首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
试验采用二次饱和D-最优设计,分析了淮北地区高产小麦的氮素和密度效应,得出综合效应方程。结果表明:氮素的增产效应大于密度,二者的互作是负效应,增施氮肥能明显增加公顷穗数和穗粒数,增加密度也能增加公顷穗数,但二者增加都会使千粒重下降。施氮量269.9kg/hm2,密度在231.1万苗/hm2,产量最高达8358.3kg/hm2,此时的经济效益也最大。最理想的产量结构是穗数585.1万/hm2,穗粒数37.9粒,千粒重39.2g,最佳产量的施氮范围255.9~287.3kg/hm2,密度228.5~246.7万苗/hm2.  相似文献   

2.
为了探究不同种植密度对水稻农艺性状和产量的影响,以宁化河龙贡米水稻新品种‘玉针香’、‘农香32’和‘宜优673’为试验材料,进行3种不同密度种植,设置15万丛/ hm2、18.75万丛/ hm2及22.5万丛/ hm23个处理的小区试验,研究不同种植密度对水稻生育期、抗病性、植物学性状和产量的影响。结果表明:种植密度高低对水稻生育期和稻瘟病发病率影响不大,高密度种植时水稻纹枯病发病率和有效穗数增加,分蘖数和穗总粒减少;‘玉针香’和‘农香32’在种植密度18.75万丛/ hm2时产量最高,‘宜优673’种植密度22.5万丛/ hm2时产量最高;3个品种在3种密度组合种植中,以‘宜优673(A3) ’×密度B3(丛距20.2 cm)组合产量11.04 kg最高,较其他2个品种相比增产幅度在6%以上,因此‘宜优673’可做为河龙贡米首选优良水稻品种,种植密度22.5万丛/ hm2为宜。  相似文献   

3.
为了优化薏苡栽培技术,提高薏苡产量,笔者以贵州‘兴仁白壳薏苡’为试验材料,采用正交旋转实验设计方法进行田间试验,探讨了种植密度X1、复合肥用量X2和薏苡产量Y 的关系。结果表明:变量X1、X2和产量(Y)之间均符合二元二次多项式模型,且拟合效果较好;种植密度15~18 万株/hm2、施肥量750.00~900.00 kg/hm2的范围内有利于增产,选优组合为种植密度18 万株/hm2、施肥量870.30 kg/hm2。而且增加单位面积有效穗数和穗粒数是增产的主要因素,在保证足够有效穗数的前提下,提高结实率以增加穗粒数和穗粒重是薏苡增产的重要途径。  相似文献   

4.
摘 要:为了探讨豫东平原夏玉米超高产栽培技术路线,选用4个主导品种,采取理论测产与实收测产相结合,对项目组夏玉米超高产攻关田及农户高产田进行产量及产量构成因素调查,划分为3个产量水平,进行产量构成三要素与产量的相关及通径分析。结果表明:产量水平从10500~12000 kg/hm2提高至12000~13500 kg/hm2,收获穗数增加7736.25穗/hm2,增加了10.69%;产量增加1343.4 kg/hm2,增加了11.97%。产量水平由12000~13500 kg/hm2提高至13500 kg/hm2以上,收获穗数增加6333.75穗/hm2,增加了7.91%;产量增加1482.6 kg/hm2,增加了11.80%。直接通径系数,穗数(X1)为0.8146,穗粒数(X2)为0.1233,千粒重(X3)为0.1275,表明对产量的贡献大小依次为穗数>千粒重>穗粒数。因此,豫东平原夏玉米超高产栽培,应通过增加种植密度进一步提高产量。‘中单909’、‘登海605’、‘登海618’、‘郑单958’等品种,豫东平原夏玉米实现13500 kg/hm2以上的产量,种植密度为87000~91500株/hm2,收获穗数为84000~88500穗/hm2、穗粒数480~485粒、千粒重330~340 g。 关键词:夏玉米;超高产;栽培;通径分析;技术路线;技术途径  相似文献   

5.
不同行距配置对玉米雌雄开花间隔期和产量的影响   总被引:1,自引:0,他引:1  
旨在为晋东南地区玉米主栽品种最佳行距配置提供理论依据。试验以‘大丰30’为材料,在相同密度下研究不同行距配置对雌雄穗开花间隔期(ASI)、千粒重、穗粒数、总穗数和产量的影响。结果表明不同行距配置下产量、千粒重、穗粒数和总穗数的变异系数均在5%以下,ASI的变异系数在4.33%~12.50%。各处理的ASI、穗粒数和产量差异呈极显著水平,但千粒重和总穗数差异不显著。多重比较表明行距配置为40 cm×80 cm时ASI最短,穗粒数较多,产量最高。因此在晋东南地区种植‘大丰30’采用40 cm×80 cm行距配置时,其ASI最短,可获得较高产量。  相似文献   

6.
密度与行距对玉米‘协玉3号’穗部性状及产量的影响   总被引:2,自引:1,他引:1  
为研究种植密度与行距对玉米产量、穗部性状以及通过穗部性状对产量的影响,寻求最佳种植行距与密度,为实现玉米超高产栽培创建提供技术依据。以玉米品种‘协玉3号’为材料,设置3个行距[50 cm等行距、60 cm等行距与40 cm+60 cm宽窄行]、3个种植密度[60000、67500、75000株/hm2],随机区组设计,3次重复,共27个小区,每小区行长6 m,行宽3 m,面积18 m2。50 cm等行距与宽窄行为6行区,60 cm等行距为5行区。结果表明,行距对‘协玉3号’的产量影响达到了极显著水平,而且不同行距配置中穗重、穗行数、穗粗以及穗粒重差异显著,不同密度间穗重、穗行数、百粒重与穗粒重差异显著,多个作用大小不一的穗部性状间的交互作用共同影响决定玉米产量。‘协玉3号’在密度为75000株/hm2和60 cm等行距模式下产量最高,可达16646.70 kg/hm2。因此,在山西中部水浇地条件下采用紧凑型玉米品种‘协玉3号’,适当扩大种植行距、缩小株距、增加种植密度是提高玉米产量的重要途径。  相似文献   

7.
种植密度对渭北旱作区小麦群体性状和产量的影响   总被引:1,自引:0,他引:1  
为筛选渭北旱作区主栽小麦品种的适宜种植密度,设置梯度种植密度试验,分析不同种植密度下,‘铜麦6号’‘长航一号’2个小麦品种的生育时期、群体性状及产量和产量构成因素的表现,结果显示:种植密度对小麦生育时期无明显影响;随种植密度增加,小麦成穗率先增后降,330×104株/hm2时成穗率最高;4个种植密度对小麦穗数影响明显,对千粒重无显著影响;‘铜麦6号’在种植密度为330×104株/hm2时产量最高,达4389.50 kg/hm2,‘长航一号’在种植密度为390×104株/hm2时产量最高,达4531.20 kg/hm2,但270×104~390×104株/hm2种植密度下,各小麦品种间产量均没有达到显著差异(P>0.05)。在本试验条件下,结合生育时期、成穗率、产量及产量构成因素表现,揭示330×104株/hm2是2个小麦品种在渭北旱作区最适宜的种植密度。  相似文献   

8.
以大丰30为实验材料,在同一密度下(67500株/ hm2)设置5种不同行距配置(60cm*60cm,50cm*70cm、40cm*80cm、30cm*90cm和20cm*100cm),研究不同行距配置对雌雄穗开花间隔(ASI)、千粒重、穗粒数、总穗数和产量的影响。结果表明,不同行距配置下,产量、千粒重、穗粒数和总穗数的变异系数均在5%以下,ASI的变异系数在4.33%-12.50%。各处理的ASI、穗粒数和产量差异呈极显著水平,但千粒重和总穗数差异不显著。多重比较的结果表明行距配置为40cm*80cm时雌雄穗开花间隔时间较短,穗粒数较多,产量又达到了最高水平,为最佳行距配置。  相似文献   

9.
为研究不同行距配置和密度对小麦群体质量和产量的影响,以冬小麦品种河农822为试验材料,应用裂区设计研究了3种行距配置和4种密度的交互效应。结果表明,行距和密度的互作效应不显著。相同密度下,15 cm等窄行种植的群体总茎数、叶面积指数、干物质积累量和产量基本上最高,20 cm等宽行次之,16.7 cm 16.7 cm 26.7cm三密一稀种植样式最低。4种种植密度下的群体总茎数以高密度最大,随密度降低群体总茎数减少。叶面积指数、干物质积累量和产量以中密度的较高,过大或过小密度的较低。即密度为300万/hm2或420万/hm2基本苗的叶面积指数及干物质积累量>密度为180万/hm2或540万/hm2基本苗。产量水平为300万/hm2基本苗>420万/hm2基本苗>180万/hm2基本苗>540万/hm2基本苗。所以,河农822最佳的行距配置和密度为15 cm等行距×300万/hm2基本苗。  相似文献   

10.
播期和密度对麦茬中粳稻皖稻68生育期和产量形成的影响   总被引:8,自引:0,他引:8  
研究不同播期和移栽密度试条件下皖稻68的生育期和产量形成的变化情况,结果表明,皖稻68生育期天数随播期的推迟而递减,但推迟到6月14日播种仍可正常成熟;移栽密度对生育期无明显影响。不同播期同期栽插的,随播期推迟产量下降,但因秧龄长短的原因,穗数随播期推迟而增加,每穗粒数、结实率和千粒重递减;增加移栽密度有利于增加穗数而增产。本试验条件下皖稻68作为沿淮麦茬稻栽培,育秧移栽的以5月5日和15日播种,移栽密度为30.0万/hm2和40.0万/hm2产量最高,机插秧以5月25日左右播种为宜,直播稻以6月4日至14日为播种适期。  相似文献   

11.
种植密度对夏玉米品种株型及产量性状的影响   总被引:1,自引:0,他引:1  
为了阐述不同玉米品种株型及产量性状对密度响应,以目前生产上广泛种植的6个品种(‘郑单958’、‘先玉335’、‘伟科702’、‘浚单20’、‘金海5号’、‘利民33’)为材料,研究4个种植密度(60000、90000、112500、127500株/hm2)下不同品种株型和产量性状的变化。结果表明:6个品种棒三叶面积及茎粗系数均随着密度增加而减小,但减小幅度在不同品种或不同叶位存在差异。产量构成因素如穗长、穗粗、穗行数、行粒数、穗粒数和千粒重随着密度增加而减小。4个种植密度中,‘金海5号’、‘伟科702’、‘郑单958’在密度为90000株/hm2时产量为最高;其他3个品种随密度增加,产量降低。回归分析发现在10个已知影响玉米产量因素中,穗粒数对产量的直接影响最大,其次为行粒数。  相似文献   

12.
此文采用两因素裂区设计,研究了密度、施氮量对小麦新品种绵麦47的产量效应。结果表明,密度、施氮量以及密氮互作都极显著地影响绵麦47的产量。产量随着密度与施氮量的增加都呈增加趋势。在同一施氮量下,随着密度的增加,有效穗增多,穗粒数减少,千粒重表现出幅度较小的降低趋势;在同一密度下,随着施氮量的增加,有效穗与穗粒数呈增多趋势,千粒重变化不明显。同时通过相对经济效益的分析,得出了相对经济效益较高的密氮组合。最后初步得出绵麦47高产高效的栽培措施为:施纯氮量为150~225 kg/hm2,密度为120~240万基本苗/hm2。  相似文献   

13.
氮肥水平对强筋小麦产量和氮素利用的影响   总被引:1,自引:1,他引:0  
为明确强筋小麦产量与效率相协同的最优施氮量,试验选用‘济麦20’和‘洲元9369’ 2个优质强筋小麦品种为试验材料,设置0、120、180、240、300 kg N/hm 2等5个施氮水平,用烘干法和凯氏定氮法分别测定小麦成熟期干物质量积累和含氮量,用以计算小麦氮素积累及氮素利用相关指标。结果表明,随氮肥投入量的增加,小麦产量呈现先升高后降低的变化趋势,其中‘济麦20’在N180和N240下达最高产量7.28 t/hm 2和7.26 t/hm 2,其较高的产量主要源于相对平衡的产量构成因素以及较高的干物质积累量(平均18.54 t/hm 2);‘洲元9369’在N180下产量最高达7.75 t/hm 2,其较高的产量主要源于较高的单位面积穗数(970.65万/hm 2)、穗粒数(30.83粒)、较高的干物质积累量(20.77 t/hm 2)和收获指数(37.33%)。虽然氮肥偏生产力随着氮肥施用量的增加逐渐下降,但两品种的氮肥回收效率、氮肥农学利用率和氮肥生理利用效率均可在N180条件下达到最高值,其中,‘济麦20’最高值分别为62.67%、5.71 kg/kg、9.11 kg/kg,‘洲元9369’的最高值分别为63.65%、7.33 kg/kg、11.55 kg/kg。综合产量水平和氮素利用相关指标,本区域强筋小麦生产中产量与氮素利用效率相协同的施氮量为180 kg/hm 2。  相似文献   

14.
秸秆还田与氮肥配施对‘周麦22’灌浆速率及产量的影响   总被引:1,自引:1,他引:0  
为了能使玉米秸秆粉碎还田更好地被利用于农业生产,以‘周麦22’为试验材料,研究在玉米秸秆还田与氮肥配施对‘周麦22’灌浆速率及产量的影响。结果表明,灌浆速率总体遵循“慢—快—慢”的变化规律,最大灌浆速率和平均灌浆速率均以秸秆还田+氮肥240 kg/hm2为最大值,秸秆还田+氮肥195 kg/hm2+精制鸡粪1500 kg/hm2次之。‘周麦22’产量、千粒重以及穗数均在秸秆还田+氮肥240 kg/hm2处理下最高,分别为8661.8 kg/hm2、50.2 g、630.9万/hm2,比秸秆还田+氮肥150 kg/hm2分别提高12.6%、12.0%、9.7%;穗粒数最多的则是秸秆还田+氮肥195 kg/hm2+精制鸡粪1500 kg/hm2,为34.8粒/穗,比秸秆还田+氮肥150 kg/hm2增多10.6%。‘周麦22’主要生育期总茎数均以秸秆还田+氮肥240 kg/hm2为最高;成穗率则是秸秆还田+氮肥195 kg/hm2+精制鸡粪1500 kg/hm2为最大值,但与其他处理间无显著差异。这说明秸秆还田与氮肥配施对‘周麦22’灌浆速率及产量有显著的影响,且在秸秆还田+氮肥240 kg/hm2处理下可以实现二者的高效配合。  相似文献   

15.
豫北地区‘郑麦7698’适宜播期播量的研究   总被引:2,自引:0,他引:2  
为了筛选适宜的播期、播量,使良种良法配套,充分发挥‘郑麦7698’在豫北地区的丰产性,研究了‘郑麦7698’在不同播期播量下的产量及产量构成。结果表明:随着播期的延迟,小麦成穗数逐渐减少,穗粒数逐渐增加,播期对千粒重的影响未达显著水平,产量随播期的推迟而逐渐降低。播量越大,小麦的成穗数越高,穗粒数越少,播量对千粒重的影响未达到显著水平,而播量最大的处理(225 kg/hm2)产量最高。‘郑麦7698’产量最高的组合为播种期10月10日,播量225 kg/hm2,而播期为10月10日播量为187.5 kg/hm2的组合次之。总之,‘郑麦7698’在豫北地区的适宜播种期范围为10月5日至10日,相应的播量为225 kg/hm2左右。  相似文献   

16.
不同种植密度对夏玉米品种株型及产量性状的影响   总被引:2,自引:1,他引:1  
为了阐述不同玉米品种株型及产量性状对密度响应,以目前生产上广泛种植的6个品种(‘郑单958’、‘先玉335’、‘伟科702’、‘浚单20’、‘金海5号’、‘利民33’)为材料,研究4个种植密度(60000、90000、112500、127500株/hm2)下不同品种株型和产量性状的变化。结果表明:6个品种棒三叶面积及茎粗系数均随着密度增加而减小,但减小幅度在不同品种或不同叶位存在差异。产量构成因素如穗长、穗粗、穗行数、行粒数、穗粒数和千粒重随着密度增加而减小。4个种植密度中,‘金海5号’、‘伟科702’、‘郑单958’在密度为90000株/hm2时产量为最高;其他3个品种随密度增加,产量降低。回归分析发现在10个已知影响玉米产量因素中,穗粒数对产量的直接影响最大,其次为行粒数。此结果为玉米品种选育和生产上高效栽培提供理论依据。  相似文献   

17.
商麦156是商丘市农科所2015选育出的小麦新品种,为了探究商麦156的适宜种植模式,本试验以当地传统等行距种植为对照,研究宽窄行种植及播量对小麦生长发育及产量的影响。结果表明,随播量增加,植株株高、冠层20cm处PAR值增加,单株次生根、单株分蘖数、植株干重及冠层底部PAR值降低,播量越大,小麦亩穗数越多,穗粒数、千粒重越少,高播量(195kg/hm2)、中播量(150kg/hm2)处理下小麦产量差异不显著,但均显著高于低播量(120kg/hm2)处理;播量相同(150kg/hm2)的条件下,宽窄行处理能降低植株株高,增加植株单株次生根数、分蘖数、干重及冠层底部PAR比重,协调亩穗数、穗粒数、千粒重,增加小麦产量。总之,商麦156适宜在宽窄行条件下种植,适宜播种量为150kg/hm2-195kg/hm2。  相似文献   

18.
旨在筛选出冬小麦较适宜的播期和播量组合,以适应冬前积温不断增加的环境变化。以‘新麦29’作为研究对象,于2016—2017年度在河南省北部辉县市开展二因素裂区田间试验,主区为播期(10月12日、18日和24日),副区为播量(基本苗210万、300万、390万/hm~2),探索不同播期和播量对‘新麦29’的产量及其构成因素的影响。结果显示:10月12日播期的籽粒容重显著低于其他2个播期的籽粒容重,而随着播量不断增加其平均容重亦随之增加;播期对穗数、穗粒数、千粒重3个产量构成因素的影响均显著,但对籽粒产量的影响不显著。播量对产量及穗数、穗粒数2个构成因素的影响均呈现出差异水平显著。不同播期和播量互作效应对小麦籽粒产量与单位面积穗数两者均呈现出差异性显著。最佳播期是10月12日,基本苗300万/hm~2为较适宜的播量;‘新麦29’产量潜力的播期是10月12日—18日,与其对应的适宜播量为基本苗300万~390万/hm~2。  相似文献   

19.
不同种植密度和施氮量对‘泸糯8号’产量的影响   总被引:5,自引:4,他引:1  
为了确定‘泸糯8号’高产高效栽培适应的种植密度和施肥量,运用群体生理学的方法,采用两因素四水平完全组合试验设计,研究了不同种植密度和施肥量对杂交糯高粱‘泸糯8号’产量的影响。结果表明,密度低于11.25万株/hm2时,杂交糯高粱的产量随密度的增加而增加;超过11.25万株/hm2时,杂交糯高粱的产量又随密度的增加而减少。当施氮量低于纯氮187.5 kg/hm2时,杂交糯高粱的产量随施氮量的增加而显著增加,当施氮量高于187.5 kg/hm2时,杂交糯高粱的产量随施氮量的增加无显著增加。随着密度的增加,杂交糯高粱的穗粒数、千粒重、倒5叶叶面积、茎粗均显著减少(小),株高则显著变高。随着施氮量的增加,杂交糯高粱的穗粒数、倒5叶叶面积、茎粗均随之增加而增加,千粒重则是先增加后减小。当施氮量超过纯氮150 kg/hm2时,株高随施氮量的增加而降低。由此得出,处理A3B3即种植密度为11.25万株/hm2,施肥量为纯氮187.5 kg/hm2最为适宜。  相似文献   

20.
不同种植模式对高粱晋糯3号产量和养分吸收的影响   总被引:1,自引:0,他引:1  
为了明确高粱新品种晋糯3号的最佳种植模式,研究了不同行距及密度对晋糯3号产量和养分吸收的影响。试验共设3个行距:30、50和60cm,每个行距处理设4个密度:4.5万、7.5万、10.5万和13.5万株/hm 2。结果表明,行距50cm时,晋糯3号单株叶面积、叶面积指数(LAI)、单穗粒数及产量最高,其次为行距60cm,行距30cm处理最低;相同行距时,密度为13.5万株/hm 2时产量较高,但与密度10.5万株/hm 2的产量没有显著差异。密度为4.5万株/hm 2时晋糯3号单穗粒数是密度为10.5万和13.5万株/hm 2时的1.8~2.0倍,产量为同一行距最高产量的72%~88%,这表明晋糯3号具有较强的群体调节能力。行距50cm结合密度4.5万株/hm 2促进了开花后植物对氮的吸收,开花后植株较强的氮素吸收能力是低密度产量提高的主要因素之一。行距50和60cm密度为10.5万和13.5万株/hm 2时产量较高且没有显著差异,但行距50cm有利于氮磷钾养分的吸收,为此晋糯3号的最佳种植模式为行距50cm结合密度10.5万~13.5万株/hm 2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号