首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six Merino ewes were given 1 g (27 g/kg) probenecid by the intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes. After i.v. injection, the biological half-life was 1.55 h and apparent volume of distribution at the steady state (Vdss) 0.18 l/kg. Body clearance (ClB) and renal clearance (ClR) were 0.12 l/h/kg and 0.03 l/h/kg, respectively. Approximately 28% of unchanged probenecid was excreted in urine. Plasma probenecid concentrations after i.v., i.m. and s.c. injections were 133, 37, and 31 micrograms/ml, respectively, at 15 min; 76, 36, and 34 micrograms/ml at 1 h; and 43, 23 and 34 micrograms/ml at 2 h. The average bioavailability of probenecid given by i.m. and s.c. injection was 46% and 34%, respectively. However, after 2 h, probenecid plasma concentrations remained higher when it was given subcutaneously than when it was given intramuscularly. Urine output was correlated positively (P less than 0.05) with kel and ClB. Urine pH increased significantly (P less than 0.01) for the first 2 h, and then steadily declined over the subsequent 6 h. The results suggested that probenecid in sheep was rapidly eliminated because it was rapidly excreted in the normal but alkaline urine. Subcutaneous administration of probenecid in animals may be a useful alternative to oral or i.v. administration.  相似文献   

2.
Single doses of sodium ampicillin (10 mg/kg) and kanamycin sulfate (5 mg/kg) were administered intramuscularly (i.m.) separately, and then together, to five pony mares. The plasma antibiotic concentration-time curves were constructed. The pharmacokinetic parameters of the antibiotics given separately were not altered by concurrent administration. Four of the five pony mares were then given the i.m. kanamycin/ampicillin combination 4 h after acute synovitis and fever had been induced by injection of lipopolysaccharide into the left intercarpal joint. The plasma concentration-time curves and the synovial concentration-time curves of inflamed and normal joints were constructed. The Cmax of ampicillin in the lipopolysaccharide experiment was significantly higher than in the other experiments. The antibiotics entered the synovial fluid of the inflamed joints more quickly and attained higher concentrations than in the uninflamed joints. The ampicillin concentration exceeded 5 micrograms/ml in inflamed synovial fluid for some 2.5 h after injection, and kanamycin sulfate concentration exceeded 2 micrograms/ml for 7 h.  相似文献   

3.
Summary

Plasma ampicillin concentrations were determined in an eight‐ways crossover trial involving six ruminant calves, which were treated intravenously (i.v.) with sodium ampicillin at 15.5 mg/kg and intramuscularly (i.m.) with five different ampicillin trihydrate or ampicillin anhydrate formulations at 7.7 mg/kg. The mean plasma concentration‐time curve (Cp)after intravenous ampicillin sodium administration was described biexponentially, as: Cp = 38.8 e ‐0.0268t + 0.45 e ‐0.0058t.

Intramuscular injection, into the lateral neck, of Ampikel‐20® and Polyflex® resulted in 100 per cent bioavailabilities within 12 h post injection (p.i.), but the biological half‐lives (t½>) were different, being 2.1 and 3.8 h, respectively. Ampikel‐20® produced the hïghest peak plasma drug concentrations (mean C max:4.8 μg ampicillin/ml). After intramuscular injection of Penbritin® the mean bioavailability for the first 12 h p.i. was 63 per cent, the mean t½>, was 5.9 h, and the mean Cmax was 1.8 μg/ml. Treatment with Albipen® and Duphacillin® resulted in low plasma ampicillin levels, which were maintained for 3 to 6 days p.i., limited bioavailability during the first 12 h p.i., and a mean t½> of 22.2 and 11.9 h, respectively. Plasma concentrations of ampicillin from four hours onwards after i.m. and s.c. administration of Ampikel‐20® at a dose level of 15.5 mg/ kg were similar.

The duration of potentially therapeutic plasma ampicillin concentrations after administration of each formulation is presented. Pre‐slaughter withdrawal times for diseased calves are suggested for the different formulations studied.  相似文献   

4.
The pharmacokinetics of the antitrypanosomal drug isometamidium were studied in lactating goats after intravenous and intramuscular administration at a dose of 0.5 mg/kg body weight, in a crossover design at an interval of 6 weeks. Following intravenous administration, the half-life of the disappearance of the drug from plasma during the terminal phase was 3.2 h, and the mean residence time was 2.4 h. The apparent volume of distribution averaged 1.52 l/kg, and the mean total body clearance was 0.308 l/kg/h. After intramuscular administration, the absolute bioavailability was low, averaging 27%. This was consistent with a low mean maximum concentration of 24 ng/ml which occurred after 6 h. No drug was detectable (less than 10 ng/ml) in milk samples collected over a period of 14 days following drug administration by either the intravenous or intramuscular route. In tissues analysed when the goats were killed 6 weeks after administration of the second dose, no drug was detectable (less than 0.4 micrograms/g wet tissue) in the liver, kidney and muscle. However, at the injection site, drug concentrations varied from less than 0.4 to 18.8 micrograms/g wet tissue.  相似文献   

5.
The ocular distribution of kanamycin following intramuscular, bulbar subconjunctival injection, or after constant rate intravenous infusion to calves was studied. Steady-state plasma concentrations of kanamycin were achieved in either normal calves, or in those experimentally infected with Moraxella bovis, and the concentrations of kanamycin in the serum, aqueous humor, vitreous body, tears, and the ocular tissues were measured. Kanamycin was not detected in the retina, lens, vitreous body, or the aqueous humor of any eyes, but the concentration of drug in the tears, conjunctiva, cornea and the orbital lacrimal gland of these calves ranged between 18 and 21% of that in serum. At steady-state plasma levels, the kanamycin concentrations in tears from eyes with keratoconjunctivitis and from normal eyes were similar. A study using lyophilized, powdered, ocular tissues in vitro showed that kanamycin was highly bound to the bovine retina and iris, and could be eluted using 0.2 N NaOH. The binding of kanamycin to other ocular tissues, including cornea, conjunctiva and lens, was significantly less. The concentration of kanamycin in the serum and the tears of calves was also measured after intramuscular or bulbar subconjunctival injection. After intramuscular administration of kanamycin (10 mg/kg of body-weight), the mean serum concentration was maximal at 1 h (32 micrograms/ml) and remained greater than or equal to 1.0 microgram/ml for 8 h. The mean tear concentration was maximal (3.1 micrograms/ml) at 30 min, and remained greater than or equal to 1.5 micrograms/ml for only 2.5 h. Following bulbar subjunctival administration of kanamycin (100 mg, single subconjunctival dose), the mean tear concentration was 1127 micrograms/ml at 30 min, less than or equal to 4.1 micrograms/ml at 4 h, and thereafter was less than or equal to 1.0 microgram/ml. It was concluded that kanamycin has limited distribution to the ocular tissues following parenteral administration. Binding of the drug to the ocular pigments may be responsible for its limited intraocular penetration.  相似文献   

6.
Pharmacokinetic profiles of the major metabolites of netobimin were investigated in calves after oral administration of the compound (20 mg/kg) as a zwitterion suspension and trisamine salt solution in a two-way cross-over design. Blood samples were taken serially over a 72-h period and plasma was analysed by HPLC for netobimin (NTB) and its metabolites, including albendazole (ABZ), albendazole sulphoxide (ABZSO) and albendazole sulphone (ABZSO2). NTB was occasionally detected in plasma between 0.5 and 1.0 h post-treatment. ABZ was not detectable at any time. ABZSO was detected from 0.5-0.75 h up to 32 h post-administration, with a Cmax for the zwitterion suspension of 1.21 +/- 0.13 micrograms/ml and AUC of 18.55 +/- 1.45 micrograms.h/ml, respectively, which were significantly higher (P less than 0.01) than the Cmax (0.67 +/- 0.12 micrograms/ml) and AUC (8.57 +/- 0.91 micrograms.h/ml) for the trisamine solution. ABZSO2 was detected in plasma between 0.75 and 48 h post-administration. The zwitterion suspension resulted in a Cmax (2.91 +/- 0.10 micrograms/ml) and AUC (51.67 +/- 1.95 micrograms.h/ml) for ABZSO2, which were significantly higher (P less than 0.01) than those obtained for the trisamine solution (Cmax = 1.67 +/- 0.11 micrograms/ml and AUC = 22.77 +/- 1.09 micrograms.h/ml). The ratio of AUC for ABZSO2/ABZSO was 2.92 +/- 0.26 (zwitterion) and 2.80 +/- 0.20 (trisamine). The MRT for ABZSO2 was significantly longer (P less than 0.01) after treatment with the zwitterion suspension than after treatment with the trisamine solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The pharmacokinetic aspects of diminazene aceturate were studied in lactating goats and sheep after single intravenous and intramuscular administrations of 3.5 mg/kg b.wt. Plasma and milk concentrations were determined by use of reversed phase high-performance liquid chromatography (HPLC) after ion-pair extraction. Following intravenous injection, the disposition of diminazene in goats and sheep conformed to a two-compartment model with rapid distribution and slower elimination phases. Values of (t1/2 beta) were obtained indicating a slower final disappearance of the drug from plasma of sheep (21.17 h) than in goats (16.39 h). Diminazene concentrations were maintained for more than 4 days in the plasma of goats and sheep. In both species of animals, diminazene was rapidly absorbed following intramuscular administration of 3.5 mg/kg b.wt. The peak plasma concentrations (Cmax) were 7.00 and 8.11 micrograms/ml and were attained at (Tmax) 0.92 and 1.12 hours in goats and sheep, respectively. The elimination half-life (t1/2el) of diminazene after intramuscular administration was shorter in goats (16.54 h) than in sheep (18.80 h). Systemic bioavailabilities (F%) of diminazene after intramuscular administration were 94.94% and 82.64% in goats and sheep, respectively. Diminazene could be detected in milk of goats and sheep within 10 min post-injection. Milk concentrations of the drug were lower in goats than in sheep and were detected for 5 and 6 days following both routes of administration, respectively.  相似文献   

8.
Eight calves with suppurative arthritis were each given a single intramuscular injection of ampicillin trihydrate at a dose of 10 mg/kg. Ampicillin concentrations were measured serially in serum and in suppurative and normal synovial fluid over a 24-hour period. The mean peak serum concentration was 2.5 +/- 0.54 micrograms/ml 2 hours after injection. The highest concentration in normal synovial fluid was 3.5 +/- 0.40 micrograms/ml at 4 hours and the highest concentration in suppurative synovial fluid was 2.7 +/- 0.58 micrograms/ml at 2 hours. Overall mean ampicillin concentration in normal synovial fluid for the first 8 h (2.9 +/- 0.32 micrograms/ml) was significantly different from that in suppurative synovial fluid (2.1 +/- 0.33 micrograms/ml) and serum (1.9 +/- 0.30 micrograms/ml; p less than 0.05).  相似文献   

9.
Twelve suckling and 12 non-lactating post-partum cows were treated with a progesterone-releasing pessary for 7 or 14 d followed by an injection of 500 micrograms oestradiol benzoate (ODB) 24 h after pessary removal or no injection. Suckling had no significant effect on plasma progesterone concentrations (plasma P4) or plasma luteinising hormone concentrations (plasma LH) during pessary insertion. After pessary removal plasma LH rose in response to ODB. The extent of the rise was similar in suckling and non-lactating cows treated with progesterone for 14 d but was significantly lower in non-lactating than suckling cows (P less than 0.025) treated for 7 d. These findings indicate that suckling increases the responsiveness of plasma LH in post-partum cows following progesterone and oestrogen treatment compared to non-lactating cows and that extended treatment with progesterone can remove this difference.  相似文献   

10.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination in six rabbits, after intravenous and intramuscular injection at a single dosage of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam) were investigated by using a high performance liquid chromatographic method for determining plasma concentrations. The plasma concentration-time curves were analysed by compartmental pharmacokinetic and noncompartmental methods. The disposition curves for both drugs were best described by an open two-compartment model after intravenous administration and a one-compartment model with first order absorption after intramuscular administration. The apparent volumes of distribution calculated by the area method for ampicillin and sulbactam were 0.62 +/- 0.09 and 0.45 +/- 0.05 L/kg, respectively, and the total body clearances were 0.65 +/- 0.04 and 0.42 +/- 0.05 L/kg h, respectively. The elimination half-lives of ampicillin after intravenous and intramuscular administration were 0.64 +/- 0.11 and 0.63 +/- 0.16 h, respectively, whereas for sulbactam the half-lives were 0.74 +/- 0.12 and 0.77 +/- 0.17 h, respectively. The bioavailability after intramuscular injection was high and similar in both drugs (73.34 +/- 10.08% for ampicillin and 83.20 +/- 7.41% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.20 +/- 0.09 and 0.34 +/- 0.15 h, respectively) and peak concentrations were also similar but nonproportional to the dose of both products administered (13.07 +/- 3.64 mg/L of ampicillin and 8.42 +/- 1.74 mg/L of sulbactam). Both drugs had similar pharmacokinetic behaviour after intramuscular administration in rabbits.  相似文献   

11.
A comparative pharmacokinetic study was conducted in rainbow trout (Salmo gairdneri) and African catfish (Clarias gariepinus) following intravenous (i.v.) and intramuscular (i.m.) administration of oxytetracycline (OTC) at a dose rate of 60 mg/kg body weight. Trout and catfish were kept in aerated tap water in tanks at constant temperatures of 12 degrees C and 25 degrees C, respectively. The two- and three-compartment open models adequately described plasma drug disposition in African catfish and rainbow trout respectively, following i.v. OTC administration. Compared to catfish (COP = 86 +/- 10 micrograms/ml) an eightfold higher extrapolated zero time concentration was obtained in trout (COP = 753 +/- 290 micrograms/ml). A significant difference was observed with respect to the relatively large apparent distribution volumes (Vd(area] after i.v. OTC administration (trout, mean value: 2.1 l/kg; catfish, mean value: 1.3 l/kg). The mean final elimination half-lives of both fish species were greater than previously reported in mammals (trout, 89.5 h; catfish, 80.3 h). A mean maximum plasma concentration (Cmax = 56.9 micrograms/ml) was obtained in trout at 4 h after i.m. administration of OTC. In catfish a lower Cmax of 43.4 micrograms/ml was determined at about 7 h. No significant difference was observed with respect to bioavailability following i.m. administration of OTC (trout, 85%; catfish, 86%).  相似文献   

12.
The pharmacokinetics of ampicillin and amoxicillin following intravenous administration at a dose rate of 15 and 10 mg/kg respectively were studied in four healthy adult horses. Pharmacokinetics of pivampicillin and amoxicillin were studied after oral administration to four healthy adult horses. Pivampicillin, a prodrug of ampicillin, was administered orally to starved and fed horses at a dose rate of 19.9 mg/kg, which is equivalent on a molecular basis to 15 mg/kg ampicillin. Amoxicillin was administered orally to starved horses only, at a dose rate of 20 mg/kg. Ampicillin and amoxicillin concentrations in plasma, synovial fluid and urine were determined. Mean biological half-life of intravenously administered ampicillin and amoxicillin was 1.72 and 1.43 h respectively, whilst the distribution volume (Vss) appeared to be 0.180 and 0.192 1/kg. Orally administered pivampicillin and amoxicillin were rapidly absorbed. A maximum concentration in plasma of 3.80 micrograms/ml was reached 2 h after administration of pivampicillin to starved horses; in fed horses a maximum concentration of 5.12 micrograms/ml was reached 1 h after administration. After oral administration of amoxicillin a maximum concentration of 2.03 micrograms/ml was reached after 1 h. The (absolute) bioavailability of pivampicillin administered orally was 30.9% in starved horses and 35.9% in fed horses. The bioavailability of amoxicillin administered orally was 5.3% in starved horses.  相似文献   

13.
The pharmacokinetics of Dexamethasone (DXM) was studied in four cows all of which received DXM alcohol and DXM 21 isonicotinate (as a solution) by the intravenous and intramuscular routes. Concentrations of DXM and cortisol were determined using high performance liquid chromatography. An additional study was made in a second group of four cows which received intramuscular DXM 21 isonicotinate suspension for the assessment of DXM suppression of adrenal gland function. This was determined by measurements of base-line and ACTH-stimulated cortisol concentrations, before and following DXM administration. Following intravenous administration, the disposition kinetics of both formulations were described by a two-compartment open model. The half-times of elimination were similar; 335 and 291 min, respectively, for DXM alcohol and DXM 21 isonicotinate. All other pharmacokinetic parameters were not statistically different indicating that DXM was almost totally available (from DXM 21 isonicotinate). Following intramuscular administration, no significant difference in parameters was observed between the two formulations. Peak plasma concentrations were reached at 3 to 4 h post injection and bioavailability was approximately 70%. DXM was not detected in the plasma after the intramuscular administration of the suspension. The mean control plasma cortisol concentration was 8.8 ± 3.03 ng/ml. Following intravenous and intramuscular administrations of DXM alcohol and DXM 21 isonicotinate (solution), cortisol concentrations initially increased. However, at 120 min (intravenous) and 2–4 h (intramuscular), concentrations were negligible; 24–72 h and 48–96 h, respectively elapsed before concentrations returned control values. Following DXM 21 isonicotinate (suspension) there was no initial increase and concentrations had not returned to normal in all four cows until 52 days post administration. Similarly, ACTH-stimulated plasma cortisol concentrations decreased progressively and significantly post administration. At 52 days, response to ACTH was normal in all animals.  相似文献   

14.
The pharmacodynamics of carprofen and its pharmacokinetics in plasma and milk of healthy cows and cows with endotoxin-induced mastitis were studied after a single intravenous dose of 0.7 mg/kg body weight. Carprofen was administered to five clinically healthy cows and to the same cows 3 weeks later, 2 h after intramammary infusion of endotoxin. Mastitis developed in all endotoxin-infused quarters. The pharmacokinetic characteristics of carprofen in healthy cows were a small volume of distribution (0.09 l/kg), a relatively low systemic clearance (2.4 ml/h kg), and a long elimination half-life (30.7 h). In the mastitic cows, systemic clearance (1.4 ml/h kg) was significantly lower (P less than 0.01), and elimination half-life (43.0 h) was significantly longer (P less than 0.01) than in the normal animals. Concentrations of carprofen in milk from healthy quarters were below the limit of detection for the assay (0.022 micrograms/ml). In milk from mastitic quarters, concentrations of carprofen increased up to 0.164 micrograms/ml during the first 12 h after induction of mastitis, but were less than 0.022 micrograms/ml at 24 to 48 h. Compared with the untreated mastitic controls, carprofen treatment significantly reduced heart rate (P less than 0.01), rectal temperature (P less than 0.001), quarter swelling (P less than 0.01) and other parameters measured. Local and systemic adverse reactions to carprofen were not observed.  相似文献   

15.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination were studied in 6 sheep, after intravenous and intramuscular injection at a single dose rate of 20 mg/kg body weight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam). The drugs were distributed according to an open 2-compartment model after intravenous administration and a one-compartment model with first order absorption after intramuscular administration. The apparent volumes of distribution calculated by the area method of ampicillin and sulbactam were 0.32+/-0.06 L/kg and 0.42+/-0.04 L/kg, respectively and the total body clearances were 0.69+/-0.07 and 0.38+/-0.03 L/kg x h, respectively. The elimination half-lives of ampicillin after intravenous and intramuscular administration were 0.32+/-0.05 h and 0.75+/-0.27 h, respectively, whereas for sulbactam the half-lives were 0.74+/-0.10 h and 0.89+/-0.16 h, respectively. The bioavailability after intramuscular injection was high and similar in both drugs (72.76+/-9.65% for ampicillin and 85.50+/-8.35% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.25+/-0.10 h and 0.24+/-0.08 h, respectively) and peak concentrations were also similar but nonproportional to the dose of both products administered (13.01+/-7.36 mg/L of ampicillin and 10.39+/-3.95 mg/L of sulbactam). Both drugs had a similar pharmacokinetic behavior after intramuscular administration in sheep. Since the plasma concentrations of sulbactam where consistently higher during the elimination phase of their disposition, consideration could be given to formulating the ampicillin-sulbactam combination in a higher than 2:1 ratio.  相似文献   

16.
Pharmacokinetics of cefotaxime in the dog   总被引:1,自引:0,他引:1  
Each of five dogs was given cefotaxime at a dose rate of 50 mg/kg by intravenous, intramuscular and subcutaneous routes, in three separate treatments. Plasma concentration time profiles were characterised by a linear two-compartment model after the intravenous administration. After intravenous, intramuscular and subcutaneous injections the mean biological half-lives were 0.74, 0.83 and 1.71 hours, respectively. The apparent steady state volume of distribution was 0.48 litre/kg and body clearance after intravenous injection was approximately 0.63 litre/hour/kg. After intramuscular and subcutaneous injections peak plasma cefotaxime concentrations were 47 +/- 15 and 29.6 +/- 16 micrograms/ml at 0.5 and 0.8 hours, respectively. The average bioavailability of cefotaxime given by intramuscular injection was 86.5 per cent and for cefotaxime given subcutaneously it was approximately 100 per cent. After two hours, the cefotaxime plasma concentration remained higher after subcutaneous than after intramuscular administration.  相似文献   

17.
The plasma disposition of ciprofloxacin was studied in carp, African catfish and trout after intravenous (IV) and intramuscular (IM) administration at a dose rate of 15 mg/kg. Pharmacokinetic analysis of IV data showed that ciprofloxacin was well distributed (distribution volume Vd(area): 3.08-5.59 litre/kg) and exhibited a similar elimination half-life of about 14 h in these 3 fish species. After IM administration to carp and trout a rapid absorption was noticed; the maximum ciprofloxacin plasma concentrations (mean: 3.49 and 2.37 micrograms/ml, respectively), were achieved within 1 h after injection. At the dose level applied, ciprofloxacin has potential therapeutic value for 2-5 days especially against gram-negative bacterial fish pathogens.  相似文献   

18.
The pharmacokinetics of intravenous (i.v.) and intramuscular (i.m.) single-dose administration of acyclovir were determined in Quaker parakeets. After i.v. injection at a dose of 20 mg/kg of acyclovir, elimination half-life was estimated at 0.65 h, volume of distribution at steady state was 627.65 ml/kg, and clearance was 11.22 ml/kg/min. The estimated pharmacokinetic values after i.m. injection at a dose of 40 mg/kg of acyclovir were an elimination half-life of 0.71 h and a bioavailability of 90.1%. The peak plasma acyclovir concentration occurred at 15 min when the drug was administered i.m. Plasma concentrations of acyclovir were undetectable 4-6 h after i.v. administration and 6-8 h after i.m. administration. Oral (capsules) and intravenous (sodium salt) formulations of acyclovir were given by gavage at 80 mg/kg. Peak concentrations with the sodium salt formulation were lower and developed more slowly than with the capsules. In studies designed to detect excessive drug accumulation or adverse side effects, acyclovir was administered i.m. at 40 mg/kg every 8 h for 7 days. Plasma concentrations were determined 15 min after (peak) and just prior to drug administration (trough). In another study acyclovir was gavaged at a dose of 80 mg/kg every 8 h for 4 days. Acyclovir plasma concentrations were determined just prior to and 2 h after drug administration. In both experiments, the birds maintained normal appetite and weight and did not exhibit excessive drug accumulation. Acyclovir plasma concentrations ranging from 2.07 +/- 1.09 micrograms/ml to 3.93 +/- 1.13 micrograms/ml were maintained for 4 days when acyclovir was administered in the feed and water (sole source of food and water).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Three ampicillin and three amoxycillin formulations (tablets and capsules, administered orally, and oily suspensions, injected intramuscularly (i.m.) and subcutaneously (s.c.] were studied in twenty adult homing pigeons (Columba livia). Bioavailability, pharmacokinetics and recovery were determined for each product and administration route. A standard dose of 50 mg/pigeon or 100 mg/kg was used in each study. The mean availability calculated for each of these preparations was 7% for ampicillin anhydrate tablets, 22% for amoxycillin trihydrate tablets, 17% for ampicillin trihydrate capsules, 67% for amoxycillin trihydrate capsules, 46% for ampicillin oily suspension i.m., 67% for amoxycillin oily suspension i.m. and 43% for amoxycillin oily suspension s.c. The blood concentration-time curves for the tablets were very scattered, which was far less the case for the capsules. The maximum blood concentration (Cmax) for amoxycillin was twice as high as for ampicillin. The Cmax resulting from the oily suspensions administered i.m. were low (4.35 +/- 1.05 and 5.04 +/- 1.36 mg/l, for ampicillin and amoxycillin, respectively). The Tmax for ampicillin was 10 h and for amoxycillin it was 0.9 h after administration. Both curves showed biphasic absorption, the initial peak representing an absorption and a distribution phase and the second part reflecting the 'depot-nature' of the drug. After the s.c. administration of the amoxycillin oily suspension the same pattern was found, but the Cmax, which was found at 2.13 +/- 1.03 h after administration, was low (2.81 +/- 0.68 mg/l).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Aditoprim (AP) is a new dihydrofolate reductase inhibitor, which is structurally related to trimethoprim (TMP). The pharmacokinetics of AP (10 mg/kg) and TMP (20 mg/kg) were assessed in healthy dwarf goats. Therapeutic efficacy against rickettsial infections was tested in tick-borne fever (TBF) infected goats. The animals were given TMP (n = 5) or AP (n = 5) by i.v. injection, and subsequently the drugs were administered orally (same groups, similar doses). Finally, both groups were infected with TBF and the i.v. experiment was repeated. Plasma concentration-time curves for both drugs followed first-order two-compartment decay. For TMP, mean t1/2 beta +/- SEM (h) was 0.84 +/- 0.06 (i.v. control) and 0.90 +/- 0.06 (i.v. infected), respectively, whereas for AP values of 8.00 +/- 0.31 (i.v. control) and 10.28 +/- 0.67 (i.v. infected) were obtained (P less than 0.05). Mean Vd beta +/- SEM values (l/kg) were 3.84 +/- 0.27 (i.v. control) and 4.07 +/- 0.85 (i.v. infected) for TMP (NS) and 7.02 +/- 0.63 vs 9.29 +/- 0.21 (P less than 0.05) for AP. After i.v. injection, rumen fluid concentrations of AP were significantly (P less than 0.05) higher and more persistent than those of TMP. For AP, the plasma and rumen fluid concentrations at 3 h were 1.20 +/- 0.06 micrograms/ml and 0.85 +/- 0.17 microgram/ml, respectively. After oral administration of TMP, Cmax in plasma was 0.12 +/- 0.01 microgram/ml and the maximum was reached after 1.2 +/- 0.16 h; systemic bioavailability (F) was 10.3% (relative to AUC i.v.). Oral treatment with AP resulted in a Cmax value of 0.21 +/- 0.02 microgram/ml with Tmax of 22.5 +/- 1.65 h and a F value of 71%. Based on WBC, serum ALP and rectal temperature responses, it was concluded that both TMP and AP were inactive against Ehrlichia phagocytophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号