducted to determine the maximal inclusion rate of corn distillers dried grain with solubles (DDGS) in grower-finisher pig diets when formulated on a total AA basis. A total of 240 (28.4 +/- 0.8 kg of BW) crossbred pigs [(Yorkshire x Landrace) x Duroc] were allotted randomly within sex and weight outcome groups to 1 of 24 pens. Pens were assigned randomly within the initial BW groups to 1 of 4 dietary treatment sequences in a 5-phase grower-finisher feeding program in a 4 x 3 factorial arrangement of treatments. The inclusion level of DDGS (0, 10, 20, or 30%) in the diet and the initial BW class [low (23.2 kg), medium (28.1 kg), or high (33.8 kg)] served as the main factors for the grower-finisher performance study. All diets were formulated to contain similar concentrations of total Lys, ME, calcium, and phosphorus within each phase. Pigs were slaughtered and carcass data were collected when the average BW of pigs in a pen reached 114 +/- 2.25 kg. Dietary treatment and initial weight groups did not interact for any response variables, and only the main effects of dietary treatment are presented. Pigs fed the 20 or 30% DDGS diets had reduced ADG (P < 0.05) compared with that of the 0 or 10% DDGS groups, but ADFI was unaffected by dietary treatment. Gain:feed decreased when pigs were fed 30% DDGS (P < 0.05) compared with the 0, 10, and 20% DDGS dietary inclusion levels. Loin depth was lower in pigs fed the 30% DDGS diets (P < 0.05), but backfat depth and percentage of carcass lean did not differ among treatments. Iodine number of carcass fat increased linearly (P < 0.01) with increasing dietary DDGS concentration, and belly firmness adjusted for belly thickness was reduced (P < 0.05) for pigs fed the 30% DDGS diets compared with pigs fed the 0 or 20% DDGS diets. Color measurements, ultimate pH, and visual evaluations (color, firmness, and marbling scores) of the LM did not differ among treatments. Cooking loss, 24-h drip loss, and total moisture loss were not affected by DDGS in the diets. However, differences were detected between 0 and 20% DDGS treatments for 11-d purge loss (P < 0.05). Dietary treatment did not affect Warner-Bratzler shear force of cooked loin chops. Results from this study indicate that when diets for grower-finisher pigs are formulated on a total AA basis, less than 20% DDGS should be included in the diet for optimal performance and carcass composition. Feeding DDGS in swine finishing diets did not have any detrimental effects on pork muscle quality.  相似文献   

6.
A total of 120 pigs (60 barrows and 60 gilts; TR4 × PIC 1050; 54.4 kg initial BW) were used in an 83-d study to evaluate the effects of added fat in corn- and sorghum-based diets on growth performance, carcass characteristics, and carcass fat quality. Treatments were arranged in a 2 × 3 factorial with grain source (corn or sorghum) and added fat (0, 2.5, or 5% choice white grease; CWG) as factors. There were 2 pigs (1 barrow and 1 gilt) per pen and 10 replicate pens per treatment. Pigs and feeders were weighed on d 14, 22, 39, 53, 67, and 83 to calculate ADG, ADFI, and G:F. At the end of the trial, pigs were slaughtered and jowl fat and backfat samples were collected and analyzed for fatty acid profile. No interactions were observed for growth performance. Pigs fed sorghum-based diets had greater (P < 0.01) ADG than pigs fed corn-based diets. Adding CWG improved (linear, P < 0.01) ADG. Pigs fed corn-based diets tended to have greater (P < 0.09) carcass yield, 10th-rib backfat, and percentage lean than pigs fed sorghum-based diets. Adding CWG increased (linear, P = 0.02) 10th-rib backfat, tended to increase (linear, P = 0.08) HCW, and tended to decrease (linear, P = 0.07) percentage lean. There was no grain source × fat level interaction for iodine value (IV) in backfat, but an interaction (P = 0.03) was observed for IV in jowl fat. Adding CWG increased (P < 0.01) IV in jowl fat for pigs fed sorghum- and corn-based diets; however, the greatest increase was between 0 and 2.5% CWG in sorghum-based diets and between 2.5 and 5% CWG in corn-based diets. Pigs fed corn-based diets had less (P = 0.01) C18:1 cis-9 and MUFA but greater (P = 0.01) C18:2n-6, PUFA, and backfat IV than pigs fed sorghum-based diets. Increasing CWG in the diet increased (linear, P = 0.01) backfat IV. Of the 2 fat depots, backfat generally had a reduced IV than jowl fat. In summary, feeding sorghum-based diets reduced carcass fat IV and unsaturated fats compared with corn-based diets. As expected, adding CWG increased carcass fat IV regardless of the cereal grain in the diet.  相似文献   

7.
Background: There are various fat sources with different energy values and fatty acid compositions that may affect growth performance and carcass composition of grow-finishing pigs. A higher net energy was recently reported in choice white grease compared with soybean oil. Therefore, two experiments were conducted to determine whether practical responses confirm that difference between choice white grease and soybean oil, and to extend the observations to other fat sources.Results: In Exp. 1, pigs fed fats had lower(P 0.05) average daily feed intake in phase II and overall period,greater(P 0.05) gain:feed in phase I, phase II, and overall period than pigs fed the control diet. Pigs fed fats tended(P = 0.057) to have thicker backfat depth at the last rib than those fed control. Pigs fed 6% fats had greater(P 0.01) gain:feed in phase II and overall period than pigs fed 3% fats. During phase I, pigs fed choice white grease grew faster(P 0.05) than pigs fed soybean oil. In Exp. 2, pigs fed dietary fats(soybean oil, choice white grease, animal-vegetable blend, palm oil, or tallow) had greater(P 0.01) gain:feed in each phase and overall period, greater(P 0.01) average daily gain in phase I, but lower(P 0.01) average daily feed intake in phase II an overall than pigs fed the control diets. The choice white grease also increased(P 0.05) average daily gain during phase I compared with soybean oil. Pigs fed palm oil had thicker(P 0.05) backfat depth at the 10 thrib than those fed soybean oil, animal-vegetable blend, or tallow.Conclusions: Inclusion of 6% dietary fat improved feed efficiency of finishing pigs, while different fats produced different practical results that may be consistent with their different energy values. Results from the early stage indicate that dietary fats with relatively more saturated fatty acids may provide greater energy than those with relatively more unsaturated fatty acids for growing pigs.  相似文献   

8.
Eighty-four crossbred gilts were used to evaluate the effects of dietary choice white grease (CWG) or poultry fat (PF) on growth performance, carcass characteristics, and quality characteristics of longissimus muscle (LM), belly, and bacon of growing-finishing pigs. Pigs (initially 60 kg) were fed a control diet with no added fat or diets containing 2, 4, or 6% CWG or PF. Diets were fed from 60 to 110 kg and contained 2.26 g lysine/Mcal ME. Data were analyzed as a 2 x 3 factorial plus a control with main effects of fat source (CWG and PF) and fat level (2, 4, and 6%). Pigs fed the control diet, 2% fat, and 4% fat had greater (P < 0.05) ADFI than pigs fed 6% fat. Pigs fed 6% fat had greater (P < 0.05) gain/feed (G/F) than pigs fed the control diet or other fat levels. Subcutaneous fat over the longissimus muscle from pigs fed CWG had more (P < 0.05) moisture than that from pigs fed PF. Feeding dietary fat (regardless of source or level) reduced (P < 0.05) the amount of saturated fats present in the LM. Similarly, 4 or 6% fat decreased (P < 0.05) the amount of saturated fats and increased unsaturated fats present in the bacon. No differences (P > 0.05) were observed for ADG, dressing percentage, leaf fat weight, LM pH, backfat depth, LM area, percentage lean, LM visual evaluation, LM waterholding capacity, Warner-Bratzler shear and sensory evaluation of the LM and bacon, fat color and firmness measurements, or bacon processing characteristics. Adding dietary fat improved G/F and altered the fatty acid profiles of the LM and bacon, but differences in growth rate, carcass characteristics, and quality and sensory characteristics of the LM and bacon were minimal. Dietary additions of up to 6% CWG or PF can be made with little effect on quality of pork LM, belly, or bacon.  相似文献   

9.
A total of 280 crossbred pigs weaned at 21 d of age and weighing approximately 6 kg were utilized in five replicates to evaluate pig growth responses when fed a basal diet or one of several dietary lipid sources during a 4-wk postweaning period. A basal corn-soybean meal-corn starch-dried whey diet was compared with diets supplemented at a 7.75% level with one of the following lipid sources: corn oil, coconut oil, soybean oil, medium-chain triglyceride (MCT) or an animal-vegetable blend. A sixth treatment evaluated a roasted soybean diet formulated to an energy:lysine level equivalent to that of the fat-supplemented diets. In Exp. II, 36 crossbred weanling barrows were used to determine apparent fat and N digestibilities when soybean oil, roasted soybean, coconut oil or the MCT-supplemented diets were fed. Although pigs fed coconut oil grew somewhat faster, fat inclusion generally did not increase pig growth rate or result in lowered feed intake during the initial weeks postweaning; during the latter portion of the starter phase the addition of dietary fat resulted in a higher growth rate but feed intake was unaffected, resulting in an overall improvement in feed-to-gain ratio (P less than .05) for all but the roasted soybean diet. Pigs fed coconut oil had higher serum triglyceride and lower serum urea concentrations than did pigs fed diets containing most other lipid sources. Pigs fed MCT and coconut oil diets had a higher (P less than .01) apparent fat digestibility during the initial 2 wk postweaning than pigs fed soybean oil or roasted soybean diets. Pigs fed MCT and roasted soybeans had poorest growth rates; apparent fat and N digestibilities were lowest (P less than .05) for the roasted soybean diet.  相似文献   

10.
Two experiments were conducted to determine the effects of dietary supplementation of exogenous enzymes on growth performance, apparent total tract digestibility (ATTD) of energy and nutrients, blood metabolites, fecal VFA, and fecal ammonia-N in growing pigs (Sus scrofa) fed a corn (Zea mays L.)- and soybean [Glycine max (L.) Merr.] meal (SBM)-based diet. In Exp. 1, 240 growing barrows (initial BW: 55.6 ± 0.9 kg) were randomly allotted to 5 treatments on the basis of BW. There were 4 replicates in each treatment with 12 pigs per replicate. The 5 treatments consisted of a corn-SBM-based control diet and 4 additional diets were similar to the control diet, with the exception that 0.05% β-mannanase (M), α-amylase + β-mannanase (AM), β-mannanase + protease (MPr), or α-amylase + β-mannanase + protease (AMP) was added to the diets, which were fed for 28 d. Pigs fed the AM, MPr, or AMP diet had greater (P < 0.05) ADG than pigs fed the control diet. Pigs fed the AMP diet also had greater (P < 0.05) ADG than pigs fed the M, AM, or MPr diet. Pigs fed the AMP diet had greater (P < 0.05) G:F than pigs fed the control diet. The G:F of the pigs fed the M, AM, or MPr diet were not different (P > 0.05) from the G:F in pigs fed the AMP or control diet. The ADFI, ATTD of nutrients, blood metabolites, and fecal VFA and ammonia-N concentrations were not different among treatments. In Exp. 2, 192 growing barrows (initial BW: 56.9 ± 1.0 kg) were allotted to 4 treatments. There were 4 replicates in each treatment with 12 pigs per replicate. Pigs were fed a corn-SBM-based diet (CSD) or a complex diet (CD) that contained corn, SBM, 3% rapeseed (Brassica napus L.) meal, 3% copra (Cocos nucifera L.) meal, and 3% palm (Elaeis guineensis Jacq.) kernel meal. Each diet was prepared without exogenous enzymes or with 0.05% AMP and all diets were fed for 28 d. The ADG and G:F of pigs fed the CSD were greater (P < 0.05) than pigs fed the CD. However, the type of diet had no effect on the ATTD of nutrients, blood metabolites, or fecal VFA and ammonia-N, and there was no diet × enzyme interaction for any of the measured variables. Supplementation of diets with exogenous enzymes resulted in greater (P < 0.05) ADG, G:F, ATTD of DM, GE, and CP, and blood urea nitrogen (BUN) concentration. These results indicate that supplementation of 0.05% of AMP enzymes to a corn-SBM diet or a complex diet may improve the performance of growing pigs.  相似文献   

11.
Growth rate, physically separable tissues of the ham and loin, heat production, skeletal muscle respiration and protein synthesis, and lipogenesis and lipolysis in s.c. adipose tissue were measured in a single experiment in which pigs were offered a 13 (n = 8), or 21% (n = 6) protein diet from 20 to 100 kg live weight. Pigs that were fed the 13% protein diet gained body weight slower, ate less, converted feed less efficiently and took 31 d longer to reach 100 kg live weight. Fat depth (cm) was greater (P less than .05) and loin eye area (cm2) was less (P less than .01) in pigs fed the 13% protein diet (2.6 vs 2.3 and 29.8 vs 35.3). Pigs that were fed the 13% protein diet had lower (P less than .05) ham and loin separable muscle and greater (P less than .05) ham and loin separable fat. The mean heat production was less (P less than .05) in pigs offered the 13% (22.49) vs 21% (24.63 MJ/d) protein diets. In the intercostal muscle preparation, total and Na+,K+-ATPase-dependent respiration (microliter O2.mg-1.h-1) were lower (P less than .05) in pigs offered the 13% (2.39 and .41) vs the 21% (3.89 and .68) protein diets. The energy used for the support of Na+ transport across membrane accounted for approximately 17% of muscle respiration. Absolute rates of protein synthesis in the muscle preparations were lower (P less than .01) at 13 than at 21% dietary protein. Lipogenesis in s.c. adipose tissue was not affected by dietary protein level. There was no difference in basal and norepinephrine-stimulated lipolysis between the two dietary protein levels.  相似文献   

12.
The objective of this experiment was to determine the effects of dietary lipid source with or without the addition of CLA on bacon composition and quality. Forty-eight barrows at a beginning BW of 55 kg +/- 2.2 were fed 1 of 6 diets for 56 d. These diets consisted of: 1) normal corn (NC), 2) NC + 1.25% CLA-60 oil (NC + CLA), 3) high-oil corn (HOC), 4) HOC + 1.25% CLA-60 oil (HOC-CLA), 5) NC + choice white grease (CWG; NC + CWG), and 6) NC + CWG + 1.25% CLA-60 oil (NC + CWG + CLA). The CLA-60 contains 60% CLA isomers in the oil, and therefore, 1.25% oil was needed to achieve 0.75% CLA in the diet. Soy oil replaced CLA in control diets. Choice white grease and high-oil corn were selected as fat sources for this study because of their utility in energy density for growing-finishing pigs, especially in hot weather. Pigs were slaughtered at an average BW of 113 kg +/- 4.1, and carcasses were fabricated at 24 h postmortem. Statistical analysis was performed using the mixed model procedure of SAS, and the main effects tested were dietary lipid source, CLA, and 2-way interaction. The addition of CLA to each basal diet improved (P < 0.05) belly firmness measured either lean side down or fat side down from the belly bar firmness test [4.39 cm vs. 7.01 cm (lean down) and 5.75 cm vs. 10.54 cm (fat down)] for 0 and 0.75% dietary CLA, respectively. The compression test used on bacon slabs showed that bacon from CLA-supplemented pigs was approximately 20% firmer than that from controls. Pigs fed the HOC diets had softer bellies compared (P < 0.05) with pigs fed the NC diet as measured by the belly bar test [6.94 cm vs. 9.26 cm (fat down)], respectively. Conjugated linoleic acid did not, however, improve bacon sliceability. No differences were observed for moisture, protein, or lipid percentages between any treatments. Overall, there was a CLA effect (P < 0.04) for lipid oxidation, in which the addition of CLA decreased bacon oxidation (0.1498 CLA vs. 0.1638 no CLA). Dietary CLA increased the percentage of SFA in tissues from pigs supplemented with CLA. Dietary inclusion of CLA increased the concentration of all measured isomers of CLA in bacon. Sensory scores of bacon showed no differences for any of the sensory attributes measured between any of the treatments. Our results indicate that inclusion of dietary CLA will improve belly firmness, extend the shelf life stability of bacon, and increase the degree of fat saturation.  相似文献   

13.
Two experiments were conducted to evaluate the effects of NutriDense low-phytate corn in conjunction with increasing added dietary fat on growing and finishing pig performance. Diets in both experiments were corn-soybean meal-based, with yellow dent or NutriDense low-phytate corn and 0, 3, or 6% added choice white grease arranged in a 2 x 3 factorial design. There were 25 to 28 pigs per pen and 7 pens (replications) per treatment in both experiments. In Exp. 1, a total of 1,162 gilts with an initial BW of 44.6 kg were used in a 28-d growth study. A constant true ileal digestible (TID) Lys:ME ratio of 2.80 g/Mcal and available P:ME ratio of 0.90 g/Mcal were maintained in all treatment diets. Overall (d 0 to 28), there were no corn source x added fat interactions (P >/= 0.79). Regardless of corn source, ADG and G:F increased (linear, P = 0.03) with increasing added fat. There were no differences (P >/= 0.34) in pig growth performance between those fed NutriDense low-phytate or yellow dent corn. In Exp. 2, a total of 1,128 gilts with an initial BW of 81.6 kg were used in a 28-d growth study. A constant TID Lys:ME ratio of 2.15 g/Mcal of ME and available P:ME ratio of 0.75 g/Mcal were maintained in all treatment diets. Overall (d 0 to 28), there was a tendency (P = 0.07) for a corn source x added fat interaction for G:F, which can be explained by the improved G:F in pigs fed yellow dent corn only when 6% fat was added to the diet, whereas G:F was improved at both 3 and 6% added fat in pigs fed NutriDense low-phytate corn. There were no differences (P >/= 0.18) in growth performance between pigs fed NutriDense low-phytate or yellow dent corn. These results indicate that increasing added fat improved growth performance regardless of the corn source. In addition, growth performance was similar for pigs fed NutriDense low-phytate or yellow dent corn.  相似文献   

14.
Blood acid-base responses to handling were evaluated in slaughter weight pigs fed diets supplemented with l-carnitine and fat. The study was carried out as a randomized block design with a 2 x 2 factorial arrangement of treatments: 1) dietary L-carnitine supplementation (0 vs. 150 ppm, as-fed basis); and 2) dietary fat supplementation (0 vs. 5%, as-fed basis). Sixty pigs (91.1 +/- 5.14 kg BW) were housed in mixed-gender groups of five and had ad libitum access to test diets (0.68% true ileal digestible lysine, 3,340 kcal of ME/kg, as-fed basis) for 3 wk. At the end of the feeding period (110.3 +/- 7.52 kg BW), pigs were subjected to a standard handling procedure, which consisted of moving individual animals through a facility (12.2 m long x 0.91 m wide) for eight laps (up and down the facility), using electric prods (two times per lap). There was no interaction between dietary L-carnitine and fat supplementation for any measurement. Pigs fed 150 ppm of supplemental L-carnitine had lower baseline blood glucose (P < 0.05) and higher baseline blood lactate (P < 0.05) concentrations than the nonsupplemented pigs. After handling, pigs fed L-carnitine-supplemented diets had a higher (P < 0.05) blood pH and showed a smaller (P < 0.05) decrease in blood pH and base excess than those fed the nonsupplemental diets. Baseline plasma FFA concentrations were higher (P < 0.01) in pigs fed the 5% fat diet. After the handling procedure, blood glucose, lactate, and plasma FFA were higher (P < 0.05) in pigs fed the 5 vs. 0% fat diets, but blood pH, bicarbonate, and base excess were not affected by dietary fat. The handling procedure decreased (P < 0.01) blood pH, bicarbonate, base excess, and total carbon dioxide and increased (P < 0.01) blood lactate, partial pressure of oxygen, and glucose, and also increased (P < 0.01) rectal temperature. Free fatty acid concentrations were increased by handling in pigs fed both 0 and 5% fat and 150 ppm L-carnitine. In conclusion, dietary L-carnitine supplementation at the level and for the feeding period evaluated in the current study had a relatively small but positive effect on decreasing blood pH changes in finishing pigs submitted to handling stress; however, dietary fat supplementation had little effect on blood acid-base balance.  相似文献   

15.
A total of 196 barrows (88 kg) were used in a 2 x 2 factorial arrangement of treatments and housed in a facility (seven pigs per pen) where temperatures cycled between 27 and 35 degrees C. Treatments consisted of (as-fed basis) two CP levels (13.6 or 11.3%) and two levels of added fat (1 or 8%). Diets were formulated to the same true digestible lysine:ME ratio (1.68 g of lysine/Mcal of ME). Diets were fed and growth variables were measured until pigs reached 114 kg of BW. Ham and LM (loin) 24-h pH (PH24), and light reflectance (CIE L*, and a*, and b*, and hue angle) were taken after slaughter. Additionally, loins were removed and measured for i.m. fat, moisture, glycolytic potential, and subjected to a 7-d retail display evaluation that measured pH, light reflectance, and subjective color and odor score. The remaining boneless lumbar loin segment was vacuum-sealed for 14 d and subsequently measured for pH, light reflectance, and color. Pigs fed the high-CP, low-fat diet had a lower ADG than all other treatments (P = 0.06). High-fat feeding resulted in improved ADG (CP x Fat; P = 0.06) and G:F (Fat effect; P < 0.01). Higher fat and lower protein levels both increased final BF (P = 0.07). Pigs fed the low-CP diets had lower ham PH24 (P < 0.01). Loin PH24 was higher with high fat feeding (P = 0.10). Additionally, pigs fed high fat diets had lower L* values on the ham face and cut loin 24 h after slaughter (Fat effect; P 相似文献   

16.
Four experiments were conducted to investigate the effects of distillers dried grains with solubles (DDGS) and dietary S on feed preference and performance of pigs. In a 10-d feed preference experiment (Exp. 1), 48 barrows (20.1 ± 2.2 kg of BW) were randomly allotted to 3 treatment groups, with 8 replicate pens per treatment and 2 pigs per pen. A control diet based on corn and soybean meal, a DDGS diet containing 20% DDGS, and a DDGS-sulfur (DDGS-S) diet were prepared. The DDGS-S diet was similar to the DDGS diet with the exception that 0.74% CaSO(4) was added to the diet. Two diets were provided in separate feeders in each pen: 1) the control diet and the DDGS diet, 2) the control diet and the DDGS-S diet, or 3) the DDGS diet and the DDGS-S diet. Preference for the DDGS diet and the DDGS-S diet vs. the control diet was 35.2 and 32.6%, respectively (P < 0.05), but there was no difference between the DDGS diet and the DDGS-S diet. In Exp. 2, a total of 90 barrows (10.3 ± 1.4 kg of BW) were allotted to 3 treatments, with 10 replicate pens and 3 pigs per pen, and were fed the diets used in Exp. 1 for 28 d, but only 1 diet was provided per pen. Pigs fed the control diet gained more BW (497 vs. 423 and 416 g/d; P < 0.05) and had greater G:F (0.540 vs. 0.471 and 0.455; P < 0.05) than pigs fed the DDGS or the DDGS-S diet, but no differences between the DDGS and the DDGS-S diets were observed. In a 10-d feed preference experiment (Exp. 3), 30 barrows (49.6 ± 2.3 kg of BW) were allotted to 3 treatment groups, with 10 replicates per group. The experimental procedures were the same as in Exp. 1, except that 30% DDGS was included in the DDGS and DDGS-S diets and 1.10% CaSO(4) was added to the DDGS-S diet. Feed preference for the DDGS and the DDGS-S diets, compared with the control diet, was 29.8 and 32.9%, respectively (P < 0.01), but there was no difference between the DDGS and the DDGS-S diets. In Exp. 4, a total of 120 barrows (34.2 ± 2.3 kg of BW) were fed grower diets for 42 d and finisher diets for 42 d. Diets were formulated as in Exp. 3. Pigs on the control diets gained more BW (1,021 vs. 912 and 907 g/d; P < 0.05) and had greater G:F (0.335 vs. 0.316 and 0.307; P < 0.05) than pigs fed the DDGS or DDGS-S diet, respectively, but no differences between pigs fed the DDGS and the DDGS-S diets were observed. In conclusion, dietary S concentration does not negatively affect feed preference, feed intake, or growth performance of weanling or growing-finishing pigs fed diets based on corn, soybean meal, and DDGS.  相似文献   

17.
The present study was performed in order to evaluate the effects of lower than usual industry levels of dietary trace minerals on plasma levels, faecal excretion, performance, mortality and morbidity in growing-finishing pigs in a hot African climate. Group 1 (n = 100 pigs) received a diet with common industry levels of trace minerals. Group 2 (n = 100 pigs) received reduced dietary trace mineral levels but were fed the same basic diet as Group 1. Mortality, morbidity, pig performance and carcass measurements were evaluated. Two pigs in Group 1 and three pigs in Group 2 died. Thirteen pigs in Group 1 and 27 pigs in Group 2 were medically treated (P < 0.05). Carcass masses, back fat depth, loin depth, and lean percent were not significantly different between the groups. However, the carcasses when evaluated revealed a non-significant higher back fat thickness, lower loin eye area and percentage of fat-free lean in barrows compared to gilts within each group. Despite lower initial masses, pigs fed diets containing industry levels of trace minerals were heavier (P < 0.05) and had a higher (P< 0.05) than average daily gains compared to those that received a diet containing lower levels of trace minerals. Faecal zinc excretion was significantly lower (P < 0.05) in pigs fed with lower dietary zinc levels. Copper, manganese and iron excretion were not affected (P > 0.05) by the dietary levels of these trace minerals. Plasma trace mineral concentrations were not affected by the dietary treatment.  相似文献   

18.
Sows were fed a control corn-soybean meal gestation diet to d 80 of gestation. One group of sows (n = 25) continued receiving the control diet until the end of lactation, whereas two groups were placed on other treatments. One group (n = 27) was fed a diet containing 5% added solid fat pellets from gestation d 80 through lactation, whereas another group (n = 25) was fed a diet with 10% added solid fat pellet from gestation d 100 through d 14 of lactation. Feed supply was 2.27 kg/d during gestation and to appetite during lactation. Pigs from sows fed the control diet or 5% solid fat pellet diet were weaned with an age range of 22 to 28 d and immediately allotted in a 2 x 3 factorially designed 4-wk feeding trial. Pigs from these two sow groups were fed diets 1) without fat, 2) with 4.5% choice white grease or 3) with 5% solid fat pellet. Sow weight loss, backfat change and pig weights were not different at weaning among treatments. Survival rates of all pigs to 21 d averaged 90% with no significant differences between treatments. Pigs from fat-fed sows had more (P less than .05) glycogen per gram of liver, 41% more total liver glycogen and 16% more serum glucose at birth. Weanling pigs from fat-fed sows grew slower (P less than .05) than pigs from control sows. Supplemental fat during gestation increased liver glycogen of pigs, which should help survival, but the feeding of fat throughout lactation had a negative effect on ADG during a 4-wk postweaning period.  相似文献   

19.
Four experiments were conducted to determine the effects of adding a beta-mannanase preparation (Hemicell, ChemGen, Gaithersburg, MD) to corn-soybean meal-based diets on growth performance and nutrient digestibility of weanling and growing-finishing pigs. In Exp. 1, 156 weanling pigs (20 d, 6.27 kg BW) were allotted to four dietary treatments in a randomized complete block design. Treatments were a factorial arrangement of diet complexity (complex vs simple) and addition of 3-mannanase preparation (0 vs 0.05%). Pigs were fed in three dietary phases (Phase 1, d 0 to 14; Phase 2, d 14 to 28; and Phase 3, d 28 to 42). Pigs fed complex diets gained faster and were more efficient (P < 0.05) during Phase 1 compared with pigs fed simple diets. Overall, gain:feed ratio (G:F) tended to be improved (P < 0.10) for pigs fed complex diets and it was improved (P < 0.01) for those fed diets with beta-mannanase. In Exp. 2, 117 pigs (44 d, 13.62 kg BW) were allotted randomly to three dietary treatments. Dietary treatments were 1) a corn-soybean meal-based control, 2) the control diet with soybean oil added to increase metabolizable energy (ME) by 100 kcal/kg, and 3) the control diet with 0.05% beta-mannanase preparation. Beta-mannanase or soybean oil improved (P < 0.05) G:F compared with pigs fed the control diet. In Exp. 3, 60 pigs (22.5 kg BW) were allotted randomly to the three dietary treatments used in Exp. 2. Dietary treatments were fed in three phases (23 to 53 kg, 53 to 82 kg, and 82 to 109 kg with 0.95, 0.80, and 0.65% lysine, respectively). Overall, the addition of soybean oil tended to improve G:F (P < 0.10) compared with that of pigs fed the control diet, and G:F was similar (P > 0.54) for pigs fed diets with soybean oil or beta-mannanase. Also, addition of beta-mannanase increased ADG (P < 0.05) compared with that of pigs fed the control or soybean oil diets. There were no differences (P > or = 0.10) in longissimus muscle area or backfat; however, on a fat-free basis, pigs fed the diet with beta-mannanase had greater (P < 0.05) lean gain than pigs fed the control or soybean oil diets. In Exp. 4, 12 barrows (93 kg BW) were allotted randomly to one of the three dietary treatments used in Exp. 3. Addition of 3-mannanase had no effect (P > 0.10) on energy, nitrogen, phosphorus, or dry matter digestibility. These results suggest that beta-mannanase may improve growth performance in weanling and growing-finishing pigs but has minimal effects on nutrient digestibility.  相似文献   

20.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号