首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
于2011年采集北京、山东和湖南三地的烟粉虱,进行B、Q隐种鉴定,并测定4种杀虫剂的抗药性,同时通过荧光定量PCR分析CYP4v2和CYP6CX1两个基因的mRNA水平的表达量。结果表明,北京、湖南和长沙烟粉虱均为Q隐种。抗药性监测表明,北京和湖南种群对阿维菌素敏感,山东种群抗性水平较低,而对烟碱类药剂噻虫嗪出现不同程度的抗药性,其中湖南地区烟粉虱对噻虫嗪的抗药性达到49.08倍的高抗水平,北京和山东地区也达到中抗水平。另外,这3个地区的种群对毒死蜱和联苯菊酯抗性水平都较低。通过qRT-PCR分析三地的CYP4v2和CYP6CX1基因表达量,发现相对于敏感种群CYP4v2基因在北京、山东和湖南3个地理种群中分别过量表达3.85倍、19.57倍和10.78倍,而CYP6CX1基因在北京种群中过量表达20.55倍。结果提示田间烟粉虱的细胞色素P450基因CYP4v2和CYP6CX1过量表达可能会是烟粉虱抗药性的形成机制之一。  相似文献   

2.
烟粉虱Bemisia tabaci已严重危害农作物的正常生长,而新烟碱类杀虫剂噻虫嗪已被广泛用于烟粉虱的防治,但由于常年应用,致使烟粉虱对噻虫嗪产生了严重的抗性,而目前其抗药性分子机制尚不明确.本研究通过荧光定量PCR比较分析烟粉虱噻虫嗪抗性及敏感种群,发现细胞色素P450基因CYP6DV5在噻虫嗪抗性品系中的表达量为...  相似文献   

3.
7种杀虫剂对北京地区烟粉虱成虫毒力的比较研究   总被引:2,自引:0,他引:2  
本试验比较测定了7种杀虫剂对北京地区烟粉虱成虫的毒力,以期为北京地区高毒农药淘汰提供参考。结果表明:氟虫腈对烟粉虱成虫的毒力最强,其LC50值为2.98(g/mL;新烟碱类杀虫剂啶虫脒、吡虫啉对烟粉虱成虫的生物活性较好,LC50值分别为8.04(g/mL、7.49(g/mL,噻虫嗪对烟粉虱成虫毒力相对较差,LC50值仅为95.03(g/mL;烟粉虱成虫对马拉硫磷、异丙威和噻嗪酮3种杀虫剂不敏感。在北京地区,采用噻虫嗪、马拉硫磷、异丙威和噻嗪酮等杀虫剂,不能有效防治烟粉虱的成虫;氟虫腈、吡虫啉和啶虫脒可以用来防治烟粉虱成虫。  相似文献   

4.
采用Tabashnik的域性状指标分析了新疆MEAM1(Middle-East-Asia-Minor l)烟粉虱隐种对吡虫啉的抗性现实遗传力(h2)和不同致死率下的抗性发展速率,同时测定了抗性种群对不同类型杀虫剂的交互抗性。结果表明,在30%~50%较低的选择压力下,新疆MEAM1烟粉虱隐种连续汰选8代后,对吡虫啉的抗性上升28.01倍,抗性现实遗传力h2为0.429 7。假设田间种群现实遗传力为实验室筛选估算值的1/2,即h2=0.214 9,对新疆MEAM1烟粉虱隐种对吡虫啉的抗性发展速率估算结果表明:在药剂选择压力为50%~60%下,若使其对吡虫啉的抗性增长10倍,则需要生长10~8代;而在药剂选择压力为70%~90%下,若使其抗性增长10倍,则仅需要生长6~4代。表明新疆MEAM1烟粉虱隐种对吡虫啉产生抗性的风险很大。交互抗性测定结果显示:抗性种群对同类型的杀虫剂吡虫清和噻虫嗪分别产生了10.78倍和4.75倍的中等至低水平交互抗性;对多杀菌素、毒死蜱、吡丙醚和高效氯氰菊酯的敏感性有所降低;对阿维菌素、氟啶虫胺腈和乙基多杀菌素等杀虫剂则无交互抗性。  相似文献   

5.
采用室内生物活性测定法系统测定了烯啶虫胺对烟粉虱不同虫态的毒力、成虫持效性、抗性风险评估和不同施药方法田间药效试验。结果表明,烯啶虫胺对烟粉虱低龄若虫和高龄若虫均表现出较高毒力,对成虫也有一定毒力,而对卵效果较差。烯啶虫胺水剂100 mg/L处理时对烟粉虱成虫1~15 d的校正死亡率在80.18%~92.13%之间,随着时间的延长,烯啶虫胺对烟粉虱的防效降低。烯啶虫胺喷雾和灌根方法效果较好,从速效性来说,喷雾好于灌根,从持效性来说,灌根优于喷雾,两种方法均显著高于单叶施药和涂茎法。经过8代6次选育,烟粉虱对烯啶虫胺抗性发展缓慢,与选育前相比敏感性降低2.653倍,烟粉虱对烯啶虫胺的抗性现实遗传力为0.102 5,在50%~90%的筛选压力下,要获得10倍抗性,需要9~21代,表明烟粉虱对烯啶虫胺有产生抗性的风险。  相似文献   

6.
采用浸叶法分别测定了宁夏8个地区烟粉虱成虫田间种群对4类5种杀虫剂的抗性。结果表明,供试烟粉虱种群对高效氯氰菊酯已产生了中等至极高水平抗性,抗性倍数为33.31~227.98倍;对烯啶虫胺产生了中等至高水平抗性,抗性倍数为12.14~69.33倍;对毒死蜱和吡虫啉产生了低至中等水平抗性,抗性倍数分别为7.63~38.85倍和6.05~22.43倍,个别地区种群对吡虫啉尚处于敏感水平;对阿维菌素处于敏感性降低至中等水平抗性,抗性倍数为4.54~13.22倍。烟粉虱对5种杀虫剂的抗性有明显的区域性,抗性最为普遍且严重的地区为贺兰新平和吴忠,其次为贺兰产业园、石嘴山大武口、中卫和永宁,而西夏区军马场、固原烟粉虱种群的抗性则相对较低。对银川3地烟粉虱抗药性监测结果表明,在5种杀虫剂中,其对高效氯氰菊酯的抗性发展最为迅速,其次为烯啶虫胺,对阿维菌素和吡虫啉的抗性发展相对较慢,而西夏区军马场和贺兰产业园种群对毒死蜱敏感性有所恢复。  相似文献   

7.
5种杀虫剂灌根施药对黄瓜烟粉虱的防治效果研究   总被引:3,自引:0,他引:3  
以盆栽黄瓜为供试植物,利用灌根法,研究了5种杀虫剂对黄瓜烟粉虱的防治效果。结果表明:阿维菌素对黄瓜烟粉虱最高防效不足30%,吡虫啉、噻虫嗪、啶虫脒和烯啶虫胺灌根施药后7d,防效均在60%以上,10d防效达最高,其中吡虫啉130mg/L处理防效最高为94.3%,持效期长达20d。本研究为黄瓜烟粉虱防治药剂的合理使用提供了科学依据。  相似文献   

8.
分别采用浸卵法、浸渍法和浸叶法测定了22、25、28、31和34℃下吡虫啉对B型烟粉虱Bemisia tabaci B-biotype不同虫态的控制效果。结果表明,随着温度的升高,吡虫啉对B型烟粉虱不同虫态的控制效果也逐渐上升,当温度上升至34℃时,60mg/L浓度药液处理下卵、低龄若虫、高龄若虫及成虫死亡率分别较22℃时升高了20.89%、33.52%、33.37%及17.86%。因此,温度提高对吡虫啉防治B型烟粉虱起到了正面效应。  相似文献   

9.
哒螨灵对三种害虫的毒力比较及其应用潜力评价   总被引:3,自引:1,他引:3  
为明确杀螨剂哒螨灵对B型烟粉虱、水稻灰飞虱和黄曲条跳甲等3种害虫的毒力和扩大其使用范围,采用玻管药膜法测定了哒螨灵等药剂对B型烟粉虱和水稻灰飞虱成虫的毒力,用浸渍法测定了哒螨灵等对B型烟粉虱若虫和黄曲条跳甲的毒力.结果显示,哒螨灵对烟粉虱成虫和水稻灰飞虱成虫的毒力最高,触杀LC50分别为0.952 mg/L和0.252 mg/L;哒螨灵对B型烟粉虱若虫的触杀LC50为43.148 mg/L,其毒力较啶虫眯和吡虫啉低,与烯啶虫胺毒力相当,但较吡丙醚毒力高近1倍;哒螨灵对黄曲条跳甲的LC50为195.123 mg/L,其毒力低于毒死蜱,但高于啶虫脒和吡虫啉.表明哒螨灵不仅对B型烟粉虱和水稻灰飞虱成虫毒力高,对烟粉虱若虫和黄曲条跳甲的毒力也较高,有进一步开发应用的潜力.  相似文献   

10.
螺虫乙酯对B型烟粉虱毒力及部分生物学参数的影响   总被引:3,自引:1,他引:2  
为系统评价新药剂螺虫乙酯(spirotetramat)对B型烟粉虱(Bemisia tabaci biotype B)的生物活性及生物学参数的影响,采用浸渍法测定了螺虫乙酯及对照药剂吡虫啉对B型烟粉虱各个虫态的室内毒力、成虫寿命、产卵量及所产卵孵化率的影响。结果表明,螺虫乙酯对2龄若虫毒力最高,LC50为4.07 mg/L,为吡虫啉的2.73倍,对卵及成虫毒力较低,且显著低于吡虫啉;12.5 mg/L螺虫乙酯处理后,成虫寿命为17.3天,较空白对照显著缩短,吡虫啉与空白对照无显著差异;12.5 mg/L螺虫乙酯处理后平均产卵量为5.0粒,所产卵的平均孵化率为3.23%,显著低于空白对照和吡虫啉处理,吡虫啉与空白对照无显著差异;100 mg/L螺虫乙酯处理24 h后对烟粉虱成虫驱避率为52%,驱避效果较差。  相似文献   

11.
Neonicotinoids play an essential role in the control of house flies Musca domestica. The development of neonicotinoid resistance was found in two field populations. 766b was 130- and 140-fold resistant to imidacloprid and 17- and 28-fold resistant to thiamethoxam in males and females, respectively. 791a was 22- and 20-fold resistant to imidacloprid and 9- and 23-fold resistant to thiamethoxam in males and females, respectively. Imidacloprid selection of 791a increased imidacloprid resistance to 75- and 150-fold in males and females, respectively, whereas selection with thiamethoxam had minimum impact. Neonicotinoid resistance was in all cases suppressed by PBO. The cytochrome P450 genes CYP6A1, CYP6D1 and CYP6D3 were constitutively over-expressed in resistant strains and CYP6D1 and CYP6D3 differentially expressed between sexes. The highest level of CYP6A1 expression was observed in both gender of the imidacloprid-selected strain after neonicotinoid exposure. CYP6D1 expression was increased after neonicotinoid exposure in resistant males. CYP6D3 expression was induced in both sexes upon neonicotinoid exposure but significantly higher in females.  相似文献   

12.
13.
BACKGROUND: With the worldwide use of insecticides, an increasing number of pest insect species have evolved target-site or metabolism-based resistance towards some of these compounds. The resulting decreased efficacy of pesticides threatens human welfare by its impact on crop safety and further disease transmission. Environmental concentrations of some insecticides are so high that even natural populations of non-target, non-pest organisms such as the fruit fly Drosophila melanogaster Meig. have been selected for resistance. Cyp6g1-overexpressing strains of D. melanogaster are resistant to a wide range of chemically diverse insecticides, including DDT and imidacloprid. However, up to now there has been no evidence that the CYP6G1 enzyme metabolises any of these compounds. RESULTS: Here it is shown, by heterologous expression in cell suspension cultures of Nicotiana tabacum L. (tobacco), that CYP6G1 is capable of converting DDT (20 microg per cell culture assay) by dechlorination to DDD (18% of applied amount in 48 h), and imidacloprid (400 microg) mainly by hydroxylation to 4-hydroxyimidacloprid and 5-hydroxyimidacloprid (58 and 19% respectively in 48 h). CONCLUSION: Thus, the gap between the supposed resistance gene Cyp6g1 and the observed resistance phenomenon was closed by the evidence that CYP6G1 is capable of metabolising at least two insecticides.  相似文献   

14.
BACKGROUND: Bait-formulated spinosad is currently being introduced for housefly (Musca domestica L.) control around the world. Spinosad resistance was evaluated in a multiresistant field population and strains derived from this by selection with insecticides. Constitutive and spinosad-induced expression levels of three cytochrome P450 genes, CYP6A1, CYP6D1 and CYP6D3, previously reported to be involved in insecticide resistance, were examined. RESULTS: In 2004 a baseline for spinosad toxicity of Danish houseflies where all field populations were considered to be susceptible was established. In the present study, females of a multiresistant field population 791a were, however, 27-fold spinosad resistant at LC50, whereas 791a male houseflies were susceptible. Strain 791a was selected with spinosad, thiamethoxam, fipronil and imidacloprid, resulting in four strains with individual characteristics. Selection of 791a with spinosad did not alter spinosad resistance in either males or females, but counterselected against resistance to the insecticides thiamethoxam and imidacloprid targeting nicotinic acetylcholine receptors. A synergist study with piperonyl butoxide, as well as gene expression studies of CYP6A1, CYP6D1 and CYP6D3, indicated a partial involvement of cytochrome P450 genes in spinosad resistance. CONCLUSION: This study reports female-linked spinosad resistance in Danish houseflies. Negative cross-resistance was observed between spinosad and neonicotinoids in one multiresistant housefly strain. Spinosad resistance involved alterations of cytochrome P450 gene expression. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14–17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64).  相似文献   

16.
Neonicotinoid insecticides retain a crucial role within many chemical and integrated control strategies for the tobacco whitefly, Bemisia tabaci Gennadius, in spite of the establishment of potent and widespread resistance in many areas. Metabolic resistance mechanisms mediated by overexpression of P450-dependent monooxygenases have been implicated in neonicotinoid resistance in the two most prevalent B. tabaci biotypes. Further characterisation of resistance to the neonicotinoid imidacloprid in populations of both these B- and Q-types is reported.Expression of resistance to imidacloprid was age specific in B- and Q-type strains of B. tabaci. The highest observed resistance ratio at LC(50) expressed in prepupal nymphs was 13, compared with at least 580 in their adult counterparts. For all strains, resistance expressed in immatures was not sufficiently potent to compromise recommended imidacloprid application rates.Targeting neonicotinoids towards immature life stages of B. tabaci may circumvent the protection conferred by current mechanisms of resistance, simultaneously reducing the selection pressures imposed. However, such tactics may enhance the expression of existing resistance mechanisms in immatures, or promote the establishment of novel ones expressed in all life stages.  相似文献   

17.
Efficient chemical control is achieved when insecticides are active against insect pests and safe to natural enemies. In this study, the toxicity of 17 insecticides to the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the selectivity of seven insecticides to natural enemies of this insect pest were evaluated. To determine the insecticide toxicity, B. tabaci adults were exposed to abamectin, acephate, acetamiprid, cartap, imidacloprid, malathion, methamidophos, bifenthrin, cypermethrin, deltamethrin, esfenvalerate, fenitrothion, fenpropathrin, fenthion, phenthoate, permethrin and trichlorphon at 50 and 100% of the field rate (FR), and to water (untreated control). To determine the insecticide selectivity, adults of Encarsia sp., Acanthinus sp., Discodon sp. and Lasiochilus sp. were exposed to abamectin, acephate, acetamiprid, cartap, imidacloprid, malathion and methamidophos at 50 and 100% FR, and to water. Groups of each insect species were exposed to kale leaves preimmersed in each treatment under laboratory conditions. Mortality of exposed individuals was recorded 24 h after treatment. Cartap and imidacloprid at 50 and 100% FR and abamectin and acetamiprid at 100% FR showed insecticidal activity to B. tabaci adults. Abamectin at 50 and 100% FR was the least insecticidal compound to the natural enemies Acanthinus sp., Discodon sp. and Lasiochilus sp. The present results suggest that abamectin at 100% FR may decrease B. tabaci field populations but can still be harmless to predators. Implications of these results within an integrated pest management context are discussed.  相似文献   

18.
The tobacco whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) is a serious pest in numerous cropping systems and has developed a high degree of resistance against several chemical classes of insecticides. One of the latest group of insecticides introduced to the market were the neonicotinoids (chloronicotinyls), acting agonistically on insect nicotinic acetylcholine receptors. Resistance to neonicotinoid insecticides has recently been shown to occur, especially in Q-type B tabaci in some places in Almeria, Spain, whereas control of B-type B tabaci in many other intense cropping systems worldwide has remained on high levels. Our study revealed that neonicotinoid-resistant Q-type strains from Almeria were often more than 100-fold less susceptible to thiamethoxam, acetamiprid and imidacloprid when tested in discontinuous systemic laboratory bioassays. The resistance factors were generally 2- to 3-fold lower in leaf-dip bioassays. In addition to the Spanish strains, we obtained two other highly neonicotinoid-cross-resistant B tabaci greenhouse populations, one from Italy (December 1999) and one from Germany (June 2001). A molecular diagnostic analysis revealed that both strains also belong to the (Spanish) subtype Q of the B tabaci species complex. The resistance levels of Q-type whitefly strains derived from Almeria greenhouses in 1999 remained stable for at least two years, even when maintained in the laboratory without any selection pressure. The biochemical mechanisms conferring resistance to neonicotinoids have not yet been elucidated in detail, but synergist studies suggested a possible involvement of microsomal monooxygenases. Furthermore, we checked two Almerian strains of B tabaci isolated in 1998 and 1999 and demonstrated that neonicotinoid resistance is not due to an altered [3H]imidacloprid binding site of nicotinic acetylcholine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号