首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了对山西省山区土壤干旱程度和水资源利用情况进行研究,通过称重法研究了山西榆次区不同植被(樱桃林地、耕地、枣树林地和杨树林地)及撂荒地土壤剖面水分变化特征、水分有效性及干燥化效应。结果表明:土壤平均含水量从小到大依次为杨树林地(8.10%)、枣树林地(9.94%)、撂荒地(10.70%)、樱桃林地(14.47%)和耕地(14.53%)。各植被下土层均有不同程度的干层发育,其中耕地和樱桃林地土壤为轻度干层,撂荒地主要为中度干层,而枣树林地与杨树林地则发育了中重度干层。杨树林地各土层均为无效水,枣树林地以无效水为主,撂荒地以无效水与难效水为主,耕地和樱桃林地受灌溉补给,以难效水与中效水为主。各植被中除杨树林地外,土壤水分含量均随土层深度增加先减后增。其中樱桃林地和枣树林地土壤水分都在0—3 m内呈递减趋势,3—5 m土壤水分迅速升高。耕地和撂荒地土壤含水量先减后增,均在2—2.5 m深度土层为含水量低值拐点。杨树林地土壤水分在0—3.5 m保持平稳,3.5—5 m水分呈下降趋势。  相似文献   

2.
为了研究左云县店湾镇春季不同植被条件下0—600 cm深度范围内土壤垂直剖面水分变化特征,分别对该区乔木(白榆和小叶杨)林地、灌木(柠条和沙棘)林地和草地5种不同植被条件下土壤水分进行了研究。结果表明:研究区不同植被条件下土壤剖面含水量变化规律不同。左云县矿区春季各土层平均含水量草地最高,柠条林地次之,白榆林地最少。其中草地各土层平均含水量比柠条林地高0.3%,比白榆林地高3.8%。该区各植被条件下土壤水分主要呈难效水状态。且各植被条件下土壤在200—400 cm深度范围内都存在干层,有轻度干层、中度干层和重度干层发育。该区水循环主要是地表水循环,地下水循环基本不存在,形成了土壤—植物—大气的水分循环模式,属于异常水分循环类型。  相似文献   

3.
陕西长安和曲江人工林地土壤含水量对比研究   总被引:1,自引:0,他引:1  
根据长安地区苹果林地及曲江地区梧桐林地和杨树林地土壤含水量测定,研究了0-6 m土壤含水量的变化和土壤干层的恢复.结果表明,在丰水年之后长安地区人工林地土壤含水量与正常年份土壤含水量有明显不同,12 a苹果林地2-4 m土层含水量平均11.77%,14 a苹果林地平均15.27%;曲江地区丰水年之后12 a杨树林地2-4 m平均含水量18.53%,14 a梧桐林地2-4 m平均含水量17.24%,干层完全消失.这表明在降水量增加的条件下,黄土高原南部土壤干层中的水分完全可以恢复.长安与曲江地区丰水年之后经过约2年半的时间,人工林土层水分恢复深度可达到6 m左右.不同树种含水量差异较大,苹果林地干层带水分恢复比梧桐、杨树林明显低.  相似文献   

4.
通过对西安市附近曲江池村丰水年春季和秋季15龄苹果林地土壤含水量的测定,以及不同季度该地土壤含水量的对比,研究了苹果林地0~6m土层间土壤含水量的变化与土壤干层的恢复问题。研究结果显示,春季西安市南郊苹果林地2~4m土层含水量为8%~10%,表明该地有弱的干层发育;丰水年秋季西安南郊苹果林地2~4m土层含水量在23%以上,远高于春季该层位的土壤含水量,说明该地区的土壤干层己经消失。分析得出,在降水丰富的年份,发育较弱的土壤干层水分不仅可以得到恢复,且恢复的深度可达5m,恢复速度也很快。  相似文献   

5.
晋西黄土区不同土地利用类型对土壤水分的影响   总被引:2,自引:2,他引:0  
为明确不同土地利用类型对土壤水分的影响,采用土钻法在2019年和2020年4—10月定期对晋西黄土区人工油松林地、荒草地、农地0—10 m土层的含水量进行了观测研究。结果表明:(1)人工油松林地0—10 m土层的蓄水量为1 281.13 mm,荒草地为1 712.85 mm,农地为1 804.77 mm。油松林地较荒草地和农地多消耗431.72,523.64 mm的水分,且多消耗的土壤水分主要来源于深层土壤。(2)3个土地利用类型0—10 m土层含水量的垂直变化可以划分为土壤水分剧烈变化层、弱变化层和稳定变化层,各层的含水量随时间的变化也不尽相同。(3)油松林根系的直接吸水深度为5.4 m,影响深度可达10 m土层以下,农作物的吸水深度为4.2 m,影响深度可达8 m土层以下。对研究区内地势平坦、交通便利的地方可种植农作物,促进当地农业经济建设;而针对油松林地土壤含水量低的现象,可采取适当水分管理措施降低林地耗水。  相似文献   

6.
研究多年生人工柠条林地生长对土壤水分的影响,对水资源紧缺的黄土丘陵区植被重建和生态建设具有重要的意义。以多年生的柠条林为对象,采用中子水分仪对黄土丘陵半干旱区(宁夏固原)多年生的柠条林地及撂荒地土壤水分进行长期定位观测与分析,研究了多年生人工柠条林生长对土壤水分的影响。结果表明:柠条林地和撂荒地各深层土壤容积含水量分别为4.18%~14.67%和2.87%~15.01%,柠条林地各个深度土层的土壤容积含水量普遍低于撂荒地同等深度土层土壤容积含水量。多年生的人工柠条林地同撂荒地二者的土壤容积含水量变异系数区间分别是3.27%~31.12%和7.39%~34.63%,都随土层深度增加而逐渐减小,是该区域土壤容积含水量变异系数所具有的共性。多年生的人工柠条林对200 cm以下深层土壤水分的消耗影响深远。  相似文献   

7.
青海湖南侧江西沟土壤水分研究   总被引:2,自引:0,他引:2  
根据含水量和粒度测定,对青藏高原东部的青海湖南侧土壤水分含量特征、土壤干层与草原发育的适宜性和土壤水库等问题进行了研究。结果表明,青海湖南侧土壤含水量随深度增加呈现减小的趋势,在土壤1.0 m左右深度以下有长期性土壤干层发育;从上向下土壤干层发育强度呈现加重趋势,由轻度干层变为中度干层,这主要与气候暖干化和降水量少有关。虽然该区丰水年土壤剖面上部的水分明显升高,但还没有使土壤干层中的水分得到全部恢复。青海湖南侧土壤是与黄土相似的粉沙土,但该区土层较薄,土壤水库的调蓄能力较小。土壤干层的发育和较弱的土壤蓄水能力指示该区不适于植树造林,适宜发展消耗水分较少的草原植被。  相似文献   

8.
通过土壤含水量测定,对青海湖西部天然草地不同厚度土壤含水量等问题进行了研究.结果表明,吉尔孟厚土层和薄土层土壤含水量均呈现随深度增加而逐渐降低的趋势.在相同土壤厚度条件下,低草地土壤含水量比高草地含水量高.在植被相同条件下,厚土层含水量比薄土层的含水量高.草地厚土层在80 cm深度出现土壤干层,指示当地的土壤下部水分不足.30 cm厚度的薄土层高草地和30 cm厚度的薄土层低草地分别在21和24 cm出现了含水量低于11%的干化现象.厚土层上部30 cm含水量比30 cm厚度的薄土层含水量高12.4%.吉尔孟土壤水分的突出特点是上部含水量高,说明该区土壤水分具有在上部聚集的特点,这是该区土壤冻结期较长和蒸发及蒸腾较少造成的,土壤水分在上部聚集对草原植被生长是有利的.由于该区土壤下部水分不足,该区应该发展耐旱牧草和其他耗水较少的草原植被,不适于发展深根系耗水较多的植被.  相似文献   

9.
根据野外考察和土层含水量的测定,研究了靖边县沙地土层和黄土层土壤含水量。结果表明,靖边几个研究点的沙地土层平均含水量小于3%,杨树林地黄土层平均含水量为7%左右;沙地土层含水量远低于黄土层含水量,杨树林沙地和沙柳沙地已经出现了严重的土壤干层,杨树林地黄土层出现了发育中等的土壤干层,干层发育深度都已超过6m。干旱气候是引起干层发生的主要因素,人工灌木和树种消耗水分较多也促进了干层的发育。沙地区应以发展耐旱草灌为主的植被,黄土分布区也应发展草灌为主的植被,但在黄土分布的洼地区和有外来水源的地区可以发展耐旱的乔、灌、草相结合的植被。在靖边县这一土壤干层发育较严重的地区,造林一般不能带来良好的环境效益与经济效益,反而会导致深部土壤水分的过量消耗等不良后果,因此该区是不适于造林的地区。  相似文献   

10.
黄土高原南部人工植被作用下的土壤水分研究   总被引:2,自引:0,他引:2  
杜娟  赵景波 《土壤》2010,42(2):262-267
在大量野外调查和室内测定的基础上,研究了黄土高原南部地区丰水年前后不同人工植被下0~6m土壤水分含量。研究表明,年均降雨量600mm左右的正常年份,该区内杨树林、法国梧桐林和中国梧桐林下1.5~4m土层平均含水量约为90g/kg左右,发育了弱的土壤干化层,4~6m土层平均含水量约为120g/kg,水分状况优于上部土层。麦地和草地下0~6m水分状况良好,未出现土壤干化现象。丰水年充足的降水后所有林木下土壤干层消失,水分得到很好的恢复,说明该区并未形成永久性土壤干层,这为该区人工植被的良好生长提供了必要的条件。但目前加速发展的生态建设及经济林业仍会给该区土壤水分良性循环带来威胁,因此应加强人工植被下土壤水分的长期观测,合理引种、适当栽培,在收益的同时保证生态环境的可持续发展。  相似文献   

11.
黄土丘陵区深层干化土壤中节水型修剪枣树生长及耗水   总被引:4,自引:1,他引:3  
黄土丘陵区人工林地深层土壤干层是否影响后续植物的生长是众多学者关心的热点。该文在砍伐23 a生旱作山地苹果园地后休闲4 a又栽植枣树,连续3 a观测干化土壤中枣树的生长及土壤水分变化,研究采用节水型修剪的再植枣林的生长及耗水情况。结果表明,前期23 a生苹果园地已使0~1 000 cm深土壤干化,休闲4 a后0~300 cm土层水分得到恢复,300~500 cm范围为中度偏重亏缺,500~700 cm为中度亏缺,700~1 000 cm为轻度亏缺;3龄枣树时开始采取节水型修剪,0~300 cm土层有效水分被消耗34.97%,至4龄时0~300 cm范围内前期恢复的土壤水分已消耗殆尽;在此情况下采取节水型修剪的枣树仍可保持良好生长,产量及其水分利用效率均高于相同水分条件下的常规修剪枣树,产量可达正常水分条件下枣树的1.39倍以上,产量水分利用效率可达1.52倍以上。研究结果证明节水型修剪是半干旱区深层干化土壤中枣树克服雨量不足和土壤水分亏缺的一条有效途径。  相似文献   

12.
黄土丘陵区枣林地土壤水分时空变化研究   总被引:5,自引:2,他引:5  
为探索枣树种植对黄土丘陵沟壑区土壤水分的影响,在陕西省米脂县,以5 a和15 a枣林地及14 a更新枣林地(与15 a枣林同年栽植,14 a时截枝截干更新)为研究对象,对枣林地土壤水分进行长期定位观测,分别研究了不同树龄枣林地的土壤水分差异、土壤水分与土壤质地关系、枣树耗水深度以及土壤干燥化问题。结果表明:1)不同树龄枣林地土壤水分存在显著差异,随树龄增加,枣树年耗水量增大,枣树耗水深度增加。2)枣林地枣树根系吸水影响范围内的土壤水分与粉粒含量呈显著正相关关系。3)不同树龄枣林地的耗水深度分别为5 a枣林地440 cm、14 a更新枣林地800 cm、15 a枣林地840 cm。4)5 a枣林地在根系吸水影响范围内出现了100 cm深的重度干燥化土层(土层深度为400~500 cm),14 a更新枣林地在根系吸水影响范围内出现了300 cm深的重度干燥化土层(土层深度为300~600 cm),15 a枣林地在根系吸水影响范围内分别出现了100 cm深的重度干燥化土层(土层深度为200~300 cm)和300 cm深的极度干燥化土层(土层深度为300~600 cm)。枣林地土壤水分状况与树龄、土壤质地相关,截干更新具有减少耗水的作用。研究结果可为今后半干旱山地枣林可持续经营及防治林地土壤干层研究提供一定理论依据。  相似文献   

13.
滴灌密植枣林细根及土壤水分分布特征   总被引:6,自引:4,他引:2  
为明确黄土丘陵区滴灌密植枣林(Ziziphus jujube Mill.)细根(直径<2 mm)及土壤水分的空间分布特征,以无滴灌稀植枣林为对照,利用根钻法(洛阳铲)分别获得12 a生密植枣林地0~5.4 m和12 a生稀植枣林地0~10.4 m土层的细根干重密度,及0~10.4 m的土壤水分。结果表明:枣林细根干重密度随土层深度的增加而减少,50%以上的细根集中分布在0~0.8 m的土层中,该土层为根系密集层。密植枣林的细根干重密度较稀植枣林高,而细根最大分布深度却相反,密植枣林细根最大分布深度为5 m,稀植枣林为10 m。密植枣林土壤水分低值区的土层达3.0 m,稀植枣林延伸到4.6 m。该研究表明滴灌密植对枣林根系分布及土壤水分有显著影响,滴灌可减短枣林细根最大分布深度,滴灌条件下密植枣林整体根系较浅,有利于减轻深层土壤水分消耗。  相似文献   

14.
基于van Genuchten模型的渭北苹果园土壤水分能量特征分析   总被引:4,自引:0,他引:4  
针对渭北地区干旱缺水,果树生长发育受限的客观实际,开展了苹果树生育期0~150 cm土壤水吸力动态变化规律研究。依据渭北果园土壤剖面构型,将离心机法与水汽平衡法相结合,按照发生学土层,逐层测定了供试土壤水分特征曲线,并用van Genuchten模型拟合。基于该模型,将在幼龄果园、老龄果园以及农田定期逐层监测的土壤水分含量转化为土壤水吸力,以农田为对照,评价植果条件下土壤水分的胁迫状况。结果表明,van Genuchten模型能很好地拟合渭北果园耕层、农田耕层、黑垆土层及黄土母质层的水分特征曲线,拟合精度均达0.96以上。渭北地区农田受干旱胁迫较严重,3月中旬-7月初,0~100 cm土层均处于水吸力高于3.98的重度胁迫状态;受植被冠层覆盖及果树生育期的影响,干旱对果树的胁迫程度较农田小,对老龄果园胁迫程度比对幼龄果园的大,幼龄果园在3月中旬-5月初、5月底-7月初仅0~20 cm土层为高水吸力区,直至6月中旬-7月中旬高水吸力区才延伸到40~70 cm土层;老龄果园在3月中旬-4月底的0~40 cm土层、5月底-7月中旬的30~100 cm土层和7月中旬-8月底的0~20 cm土层为高水吸力区。可得出,渭北不同园龄苹果园在不同生育期的不同深度土层会间歇性地出现高水吸力的土壤水分胁迫区,但相对于农田而言,果园受到的干旱胁迫相对较轻,渭北地区植果有助于缓解干旱胁迫。  相似文献   

15.
黄土高原人工林对区域深层土壤水环境的影响   总被引:53,自引:2,他引:53       下载免费PDF全文
通过对典型黄土区 1 0m土层土壤水分的分析表明 :黄土高原土壤深层具有丰富的土壤水资源 ,3~ 1 0m土层内土壤水资源从南部的 1 0 86.8mm逐渐降低到北部的 5 2 4.1mm ,各地土壤水资源量约相当于当地多年平均降水量的 2倍。在 1 0m土壤水分剖面内 ,随土层深度的变化土壤含水量具有波动性和相对稳定性的特征。以荒坡地或低产农田为对照 ,通过对比分析发现 ,黄土高原目前主要的造林树种可利用 9~ 1 0m以下土层的土壤水资源。在黄土高原半干旱气候背景下 ,人工林植被的耗水主要使黄土区中北部地区 3~ 8m土层土壤含水量降低到长期接近或低于凋萎湿度 ,形成难以恢复的深厚土壤干层。人工林大量耗水形成的难以恢复的土壤干层是黄土高原特殊的生态水文现象 ,是目前区域人工植被生态系统不稳定性的体现。同时表明 ,黄土高原营造的人工林尚不能达到涵养水源之功能。  相似文献   

16.
不同覆盖措施对减少枣林休眠期土壤水分损失的影响   总被引:1,自引:0,他引:1  
针对黄土丘陵半干旱区林地土壤干化缺水严重的现象,利用2012-2015年3种覆盖措施下土壤水分定位实测数据,探讨和分析全年覆盖措施对枣林休眠期土壤水分损失的影响。结果表明:休眠期是枣林地土壤水分损失的重要时期,无覆盖枣林地土壤水分损失85.64~92.34 mm,是同期降雨量的2.12倍。当地枣林地土壤水分损失的土层深度基本在0~200 cm范围。在0~200 cm范围土壤垂直剖面上,休眠期3种覆盖措施下土壤水分损失均呈现随深度增加而均匀减少的规律。休眠期0~200 cm土层秸秆覆盖、地膜覆盖和石子覆盖土壤水分总损失量分别较裸地减少38.32、50.56、40.48 mm。覆盖措施可以促进休眠期土壤水分向深层运移。  相似文献   

17.
黄土高原水蚀风蚀复合区人工植被土壤水分状况   总被引:3,自引:0,他引:3  
采用烘干法及WP4水势仪对黄土高原水蚀风蚀复合区人工林下土壤重量含水量及水势进行测定,从土壤水分数量和能量两方面分析该区土壤水分时空分布和动态变化特征,并且通过实测数据对不同树种土壤水分特征曲线进行拟合,旨在为该区今后植被建设及生态用水提供理论参考。结果表明,各树种在0-300 cm土层土壤含水量随深度增加而逐渐降低,并趋于稳定。0-30 cm土层土壤含水量变化剧烈,30 cm以下土层土壤含水量逐渐降低,并趋于稳定在3.00%~5.00%。土壤水分受降雨量及其分配影响显著,观测期内土壤储水量盈余26.7 mm。土壤水势与土壤含水量变化规律一致,土壤水分特征曲线拟合结果较好。在丰水年,降雨只对浅层土壤水分起到补给作用,深层土壤水分亏缺严重,存在土壤干层。在特殊降水年份对该区土壤水分进行研究具有重要意义。  相似文献   

18.
在黄土高原陕西省长武塬区选取品种和管理手段均相同的3种林龄果园(尚未结果的5年幼龄果园、已结果的8年初果园和13年壮果园)苹果树,采用空间换时间的试验设计,分别于2015年7月12日和8月19日对0—500cm深度土壤及对应取样处的苹果树枝条取样,测定土样和枝条样中水分的稳定氢氧同位素,并利用贝叶斯模型量化降水前后不同土层对苹果林耗水的贡献。结果表明:(1)不同林龄苹果树降雨前后的主要水分来源深度不同。干旱时,13年壮龄果树的主要吸水深度比5年和8年果树深;而生长旺季,雨季降水只能补充未挂果的5年幼龄果园土壤水分消耗,即使降水量很大,也无法满足已经开始挂果的8年和13年果园土壤水分消耗。(2)在干旱期,5年和8年果树50%以上的水分来自表层0—100cm土壤,而13年果树50%的水分来自100—300cm土层。而降水后,5年和8年果树的主要水分来源变为100—300cm土层,贡献值在40%左右;13年果园的主要水分贡献层为0—100cm土层,贡献了近50%的水分。(3)3种林龄果树根系对300—500cm土层土壤水分的吸收对降雨的响应非常弱,降雨前后贡献率始终保持在30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号