首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对采用选择性控制木聚糖酶水解条件制备低聚木糖进行了研究,并同时探讨了以两种木聚糖形式——干粉和湿浆为原料造成的酶解结果差异及其原因。结果表明,目前较适宜的低聚木糖制备工艺为:以木聚糖湿浆为底物,底物质量浓度20~40g/L,酶用量1%(体积分数,下同),pH值4、8,温度50℃,酶解时间4h。造成干粉与湿浆酶解制备低聚糖结果差异的原因,可能是由于这两种底物自身结构特性的差异导致了底物可及度,以及酶与底物吸附作用的不同。结果显示当以干粉为底物,酶用量10%,酶解时间12h,低聚木糖得率最高可达40%(质量分数)左右,而以湿浆为底物,达到同样低聚糖得率的酶用量和酶解时间分别仅需1%和4h。  相似文献   

2.
内切木聚糖酶的选择性纯化及酶解制备低聚木糖的研究   总被引:5,自引:3,他引:2  
研究了超滤分离除去里氏木霉木聚糖酶中的外切-β-木糖苷酶,以及酶解制备低聚木糖。研究结果表明:用超滤的方法能完全除去外切-β-木糖苷酶,透过液经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)鉴定为单带,酶解产物全部是低聚木糖,当酶解时间从2 h延长到10 h时,低聚木糖的得率从26.83%增加到54.22%;而用粗木聚糖酶酶解制备低聚木糖时,当酶解时间从2 h延长到10 h时,低聚木糖得率从17.97%下降到11.12%。因此,采用该技术可以大幅度增加总糖中低聚木糖所占的比例,显著提高木聚糖原料的有效利用率。  相似文献   

3.
对采用选择性控制木聚糖酶水解条件制备低聚木糖进行了研究,并同时探讨了以两种木聚糖形式--干粉和湿浆为原料造成的酶解结果差异及其原因.结果表明,目前较适宜的低聚木糖制备工艺为以木聚糖湿浆为底物,底物质量浓度20~40g/L,酶用量1%(体积分数,下同),pH值4.8,温度50℃,酶解时间4 h.造成干粉与湿浆酶解制备低聚糖结果差异的原因,可能是由于这两种底物自身结构特性的差异导致了底物可及度,以及酶与底物吸附作用的不同.结果显示当以干粉为底物,酶用量10%,酶解时间12 h,低聚木糖得率最高可达40%(质量分数)左右,而以湿浆为底物,达到同样低聚糖得率的酶用量和酶解时间分别仅需1%和4 h.  相似文献   

4.
木聚糖酶水解制取低聚木糖的研究   总被引:19,自引:0,他引:19  
比较了木聚糖酶和纤维素酶水解木聚糖制备低聚木糖的效果,并在10L酶解罐中研究了搅拌速率和酶解时间等因素对木聚糖酶水解的影响。优化了酶解工艺条件,当木聚糖质量浓度为30g/L,木聚糖酶体积用量为1%,搅拌速率180r/min时,酶解2h低聚糖得率可达35.2%。总糖得率为41.9%。产品酶解液中25.9%固形物是聚合度2-5的低聚木糖。  相似文献   

5.
研究了重组木聚糖酶C0602生产低聚木糖的制备工艺,考察了不同类型底物、底物浓度和酶用量对酶解效率和低聚木糖产率的影响.实验结果表明,低聚木糖生产原料以抽提木聚糖为宜.桦木木聚糖质量浓度30g/L,重组木聚糖酶用量20 IU/g条件下水解4 h,酶解率可达56.05%,低聚木糖产率(C2~C6)为29.76%,产品平均...  相似文献   

6.
分别研究了粗木聚糖酶和纯化的木聚糖酶在超滤膜反应器(UMR)和常规反应器(CSBR)中的酶解特性。粗木聚糖酶或纯木聚糖酶在UMR中酶解木聚糖时,反应进行了525 m in时所得产品中低聚木糖各组分的质量分数(木二糖~木五糖)均在20%左右,木糖质量分数约为9.5%。在UMR中粗木聚糖酶降解木聚糖时的低聚木糖得率、低聚木糖占总糖的比例和低聚木糖生产能力比纯木聚糖酶在CSBR中分别高19.1%、14.8%和13.5%;而木糖的得率却低55.2%。粗木聚糖酶在UMR中酶解木聚糖时,所得低聚木糖产品中木二糖~木五糖组分含量基本相等;纯木聚糖酶在CSBR中酶解木聚糖时,所得低聚木糖产品中木二糖含量较高。同纯木聚糖酶在CSBR中酶解特性相比,粗木聚糖酶在UMR中酶解木聚糖可以制得高质量低聚木糖。  相似文献   

7.
纳米木聚糖处理对木材防腐性能的影响   总被引:2,自引:0,他引:2  
以玉米芯为原料,利用正交试验优化提取温度、碱浓度、固液比等制备木聚糖的工艺参数。以制备的木聚糖为研究对象,通过改进工艺,制备粒径较小、分子量较低的纳米木聚糖,并以其为防腐剂处理杨木试样,结果表明:木聚糖提取率影响因素的顺序为:提取温度碱浓度固液比,理想工艺参数为提取温度70℃,碱浓度10%,固液比为1∶7,最佳提取率为42.647%;纳米木聚糖的粒径随温度的上升而减小,在60℃条件下,得到纳米级木聚糖的粒径最小,为45.99 nm;试件的载药量随着纳米木聚糖浓度增加,呈现上升趋势;当纳米级木聚糖浓度为10%时,杨木质量损失率在7.63%左右,属于强耐腐级别。  相似文献   

8.
从稻壳中提取木聚糖的研究   总被引:1,自引:0,他引:1  
以稻壳为原料,采用制备综纤维素再碱提取的方法,分析了不同碱溶液浓度、温度、固液比和时间对稻壳半纤维素中多戊糖得率的影响。实验结果表明,稻壳中多戊糖含量为19.9%,是较好的木聚糖资源。碱提取稻壳中木聚糖的方法为:预处理:80℃水浸泡3h:碱提取条件:碱质量分数10%,固液比(g:mL)1:10,提取时间3h,提取温度80℃。木聚糖提取率达原料中木聚糖总量的67.50%以上。  相似文献   

9.
为充分利用杨树资源,以杨木加工废弃物杨木屑为原料,研究碱法提取木聚糖的工艺条件,并采取酶法制备低聚木糖。以质量分数为1%的稀硫酸预处理可以有效提高杨木屑木聚糖的得率,较对照组提高了2倍。对比3种碱液(NaOH、KOH和NaHCO_3)提取杨木屑木聚糖的得率,以NaOH提取的木聚糖得率最大。通过单因素和正交试验优化NaOH提取杨木屑木聚糖的条件,结果显示碱液质量分数10%,固液比1∶10(g∶mL),温度120℃下提取3 h所得的木聚糖得率可达到20.7%,且四因素对提取得率的影响显著程度依次为提取温度碱液质量分数提取时间固液比。碱法提取杨木屑木聚糖酸水解后产物由88.69%D-木糖、4.76%纤维二糖和6.62%葡萄糖组成且不含有阿拉伯糖,说明碱法提取的杨木屑木聚糖支链上主要连有木糖。以碱法提取杨木屑木聚糖为底物,优化了来源于嗜热菌Dictyoglomus thermophilum的重组木聚糖酶Xyn B-DT的酶解适宜条件:在温度70℃,pH 6.0,酶用量3.00 U/m L,反应时间12 h后,杨木屑木聚糖水解产物中以木二糖和木三糖为主,并含有少量木四糖,降解率达86.2%。研究结果为杨木屑木聚糖的高值化利用奠定了基础。  相似文献   

10.
高温预处理对木聚糖酶水解制备低聚木糖的促进作用   总被引:1,自引:0,他引:1  
采用160~180℃的高温对木聚糖酶解残渣中残余木聚糖进行预处理,并将预处理液酶水解。最优反应条件为180℃预处理30 m in,残余木聚糖的42.54%被有效降解,上清液中低聚木糖(XOS)的含量占上清液总糖的32.13%。上清液经木聚糖酶酶解后,低聚木糖的含量可达到上清液总糖的84.93%。  相似文献   

11.
从稻壳中提取木聚糖的研究   总被引:1,自引:0,他引:1  
以稻壳为原料,采用制备综纤维素再碱提取的方法,分析了不同碱溶液浓度、温度、固液比和时间对稻壳半纤维素中多戊糖得率的影响.实验结果表明,稻壳中多戊糖含量为19.9%,是较好的木聚糖资源.碱提取稻壳中木聚糖的方法为预处理80℃水浸泡3 h;碱提取条件碱质量分数10%,固液比(gmL)l10,提取时间3 h,提取温度80℃.木聚糖提取率达原料中木聚糖总量的67.50%以上.  相似文献   

12.
研究了链霉菌Z18中一种低分子质量木聚糖酶(XynA)的纯化和性质.粗酶液经过20%~50%硫酸铵沉淀和S-300凝胶过滤两步纯化得到电泳纯的XynA,分子质量为22ku,最适pH值为7.0,pH值稳定范围在5.0~8.0之间;最适温度为60℃,稳定温度为50℃.XynA对不同木聚糖表现出较高的活力,对其它所试底物无活性.XynA水解桦木木聚糖的主要产物为木二糖和木三糖,无木糖生成,说明它适合应用于低聚木糖的生产.  相似文献   

13.
以酶解渣为碳源制备木聚糖酶的研究   总被引:3,自引:6,他引:3  
以里氏木霉(Tichoderma reesei)Rut C-30为产酶菌,低聚木糖制备过程中酶解渣为碳源可透导产生含低纤维素酶活(0.106IU/mL)的木聚糖酶(154.67IU/mL),两种酶活的比值达1459,与粗木聚糖为碳源产木聚糖酶相比,木聚糖酶活提高了1.67倍,而纤维素酶活没有增加。此酶在50℃条件下酶解粗木聚糖和酶解渣时,pH值5时酶解效率最高,酶解产物通过HPLC分析,主要是木糖。该酶系的组成主要是外切-β-木糖苷酶。  相似文献   

14.
木聚糖酶解反应与膜分离技术研究   总被引:2,自引:1,他引:2  
过程耦合是应用技术领域研究的热点之一 ,膜及膜分离技术的开发促进了过程耦合技术的发展。如膜超滤、膜萃取、膜蒸馏、渗透蒸发。在超滤膜反应器中木聚糖酶解制备低聚木糖的条件 :酶体积用量1 0 % ,木聚糖质量浓度 3 0 .0 g/L ,稀释率 1h-1,pH值 5 .0 ,反应温度 48℃ ,酶解时间 1 3 5min。在该条件下 ,低聚木糖得率、木糖得率、低聚木糖生产能力及低聚木糖与总糖之比分别为 2 8.5 % ,4.1 % ,3 .80g/ (L·h)和0 .87,并比较了分批加料、浓缩酶、常规反应器中酶解反应效果 ,浓缩木聚糖酶酶解结果表明 :木糖得率很低(0 .2 % ) ,低聚木糖得率为 3 5 .9%。  相似文献   

15.
江苏省科技厅于2006年2月24日对南京林业大学、江苏省饲料站和江苏康维生物有限公司完成的“新型无公害饲料添加剂低聚木糖的研制及其产业化开发”项目组织进行了鉴定。由南京林业大学余世袁教授主持的这个项目是利用我国丰富的富含木聚糖的农林废弃物植物纤维为原料,采用现代生物技术,解决了定向产酶、定向酶降解、酶分级处理等关键技术,制备适合于人体和动物使用的低聚木糖高价值产品。该项目  相似文献   

16.
科技信息     
●“农林废弃物生物降解制备低聚木糖技术”通过鉴定2 0 0 3年 9月 2 0日 ,由南京林业大学承担的国家发展计划委员会下达的“农林废弃物生物转化与利用技术”项目中的“农林废弃物生物降解制备低聚木糖技术” ,在南京通过了由国家林业局科技司组织的专家鉴定。该项目在以下几方面有创新 :(1)以适用于食品制备的里氏木霉为产酶菌株 ,通过定向产酶条件的调控 ,制备高活力的木聚糖酶 ;(2 )采用现代分离技术对木聚糖酶进行分级处理 ,选择合适组分用于木聚糖的酶降解 ,大幅度提高了低聚木糖的产率 ;(3)通过对木聚糖酶降解的定向控制和分离提纯 ,…  相似文献   

17.
低聚木糖溶液冷冻浓缩时冰晶生长动力学研究   总被引:7,自引:0,他引:7  
研究了低聚木糖溶液冷冻浓缩时搅拌速度、冰晶种量和冷媒温度对冰晶生长动力学的影响。结果表明,随着晶核成熟时间的增加,冰晶生长速度下降,而且,生长时间1 ~3 h,生长速度下降最快。搅拌速度越高、冷媒温度越低,冰晶生长速度越快,而且冰晶生长速度下降得越慢。冰晶种量越大,冰晶生长的初始速度越快;但冰晶种量过高,反而使冰晶生长的速度的降低加快。在低聚木糖初始质量浓度10.3 g/L、初始溶液体积400 mL、搅拌速度500 r/min、冷媒温度为-1.5℃条件下,适宜的冰晶种量为10 g。  相似文献   

18.
为寻求具有耐热性能的木聚糖酶,笔者以嗜热网球菌(Dictyoglomus thermophilum)DSM3960的基因组为模板,克隆得到木聚糖酶基因xyn B-DT,该基因全长1 083 bp,共编码361个氨基酸,蛋白的理论分子量约为40ku。通过NCBI数据库比对发现该基因编码的蛋白质属于糖苷水解酶G11家族。实现大肠杆菌异源表达重组木聚糖酶Xyn B-DT,通过IPTG诱导,酶活达到30.6 U/mL。该重组木聚糖酶的最适温度为85℃,在60~80℃范围内均有较好温度稳定性,在60℃条件下保温2 h,酶活维持在90%以上,在90℃下保温2 h,酶活尚残余约50%;最适pH为6.5,在pH为5.0~7.5范围内保温24 h仍可保留约90%剩余酶活力。该酶以Beechwood木聚糖为底物,米氏常数(K_m)和最大反应速率(V_(max))值分别为5.63 mg/mL和1.572 mmol/(L·min~(-1))。以玉米芯木聚糖为底物,研究XynB-DT水解玉米芯木聚糖的条件及产物,结果显示在温度70℃、pH 6.0条件下酶解12 h,加酶量为400 U/g,最终酶解得率为44.3%,玉米芯木聚糖的水解产物主要以木二糖和木三糖为主,表明该木聚糖酶在低聚木糖制备方面具有较大应用潜能。  相似文献   

19.
以脲醛树脂作为浸渍剂,纳米SiO_2作为改性材料对速生桉木进行改性处理,以纳米SiO_2质量与脲醛树脂浸渍溶液固含量的质量比(W)、高温处理温度(H)和时间(T)作为影响因素,探究浸渍高温热处理改性对速生桉木力学性能的影响。研究结果表明:浸渍高温热处理能够提高桉木的握钉力、抗弯强度和抗弯弹性模量。当W为2%、H为180℃、T为4 h时,浸渍热处理桉木的径面和弦面握钉力达到了理想值;当W为1%、H为160℃、T为4 h时,浸渍热处理桉木的端面握钉力较为理想;当W为1%,H为160℃、T为2 h时,浸渍热处理桉木具有较好的抗弯强度和抗弯弹性模量。  相似文献   

20.
木聚糖相对分子质量分布对里氏木霉合成木聚糖酶的影响   总被引:3,自引:2,他引:1  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶茵,研究了相对分子质量(Mw)分布不同的木聚糖对木聚糖酶合成的影响。通过SephadexG一100凝胶过滤色谱分级分离发现木聚糖A中低Mw组分较多,木聚糖B中低Mw组分较少,木聚糖C中低Mw组分最少。分别以这3种木聚糖为碳源合成木聚糖酶,最高木聚糖酶活力分别为153.64、120.84和110.84IU/mL,产酶时间分别为60、72和96h。用这3种碳源合成的木聚糖酶酶解粗木聚糖,酶解2h时,产物中低聚木糖分别占总糖的80.70%、68.56%和66.92%。这表明低Mw组分较多的木聚糖不仅有利于促进木聚糖酶的诱导合成,而且有利于促进内切-1,4-木聚糖酶的合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号