首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Environmental changes and management practices which alter soil properties may affect the capacity of soils to sorb trace metals, such as copper (Cu), zinc (Zn), and cadmium (Cd), and thus influence the bioavailability and leach ability of the metals. Two agricultural soils were treated to partially oxidize organic matter and to decrease soil pH for evaluating the effects of acidification and organic matter oxidation on trace metal sorption onto soils. For the one soil with a pH value of 6.74 and organic carbon (C) content of 46.9 g‐kg‐1, loss of 11% of its organic matter reduced by 97, 72, and 62% the original sorption capacity for Cu, Zn, and Cd, respectively, while the corresponding values caused by acidifying the soil one pH‐unit were 32, 16, and 29%. For the another soil with a pH of 4.69 and organic C content of 16.3 g‐kg‐1, a decrease in pH by one unit resulted in a loss of 43, 21, and 52% of the sorption capacity for Cu, Zn, and Cd, respectively.  相似文献   

2.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

3.
Ageing reactions can reduce trace metal solubility and can explain natural attenuation of contaminated soils. We modelled ageing reactions in soil with an assemblage model that considers slow reactions in Fe‐oxyhydroxides and reversible sorption on organic matter and clay minerals. Metal adsorption kinetics on Fe‐oxyhydroxides was obtained from data with synthetic oxyhydroxides. Metal solubility and isotopic exchangeability data were obtained from 28 soils amended with Ni, Zn, Cu and Cd metal salts and monitored for 850 days. The assemblage model was constructed in WHAM 6.0 and used soil properties and dissolved organic matter as input data. The model was first validated to predict dissolved metal concentrations, based on the concentration of isotopic exchangeable metals. The model overestimated metal solubility without parameter adjustment by mean factors of 4–7, and successful fits were obtained by increasing the specific surface area of Fe‐oxyhydroxides from measured values of synthetic systems to a value of 600 m2 g?1 recommended by other authors. The effect of ageing on the isotopic exchangeable metal fraction was subsequently modelled starting from the predicted fraction of metals present on Fe‐oxyhydroxides immediately after soil spiking. The observed isotopic exchangeable metal fractions of Ni, Zn and Cd agreed reasonably well with predicted values. The model predicts that ageing reactions are more pronounced at higher pH because metal sorption is increasingly directed to oxyhydroxide surfaces with increasing soil pH. Modelling fixation of Cu requires more information on fixation of that metal in organic matter.  相似文献   

4.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

5.
Abstract

The accumulation of heavy metals in tea leaves is of concern because of its impact on tea quality. This study characterized long‐term changes of soil properties and heavy‐metal fractions in tea gardens and their effect on the uptake of metals from soils by the plants. Soil and tea leaf samples were collected from five plantations with a history of 2–70 years in Jinghua, Zhejiang Province, southeast China. The six chemical fractions (water‐soluble, exchangeable, carbonate‐bound, organic‐matterbound, oxide‐bound, and residual forms) of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and zinc (Zn) in the soils were characterized. Dissolved organic‐matter accumulation in the soils and effects of low‐molecular‐weight organic acids on solubility of soil heavy metals were also tested. Long‐term tea plantation use resulted in accumulation of dissolved organic matter, decrease of soil pH, and elevation of water‐soluble and exchangeable metal fractions, thereby increasing metal contents in leaves. The influence was more significant when soil pH was less than 4.4. The results indicated that both acidification and accumulation of dissolved organic matter induced by tea plantations were also important causes of increased accumulation of the metals in the tea leaves. This was particularly true for the soils polluted with low concentration of heavy metals, because availability of the metals in these soils was mainly controlled by pH and dissolved organic matter.  相似文献   

6.
The present work investigates the impact of site management on the retention of organic compounds in soil in a long‐term field experiment and focuses on the role of particle size fractions. Specifically, we studied the influence of long‐term farming practices on the soil’s ability to adsorb five hydrophobic organic compounds (HOCs), specifically naphthalene derivatives (naphthalene, 1‐naphthol, 1‐naphthylamine, 1‐hydroxy‐2‐naphthoic acid, 1,4‐naphthoquinone). We examined the sorption on soil and its particle‐size fractions with varying amounts and origins of organic matter in soil amended with farmyard manure and mineral fertilizers over more than 40 years. The soil organic matter had no significant impact on the sorption behaviour of the HOCs. Adsorption on the clay and silt fraction provided a deeper insight into the mechanisms and indicates a strong affinity with adsorption sites of the mineral phase. Naphthalene derivatives with hydrogen atoms in their functional groups adsorbed more strongly than other compounds on to soils containing smaller amounts of organic carbon. Desorption experiments with five organic extractants showed partitioning models for HOCs between extractant and soil surface. Only in experiments with the most polar extractant, formamide, did we observe an influence of the compound’s functional groups on the desorption mechanisms. Column experiments with a HPLC‐system and on‐line UV‐detection proved to be a satisfactory alternative to batch experiments. This approach should enable investigations of adsorption with larger numbers of compounds and soils at the same time.  相似文献   

7.
Chemical extraction, multi‐element stable isotopic dilution (ID) and multi‐surface modelling were used to investigate the lability of cadmium (Cd) and copper (Cu) in nine types of soil with different properties and contaminated or not with Cd and Cu. The chemical extraction and ID analyses both showed that Cd was more labile than Cu in all the soil types studied. From the ID results, 32.8–93.3% of total Cd and 14.7–71.8% of total Cu were isotopically exchangeable after 3 days of equilibration. A single extraction in 0.43 m HNO3 gave similar results to the 3‐day ID assay for Cu in most of the soils and for Cd in the non‐calcareous soils. However, an eight‐step selective sequential extraction (SSE) procedure gave different results from the ID assay for both metals. Predictions of the multi‐surface model for the amounts of Cd and Cu adsorbed, based on measured metal ion activities in the soil solution and the concentrations of reactive surfaces in the soil, agreed with the ID results. The model predicted that soil organic matter was the predominant sorbent for Cd and Cu in the soils and that manganese oxide was the least important sorbent. The contributions of iron oxides to sorption were predicted to be small except in soil with a high pH and little organic matter. The predicted sorption on different soil components did not match SSE measurements.  相似文献   

8.
This work assesses relationships between characteristic aggregate microstructures related to biological activity in soils under different long‐term land use and the distribution and extractability of metal pollutants. We selected two neighbouring soils contaminated with comparable metal loads by past atmospheric deposition. Currently, these soils contain similar stocks, but different distributions of zinc (Zn) and lead (Pb) concentrations with depth. One century of continuous land use as permanent pasture (PP) and conventional arable (CA) land, has led to the development of two soils with different macro‐ and micro‐morphological characteristics. We studied distributions of organic matter, characteristic micro‐structures and earthworm‐worked soil by optical microscopy in thin sections from A, B and C horizons. Concentrations and amounts of total and EDTA‐extractable Zn and Pb were determined on bulk samples from soil horizons and on size‐fractions obtained by physical fractionation in water. Large amounts of Zn and Pb were found in 2–20‐µm fractions, ascribed to stable organo‐mineral micro‐aggregates influenced by root and microbial activity, present in both soils. Unimodal distribution patterns of Zn, Pb and organic C in size‐fractions were found in horizons of the CA soil. In contrast, bimodal patterns were observed in the PP soil, because large amounts of Zn and Pb were also demonstrated in stable larger micro‐aggregates (50–100‐µm fractions). Such differing distribution patterns characterized all those horizons markedly influenced by earthworm activity. Larger earthworm activity coincided with larger metal EDTA‐extractability, particularly of Pb. Hence, land use‐related biological activity leads to specific soil microstructures affecting metal distribution and extractability, both in surface and subsurface horizons.  相似文献   

9.
为探明不同耕作方式下稻-油轮作系统中土壤重金属有效性的变化规律,测定了21年长期定位试验稻-油轮作系统中土壤及其剖面的主要理化性质和重金属有效含量,分析了二者间的关系。结果表明,与翻耕相比,垄作免耕使各土层土壤有机质含量和阳离子交换量显著提高,并具有明显的表层聚集现象,土壤pH值明显降低。耕层土壤Cd、Cu和Zn有效量以垄作免耕处理最高,土壤Pb的有效量则以常规平作处理最高,不同耕作方式下,土壤有效Cd和Pb出现表聚现象,但有效Zn和Cu随土壤深度的变化无明显规律。相关分析表明,土壤有机质含量与土壤Cd、Zn有效量呈极显著正相关关系,与土壤Pb、Cu有效量呈显著正相关,土壤pH值与土壤Pb有效量呈显著正相关,而土壤阳离子交换量与4种重金属有效量间的相关性不显著。由此推测,耕作方式主要是通过影响土壤有机质含量而影响重金属元素的有效性,垄作免耕较翻耕在改良土壤理化性质上有较大优势,却使0-20cm和20-40cm土层重金属有效量显著增加,表现出明显的表层富集趋势。  相似文献   

10.
The aim of the study was to determine whether the application of superphosphate fertiliser to soils contaminated with mine wastes can inhibit metal and metalloid mobility (Cu, Pb, Zn, Cd, Fe, Mn, As, Sb) in the long term. Contaminated soils contained sulfide- and sulfate-rich waste materials from the Broken Hill and Mt Isa mining centres. Results of long-term (10 months) column experiments demonstrate that fertiliser amendment had highly variable effects on the degree of metal and metalloid mobilisation and capture. Rapid release of metals from a sulfate-rich soil showed that phosphate amendment was ineffective in stabilising highly soluble metal-bearing phases. In a sulfide-rich soil with abundant organic matter, complexing of metals with soluble organic acids led to pronounced metal (mainly Cd, Cu and Zn) release from fertiliser-amended soils. The abundance of pyrite, as well as the addition of fertiliser, caused persistent acid production over time, which prevented the formation of insoluble metal phosphate phases and instead fostered an increased mobility of both metals and metalloids (As, Cd, Cu, Sb, Zn). By contrast, fertiliser application to a sulfide-rich soil with low organic carbon content and a sufficient acid buffering capacity to maintain near-neutral pH resulted in the immobilisation of Pb in the form of newly precipitated Pb phosphate phases. Thus, phosphate stabilisation was ineffective in suppressing metal and metalloid mobility from soils that were rich in organic matter, contained abundant pyrite and had a low acid buffering capacity. Phosphate stabilisation appears to be more effective for the in situ treatment of sulfide-rich soils that are distinctly enriched in Pb and contain insignificant concentrations of organic matter and other metals and metalloids.  相似文献   

11.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

12.
Abstract

The accumulation of heavy metals in plants is related to concentrations andchemical fractions of the metals in soils. Understanding chemical fractions and availabilities of the metals in soils is necessary for management of the soils. In this study, the concentrations of copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn) in tea leaves were compared with the total and extractable contents of these heavy metals in 32 surface soil samples collected from different tea plantations in Zhejiang province, China. The five chemical fractions (exchangeable, carbonate‐bound, organic matter‐bound, oxides‐bound, and residual forms) of the metals in the soils were characterized. Five different extraction methods were also used to extract soil labile metals. Total heavy metal contents of the soils ranged from 17.0 to 84.0 mgCukg?1, 0.03 to 1.09 mg Cd kg?1, 3.43 to 31.2 mg Pb kg?1, and 31.0 to 132.0 mg Zn kg?1. The concentrations of exchangeable and carbonate‐bound fractions of the metals depended mainly on the pH, and those of organic matter‐bound, oxides‐bound, and residual forms of the metals were clearly controlled by their total concentrations in the soils. Extractable fractions may be preferable to total metal content as a predictor of bioconcentrations of the metals in both old and mature tea leaves. The metals in the tea leaves appeared to be mostly from the exchangeable fractions. The amount of available metals extracted by 0.01 mol L?1 CaCl2, NH4OAc, and DTPA‐TEA is appropriate extractants for the prediction of metals uptake into tea plants. The results indicate that long‐term plantation of tea can cause sol acidification and elevated concentrations of bioavailable heavy metals in the soil and, hence, aggravate the risk of heavy metals to tea plants.  相似文献   

13.

Purpose  

We investigated the chemical fractions of Zn, Cd and Cu in soils collected from positions at different distances from a copper smelter and studied the relationships between distribution patterns of Zn, Cd and Cu, fractions and soil organic carbon (SOC), especially “black carbon” (BC), in contaminated soils. The relationships between soil particle size and concentrations of Zn and Cd in contaminated soil were also examined.  相似文献   

14.
受土壤类型和金属负荷量影响的重金属形态分布   总被引:22,自引:0,他引:22  
Two series of soil subsamples, by spiking copper(Cu),lead(Pb),zinc(Zn)and cadmium(Cd)in an orthogonal design,were prepared using red soil and brown soil,respectively.The results indicated that heavy metal fractions in these soil subsamples depended not only on soil types,but also on metal loading quantity as well as on interactions among metals in soil.Lead and Cu in red soil appeared mostly in weakly specifically adsorbed(WSA),Fe and Mn oxides bound(OX),and residual(RES)fractions.Zine cxisted in all fractions except organic bound one,and Cd was major in water soluble plus exchangeable(SE)one.Different from the results of red soil,Pb and Cu was present in brown soil in all fractions except organic one,but over 75% of Zn and 90% of Cd existed only in SE fraction.Meanwhile,SE fraction for any metal in red soil was lower than that in brown soil and WSA and OX fractions were higher.It is in agreernent with low cation exchange capacity and large amounts of metal oxides included in red soil.Metal fractions in soil,especially for water soluble plus exchangeable one ,were obviously influenced by other coexisting metals.The SE fraction of heavy metals increased with increasing loading amounts of metals in red soil but not obviously in brown soil,which suggest that metal availability be easily affected by their total amounts spiked in red soil.In addition,more metals in red soil were extracted with 0.20 mol L^-1 NH4Cl(pH5.40)than that with 1.0 mol L^-1 Mg(NO3)2(pH7.0),but the reverse happened in brown soil,implicating significantly different mechanisms of metal desorption from red soil and brown soil.  相似文献   

15.
Assessing the accumulation and transport of trace metals in soils and the associated toxicological risks on a national scale requires generally applicable sorption equations. Therefore Freundlich equations were derived for Cd, Zn and Cu using multiple linear regression on batch sorption data from the literature with a wide variety of soil and experimental characteristics, and metal concentrations ranging over five orders of magnitude. Equations were derived based on both total dissolved metal concentrations and free metal activities in solution. Free metal activities were calculated from total metal concentrations taking into account ionic activity, and inorganic (all metals) and organic complexation (Cu only). Cadmium and Zn were present in solution predominantly as free ions, while Cu was present as organic complexes. Since actual dissolved organic carbon (DOC) concentrations were not available they were estimated using an empirical field relation between DOC and organic matter content. The logarithmic transformation of the Freundlich constant for Cd was regressed on the logarithmic transformations of cation exchange capacity (CEC) (H+) and dissolved Ca, and for Zn with CEC and (H+). For Cu the log–log regression model of the Freundlich constant included the solid:solution ratio of the batch to account for dilution of DOC in the batch as compared with the field. The explained variance for the fitted Freundlich equations was 79% for Cd, 65% for Cu and 83% for Zn, using log-transformed adsorbed concentrations and soil solution activities. The Freundlich adsorption models underestimated metal contents determined from 1 m HNO3 digestion on field samples, up to a factor of 6 (Cd and Cu) or 10 (Zn).  相似文献   

16.
Solubility control of Cu, Zn, Cd and Pb in contaminated soils   总被引:21,自引:0,他引:21  
We developed a semiempirical equation from metal complextion theory which relates the metal activity of soil solutions to the soil's pH, organic matter content (OM) and total metal content (MT). The equation has the general form: where pM is the negative logarithm (to base 10) of the metal activity, and a, b and c are constants. The equation successfully predicted free Cu2+ activity in soils with a wide range of properties, including soils previously treated with sewage sludge. The significant correlation of pCu to these measured soil properties in long-contaminated soils suggests that copper activity is controlled by adsorption on organic matter under steady state conditions. An attempt was made from separate published data to correlate total soluble Cu, Zn, Cd and Pb in soils to soil pH, organic matter content and total metal content. For Cu, the total Cu content of the soil was most highly correlated with total soluble Cu. Similarly, total soluble Zn and Cd were correlated with total metal content, but were more strongly related to soil pH than was soluble Cu. Smaller metal solubility in response to higher soil pH was most marked for Zn and Cd, metals that tend not to complex strongly with soluble organics. The organic matter content was often, but not always, a statistically significant variable in predicting metal solubility from soil properties. The solubility of Pb was less satisfactorily predicted from measured soil properties than solubility of the other metals. It seems that for Cu at least, solid organic matter limits free metal activity, whilst dissolved organic matter promotes metal solubility, in soils well-aged with respect to the metal pollutant. Although total metal content alone is not generally a good predictor of metal solubility or activity, it assumes great importance when comparing metal solubility in soils having similar pH and organic matter content.  相似文献   

17.
Electron microprobe studies on soil samples with varying heavy metal contamination. 2. Contents of heavy metals and other elements in aggregations of humic substances, litter residues and charcoal particles EMA point analysis show that the organic matter constituents of heavy metal contaminated soils are highly enriched with heavy metals. The maximal trace element accumulation were for Cu up to 13,000 mg/kg, for Zn up to 48,000 mg/kg, for Cd up to 2,100 mg/kg and for Pb up to 193,000 mg/kg. The affinity for the accumulation of the different heavy metals in aggregations of humic substances can be described by the sequence Cu > Pb ? Cd > Zn ? Ni > Co. In very strongly acidified humic top soil horizons the Pb and Cd accumulation in the organic matter constituents is in competition with the accumulation in Fe and Mn oxides. The heavy metal contents (especially of Cu) of the organic matter are often correlated with the content of organically bound calcium. The EMA results also show that high heavy metal amounts occur in combination with Ca-accumulations in the epidermis and the outer bark parenchym of decayed roots. EMA point analysis of the interior of fungus sclerotias show that sclerotias can contain high amounts of heavy metals, in particular lead (up to 49,700 mg Pb/kg). From statistical results of EMA point analysis follows that lead and other heavy metals attached to humic substances are not only bound as metal organic complexes but also as organic metal phosphate complexes. Also charcoal particles of polluted soils contain high amounts of heay metals. The accumulation affinity is quite similar to that of humic substances.  相似文献   

18.
Changes in farming practices over long times can affect the sorption behaviour of MCPA ((4‐chloro‐2‐methylphenoxy)acetic acid). We studied the adsorption–desorption mechanisms of MCPA on soil with varied amounts and origins of soil organic matter obtained from a long‐term field experiment with various organic amendments. The origin of the soil organic matter seems to be crucial for the sorption behaviour of MCPA. Samples of soil amended with sewage sludge sorbed MCPA more strongly than the soil under any other treatment. Peat‐amended soil was second followed by soil receiving animal manure, green manure, mineral fertilizer without N and the fallowed soil. Both the carbon content and the origin of the organic matter are important for the sorption. A decrease of carbon content of a soil does not necessarily imply a reduction of sorption capacity for polar organic acids such as MCPA. Nevertheless, our adsorption–desorption experiments suggest that with decreasing carbon content the role of mineral sorption mechanisms could become more pronounced. Our results showed that interactions of soil organic matter and soil minerals distinctly influence adsorption properties for MCPA.  相似文献   

19.
Abstract

Copper (Cu) is bound strongly to organic matter, oxides of iron (Fe) and manganese (Mn), and clay minerals in soils. To investigate the relative contribution of different soil components in the sorption of Cu, sorption was measured after the removal of various other soil components; organic matter and aluminum (Al) and Fe oxides are important in Cu adsorption. Both adsorption and desorption of Cu at various pH values were also measured by using diverse pasture soils. The differences in the sorption of Cu between the soils are attributed to the differences in the chemical characteristics of the soils. Copper sorption, as measured by the Freundlich equation sorption constants [potassium (K) and nitrogen (N)], was strongly correlated with soil properties, such as silt content, organic carbon, and soil pH. The relative importance of organic matter and oxides on Cu adsorption decreased and increased, respectively, with increasing solution Cu concentrations. In all soils, Cu sorption increased with increasing pH, but the solution Cu concentration decreased with increasing soil pH. The cumulative amounts of native and added soil Cu desorbed from two contrasting soils (Manawatu and Ngamoka) during desorption periods showed that the differences in the desorbability of Cu were a result of differences in the physico‐chemical properties of the soil matrix. This finding suggests that soil organic matter complexes of Cu added through fertilizer, resulted in decreased desorption. The proportions of added Cu desorbed during 10 desorption periods were low, ranging from 2.5% in the 24‐h to 6% in the 2‐h desorption periods. The desorption of Cu decreased with increasing soil pH. The irreversible retention of Cu might be the result of complex formation with Cu at high pH.  相似文献   

20.
Abstract

Laboratory experiments were carried out to evaluate lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) sorption‐desorption by three soils of contrasting characteristics. Talamanca (silt loam, montmorillonite, Calcic Haploxeralfs), Mazowe (clay, kaolinite, Rhodic Kandiustalf), and Realejos (sandy silt loam, allophane, Typic Hapludands). A second objective was to study the effect of nitriloacetic acid (NTA) on the sorption process. The Talamanca soil, which had a native pH of 6.4 and presented the highest effective cation exchange capacity (ECEC), sorbed more of each of the metal tested than did the other two soils. When the other two soils were compared metal sorption was also related to pH and ECEC. The very low sorption capacity showed by Realejos may be attributed to the low net surface negative charge density of this soil, arising from its allophanic nature. A common feature of the three soils was the relative strong sorption of both Pb and Cu relative to Cd and Zn with Pb showing the highest sorption levels. The selectivity sequences of metals retention were Pb>Cu>Zn>Cd for Talamanca soil, Pb>Cu>Zn≈Cd for Mazowe, and Pb>Cu>Cd>Zn for Realejos. Metal desorption values were low. The order of metal desorption (Cd≈Zn>Cu>Pb) was the same for the three soils studied. Quantitative differences observed in the extractability of the sorbed metals between the soils (Realejos>Mazowe>Talamanca) indicated that soil properties which enhanced metal sorption contributed at the same time to slow down the backward reaction. The addition of NTA to the soil suspension significantly depressed metal sorption by the three soils investigated. Compared with the free ligand system Pb, Cu, Zn, and Cd sorption in the presence of NTA decreased roughly 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号