首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Two experimental parainfluenza type 3 virus (PI3V) challenge studies were undertaken to evaluate the efficacy of a single intranasal dose of an attenuated live vaccine containing modified live bovine respiratory syncytial virus (BRSV) and temperature-sensitive PI3V in 3-week-old calves. In the first study, vaccine efficacy was evaluated in colostrum deprived calves. Nasal shedding of PI3V was highly significantly reduced in vaccinated calves challenged 10 days or 21 days after vaccination. In the second study, vaccine efficacy was assessed in calves with maternal antibodies against PI3V by challenge 66 days post-vaccination. Vaccination also significantly reduced PI3V excretion after challenge in this study. In both studies, clinical signs after challenge were very mild and were not different between vaccinated and control calves.  相似文献   

2.
Several laboratory studies assessed the duration of immunity of a quadrivalent vaccine (Rispoval™4, Pfizer Animal Health) against bovine respiratory diseases (BRD) caused by bovine herpes-virus type-1 (BHV-1), parainfluenza type-3 virus (PI3V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV). Calves between 7 weeks and 6 months of age were allocated to treatment and then were injected with two doses of either the vaccine or the placebo 3 weeks apart. Six to 12 months after the second injection, animals were challenged with BHV-1 (n = 16), PI3V (n = 31), BVDV (n = 16), or BRSV (n = 20) and the course of viral infection was monitored by serological, haematological (in the BVDV study only), clinical, and virological means for ≥2 weeks. Infection induced mild clinical signs of respiratory disease and elevated rectal temperature in both vaccinated and control animals and was followed by a dramatic rise in neutralising antibodies in all treatment groups. Titres reached higher levels in vaccinated calves than in control calves after challenge with BHV-1, BVDV, or BRSV. On day 3 after PI3V challenge, virus shedding was reduced from 3.64 log10 TCID50 in control animals to 2.59 log10 TCID50 in vaccinated animals. On days 6 and 8 after BRSV challenge, there were fewer vaccinated animals (n = 2/10 and 0/10, respectively) shedding the virus than control animals (n = 8/10 and 3/10, respectively). Moreover, after challenge, the mean duration of virus shedding was reduced from 3.8 days in control animals to 1 day in vaccinated animals in the BVDV study and from 3.4 days in control animals to 1.2 days in vaccinated animals in the BRSV study. The duration of immunity of ≥6 months for PI3V, BHV-1 and BVDV, and 12 months for BRSV, after vaccination with Rispoval™4, was associated mainly with enhanced post-challenge antibody response to all four viruses and reduction of the amount or duration of virus shedding or both.  相似文献   

3.
OBJECTIVE: To assess short- and long-term efficacy of an inactivated bovine respiratory syncytial virus (BRSV) vaccine administered i.m. to calves with maternally derived antibodies. ANIMALS: 28 two-week-old calves with neutralizing, maternally derived antibodies against BRSV. PROCEDURE: For evaluation of short-term efficacy, 6 calves were vaccinated i.m. at 2 and 6 weeks of age and challenged intranasally and intratracheally along with a matched group of 4 unvaccinated control calves at 10 weeks of age. For evaluation of long-term efficacy, 2 groups of 6 calves each were vaccinated i.m. at 2, 6, and 18 weeks of age or 14 and 18 weeks of age; these calves were challenged intranasally and intratracheally along with 6 matched unvaccinated control calves at 43 weeks of age. Serum virus neutralizing antibody titer, clinical reactions, and virus shedding in nasal mucus and lung washings were assessed. RESULTS: None of the vaccination regimens resulted in a significant increase in serum virus neutralizing antibody titer. As judged by virus shedding in nasal mucus and lung washings, vaccinated calves were protected against challenge, compared with unvaccinated control groups. Clinical signs attributable to challenge were coughing (short-term efficacy study) and tachypnea and dyspnea (long-term efficacy study). The severity and incidence of disease were significantly lower in the vaccinated groups, compared with that in the unvaccinated groups. CONCLUSIONS AND CLINICAL RELEVANCE: Through vaccination, it is possible to protect vulnerable calves with maternal antibodies against BRSV infection and reduce respiratory tract disease.  相似文献   

4.
OBJECTIVE: To determine whether single-fraction and combination modified-live bovine respiratory syncytial virus (BRSV) vaccines commercially licensed for parenteral administration could stimulate protective immunity in calves after intranasal administration. DESIGN: Randomized controlled trial. ANIMALS: 39 calves. PROCEDURES: Calves were separated from dams at birth, fed colostrum with a minimal concentration of antibodies against BRSV, and maintained in isolation. In 2 preliminary experiments, 9-week-old calves received 1 (n = 3) or 2 (3) doses of a single-component, modified-live BRSV vaccine or no vaccine (8 control calves in each experiment), and were challenged with BRSV 21 days after vaccination. In a third experiment, 2-week-old calves received combination modified-live virus (MLV) vaccines with or without BRSV and calves were challenged with BRSV 8 days later. Calves were euthanized, and lung lesions were measured. Immune responses, including serum and nasal antibody and nasal interferon-alpha concentrations, were assessed. RESULTS: BRSV challenge induced signs of severe clinical respiratory tract disease, including death and pulmonary lesions in unvaccinated calves and in calves that received a combination viral vaccine without BRSV. Pulmonary lesions were significantly less severe in BRSV-challenged calves that received single or combination BRSV vaccines. The proportion of calves that shed virus and the peak virus titer was decreased, compared with control calves. Protection was associated with mucosal IgA antibody responses after challenge. CONCLUSIONS AND CLINICAL RELEVANCE: Single and combination BRSV vaccines administered intranasally provided clinical protection and sparing of pulmonary tissue similar to that detected in response to parenteral delivery of combination MLV and inactivated BRSV vaccines previously assessed in the same challenge model.  相似文献   

5.
Efficacy of an inactivated quadrivalent vaccine containing infectious bovine rhinotracheitis (IBR) virus, parainfluenza type 3 (PI3) virus, bovine virus diarrhoea virus (BVDV) and bovine respiratory syncytial virus (BRSV) was assessed in naive bovine calves to evaluate short-term (4-18 weeks) and long-term (24-38 weeks) protection following the basic intramuscular vaccination regime of 2 inoculations a month apart. Vaccination was staggered between the long-term and the short-term groups by about 5 months so that both groups, along with a matched group of 6 unvaccinated (control) calves, could be challenged at the same time. Sequential challenges at intervals of 3-8 weeks were done in the order: IBR virus (intranasally, IN), PI3 virus (IN and intratracheally, IT), pestiviruses (IN) and BRSV (IN and IT). The IBR virus challenge produced febrile rhinotracheitis (FRT) in control calves but both the severity and the duration of FRT was significantly reduced in both vaccinated groups. The amount and the duration of IBR virus shed by the vaccinated groups was significantly reduced compared to the control group. Although PI3 virus, pooled pestivirus and BRSV challenges did not result in a noteworthy disease, challenge virus shedding (amount and duration) from the upper (all 3 viruses) and the lower (BRSV) respiratory tracts was significantly reduced in vaccinated groups. After pestivirus challenge, sera and leukocytes from all control calves were infectious for 6-9 days whereas virus was recovered only from leukocytes in vaccinated calves and only for 1.6-2.7 days. Thus a standard course of the quadrivalent vaccine afforded a significant protection against IBR virus, PI3 virus, BVDV and BRSV for at least 6 months.  相似文献   

6.
The objective of this study was to determine whether a commercially available, saponin-adjuvanted, inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from experimental infection with virulent BRSV. This was a randomized controlled trial comprising 14, 8- to 9-week-old calves seronegative for BRSV Group 1 calves (n = 8) were not vaccinated and group 2 calves (n = 6) were vaccinated on days 0 and 19 with an inactivated BRSV vaccine. All calves were challenged with virulent BRSV on day 46. Clinical signs, arterial PO2, and immune responses were monitored after challenge. Calves were euthanatized on day 54 (8 d after challenge) and lungs were examined for lesions. Vaccination elicited increases in BRSV-specific immunoglobulin (Ig) G and virus neutralizing antibody titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, but no signs of clinical disease and minimal or no pulmonary lesions in vaccinated calves. Arterial blood oxygen values on day 53 (7 d after challenge) in control calves were significantly lower than those in vaccinated calves, which remained within normal limits. Control calves shed BRSV for several days after challenge, whereas BRSV was not detected on deep nasal swabs from vaccinated calves. In summary, the results indicated that this inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus 27 d after vaccination and significantly decreased the prevalence and severity of pulmonary lesions. Efficacy was similar to that reported for other commercial inactivated and modified-live BRSV vaccines.  相似文献   

7.
OBJECTIVE: To determine whether a combination viral vaccine containing modified-live bovine herpesvirus-1 (BHV-1) would protect calves from infection with a recent field isolate of BHV-1. DESIGN: Randomized controlled trial. ANIMALS: Sixty 4- to 6-month-old beef calves. PROCEDURE: Calves were inoculated with a placebo 42 and 20 days prior to challenge (group 1; n = 10) or with the combination vaccine 42 and 20 days prior to challenge (group 2; 10), 146 and 126 days prior to challenge (group 3; 10), 117 and 96 days prior to challenge (group 4; 10), 86 and 65 days prior to challenge (group 5; 10), or 126 days prior to challenge (group 6; 10). All calves were challenged with BHV-1 via aerosol. Clinical signs, immune responses, and nasal shedding of virus were monitored for 14 days after challenge. RESULTS: Vaccination elicited increases in BHV-1-specific IgG antibody titers. Challenge with BHV-1 resulted in mild respiratory tract disease in all groups, but vaccinated calves had less severe signs of clinical disease. Extent and duration of nasal BHV-1 shedding following challenge was significantly lower in vaccinated calves than in control calves. In calves that received 2 doses of the vaccine, the degree of protection varied with the interval between the last vaccination and challenge, as evidenced by increases in risk of clinical signs and extent and duration of viral shedding. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that this combination vaccine provided protection from infection with virulent BHV-1 and significantly reduced nasal shedding of the virus for at least 126 days after vaccination.  相似文献   

8.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

9.
Bovine herpesvirus type 5 (BoHV-5) is the causative agent of bovine herpetic encephalitis. In countries where BoHV-5 is prevalent, attempts to vaccinate cattle to prevent clinical signs from BoHV-5-induced disease have relied essentially on vaccination with BoHV-1 vaccines. However, such practice has been shown not to confer full protection to BoHV-5 challenge. In the present study, an inactivated, oil adjuvanted vaccine prepared with a recombinant BoHV-5 from which the genes coding for glycoprotein I (gI), glycoprotein E (gE) and membrane protein US9 were deleted (BoHV-5 gI/gE/US9), was evaluated in cattle in a vaccination/challenge experiment. The vaccine was prepared from a virus suspension containing a pre-inactivation antigenic mass equivalent to 107.69 TCID50/dose. Three mL of the inactivated vaccine were administered subcutaneously to eight calves serologically negative for BoHV-5 (vaccinated group). Four other calves were mock-vaccinated with an equivalent preparation without viral antigens (control group). Both groups were boostered 28 days later. Neither clinical signs of disease nor adverse effects were observed during or after vaccination. A specific serological response, revealed by the development of neutralizing antibodies, was detected in all vaccinated animals after the first dose of vaccine, whereas control animals remained seronegative. Calves were subsequently challenged on day 77 post-vaccination (pv) with 109.25 TCID50 of the wild-type BoHV-5 (parental strain EVI 88/95). After challenge, vaccinated cattle displayed mild signs of respiratory disease, whereas the control group developed respiratory disease and severe encephalitis, which led to culling of 2/4 calves. Searches for viral DNA in the central nervous system (CNS) of vaccinated calves indicated that wild-type BoHV-5 did not replicate, whereas in CNS tissues of calves on the control group, viral DNA was widely distributed. BoHV-5 shedding in nasal secretions was significantly lower in vaccinated calves than in the control group on days 2, 3, 4 and 6 post-challenge (pc). In addition, the duration of virus shedding was significantly shorter in the vaccinated (7 days) than in controls (12 days). Attempts to reactivate latent infection by administration of dexamethasone at 147 days pv led to recrudescence of mild signs of respiratory disease in both vaccinated and control groups. Infectious virus shedding in nasal secretions was detected at reactivation and was significantly lower in vaccinated cattle than in controls on days 11–13 post-reactivation (pr). It is concluded that the inactivated vaccine prepared with the BoHV-5 gI/gE/US9 recombinant was capable of conferring protection to encephalitis when vaccinated cattle were challenged with a large infectious dose of the parental wild type BoHV-5. However, it did not avoid the establishment of latency nor impeded dexamethasone-induced reactivation of the virus, despite a significant reduction in virus shedding after challenge and at reactivation on vaccinated calves.  相似文献   

10.
OBJECTIVE: To determine whether an inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from infection with virulent BRSV. DESIGN: Randomized controlled trial. ANIMALS: 27 nine-week-old calves seronegative for BRSV exposure. PROCEDURE: Group-1 calves (n = 9) were not vaccinated. Group-2 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing a minimum immunizing dose of antigen. Group-3 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing an amount of antigen similar to that in a commercial vaccine. All calves were challenged with virulent BRSV on day 42. Clinical signs and immune responses were monitored for 8 days after challenge. Calves were euthanatized on day 50, and lungs were examined for lesions. RESULTS: Vaccination elicited increases in BRSV-specific IgG and virus neutralizing antibody titers and in production of interferon-gamma. Virus neutralizing antibody titers were consistently less than IgG titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, whereas vaccinated calves had less severe signs of clinical disease and less extensive pulmonary lesions. The percentage of vaccinated calves that shed virus in nasal secretions was significantly lower than the percentage of control calves that did, and peak viral titer was lower for vaccinated than for control calves. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus and decreased the severity of pulmonary lesions. Efficacy was similar to that reported for modified-live BRSV vaccines.  相似文献   

11.
OBJECTIVE: To evaluate the efficacy of an adjuvanted modified-live bovine viral diarrhea virus (BVDV) vaccine against challenge with a virulent type 2 BVDV strain in calves with or without maternal antibodies against the virus. DESIGN: Challenge study. ANIMALS: 23 crossbred dairy calves. PROCEDURES: Calves were fed colostrum containing antibodies against BVDV or colostrum without anti-BVDV antibodies within 6 hours of birth and again 8 to 12 hours after the first feeding. Calves were vaccinated with a commercial modified-live virus combination vaccine or a sham vaccine at approximately 5 weeks of age and challenged with virulent type 2 BVDV 3.5 months after vaccination. Clinical signs of BVDV infection, development of viremia, and variation in WBC counts were recorded for 14 days after challenge exposure. RESULTS: Calves that received colostrum free of anti-BVDV antibodies and were vaccinated with the sham vaccine developed severe disease (4 of the 7 calves died or were euthanatized). Calves that received colostrum free of anti-BVDV antibodies and were vaccinated and calves that received colostrum with anti-BVDV antibodies and were vaccinated developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the modified-live virus vaccine induced a strong protective immune response in young calves, even when plasma concentrations of maternal antibody were high. In addition, all vaccinated calves were protected against viral shedding, whereas control calves vaccinated with the sham vaccine shed virus for an extended period of time.  相似文献   

12.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

13.
The present report describes the clinical, pathological, serological and virological findings in calves from 2 larger Danish beef herds experiencing outbreaks of pneumonia. The calves had been vaccinated with an inactivated bovine respiratory syncytial virus (BRSV) vaccine 2 months prior to the outbreak. The clinical signs comprised nasal discharge, pyrexia, cough and increased respiratory rates. A total of 28 calves died in the 2 herds. The laboratory investigations revealed that BRSV was involved and probably initiated both outbreaks. Furthermore, the serological results suggested that the vaccine induced only sparse levels of antibodies probably due to the presence of maternally derived antibodies at the time of vaccination. Necropsy findings in 5 calves revealed changes typical for infectious pneumonia with involvement of BRSV. In conclusion, vaccination of calves against BRSV in 2 Danish beef herds failed to protect the calves against severe or even fatal BRSV mediated respiratory disease 2 months later.  相似文献   

14.
Twenty-one young calves with maternally derived antibody to bovine respiratory syncytial virus (BRSV) were divided into three groups of seven, each group balanced for BRSV antibody titre. The calves had no evidence of previous exposure to BRSV. The calves in one group were given a single dose of a monovalent modified live BRSV vaccine; the calves in the second group were given a single dose of an inactivated combined BRSV, parainfluenza virus type 3, Mannheimia haemolytica vaccine and the calves in the third group were left as unvaccinated controls. Three weeks after the single doses of vaccine, all the calves were challenged with BRSV. The clinical signs of disease were mild, and virus excretion was limited to two calves in the group given the inactivated vaccine, compared with six in the negative controls (P = 0.05) and five in the group given the live vaccine. The mean virus excretion titres after the challenge were not significantly different between the groups. There was little seroconversion before the challenge, but six of the seven calves in the group given the inactivated vaccine showed significant seroconversion within two weeks after the challenge, compared with only one calf in each of the other two groups (P = 0.015).  相似文献   

15.
The effect of maternal antibodies (MatAb) on immunological priming by neonatal parenteral vaccination for bovine respiratory syncytial virus (BRSV) was addressed for the first time in experimental infection in 34 Holstein calves. Both vaccinated and control calves developed moderate to severe respiratory disease characteristic of acute BRSV infection. There were no differences in clinical signs, BRSV shed, arterial oxygen concentrations, or mortality between vaccinated and control calves after BRSV challenge approximately 11 wk after vaccination. There were no anamnestic antibody or cytokine responses in the vaccinates after challenge. Lung lesions were extensive in both groups, and although there was a statistically significant (P = 0.05) difference between groups, this difference was considered not biologically significant. These data indicate that stimulation of protective immune responses was inhibited by maternal antibodies when a combination modified-live BRSV vaccine was administered parenterally to young passively immune calves. Alternate routes of administration or different vaccine formulations should be used to successfully immunize young calves with good passive antibody transfer.  相似文献   

16.
The effect of field feline viral rhinotracheitis (FVR) virus challenge on cats previously vaccinated with a combined FVR/feline calicivirus intramuscular vaccine was studied in relation to the development of an FVR carrier state. There was no virus shedding of either of the two vaccine viruses following vaccination. Treatment with corticosteroid 60 days after vaccination and before challenge with FVR virus did not induce virus re-excretion in vaccinates or controls; neither did similar treatment induce shedding 63 days after challenge of both vaccinates and controls with virulent field virus. After a further 55 days however, FVR virus shedding was elicited in one of four previously vaccinated and challenged cats compared with two of four unvaccinated and challenged controls. Two sentinel cats remained virologically and serologically free of FVR throughout. The vaccine was shown to be effective in controlling the disease; 12 weeks after initial vaccination no clinical signs were seen in three of four cats following intranasal challenge with 10(5)CCID50 of virulent field FVR virus, and a mild transient unilateral ocular and nasal discharge was seen in the remaining cat for one day only. Severe clinical signs of approximately 10 days' duration were seen in all four unvaccinated challenged controls. The virological and serological responses of the cats were also recorded.  相似文献   

17.
Both type-1 and type-2 bovine viral diarrhea virus (BVDV) infections are responsible for major losses in the cattle industry. However, several commercial BVDV vaccines contain only a type-1 strain. A vaccine trial was conducted to evaluate the efficacy of BVDV type-1 (Singer strain; BVDV-1) vaccine for protecting calves challenged with virulent BVDV type-2 (890 strain; BVDV-2). Thirty-eight BVDV-negative calves were randomly allocated to four groups. One group was treated with a modified live virus (MLV) BVDV-1 vaccine by i.m. injection and another group was treated with the same vaccine by s.c. injection. Two groups served as nonvaccinated controls (one i.m. and one s.c.). Twenty-eight days following vaccination, the calves were challenged with BVDV-2 and monitored for 21 days. Clinical scores and body temperatures of vaccinated calves were significantly (P<.05) lower than for controls on several days, and peak differences occurred 8 days after challenge. The control calves had significantly (P<.05) lower leukocyte counts 3 through 8 days after challenge; leukocyte counts for vaccinated animals did not decline significantly from prechallenge levels. There were no differences in protection between the i.m. and s.c. routes of vaccination. The study demonstrated satisfactory cross protection of the BVDV-1 vaccine against BVDV-2 challenge.  相似文献   

18.
The efficacy of intranasal vaccination in preventing or limiting disease of the lower respiratory tract induced by parainfluenza 3 (PI3) virus was evaluated under experimental conditions, using a commercially available live vaccine containing a temperature-sensitive strain of PI3 virus. In a preliminary study four colostrum-deprived calves were vaccinated intranasally at one week and again at two months of age, and two similar calves were given an intranasal placebo. After the second vaccination serum antibodies to PI3 virus were detected in all four vaccinated calves, but not in the control animals. Seventeen days after the second vaccination all six calves were challenged with virulent PI3 virus, and they were killed six days later. The clinical scores and the extent of pulmonary consolidation were reduced in the vaccinated animals; PI3 virus was detected in the upper and lower respiratory tract of the control calves but in none of the vaccinated calves. In a larger scale study with 14 colostrum-fed calves, seven were vaccinated at one week and again at five weeks of age, and seven were given an intranasal placebo. Two weeks after the second vaccination all 14 calves were challenged with virulent PI3 virus. The clinical scores and lung consolidation were significantly reduced in the vaccinated calves in comparison with the controls. Six days after infection, 10 of the 14 calves were killed; PI3 virus was detectable in the nasal secretions of all seven control calves but in only one of the vaccinated animals, and PI3 viral antigen was detected in the lungs of the control calves but not in those of the vaccinated animals. One of the vaccinated calves had developed a severe clinical response after the challenge, but it had only minor lung consolidation when killed.  相似文献   

19.
Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to the limitation in their efficacy, current vaccination strategies against ND need improvements. This study aimed to evaluate a new-generation ND vaccine for its efficacy in providing clinical protection and reducing virus shedding after challenge. Broiler chickens were vaccinated in ovo or subcutaneously at hatch with a turkey herpesvirus-based recombinant vaccine (rHVT) expressing a key protective antigen (F glycoprotein) of Newcastle disease virus (NDV). Groups of birds were challenged at 20, 27, and 40 days of age with a genotype V viscerotropic velogenic NDV strain. Protection was 57% and 81%, 100% and 95%, and 100% and 100% after the subsequent challenges in the in ovo and subcutaneously vaccinated chickens, respectively. Humoral immune response to vaccination could be detected from 3-4 wk of age. Challenge virus shedding was lower and gradually decreased over time in the vaccinated birds compared to the unvaccinated control chickens. In spite of the phylogenetic distance between the NDV F gene inserted into the vector vaccine and the challenge virus (genotype I and V, respectively), the rHVT NDV vaccine provided good clinical protection and significantly reduced challenge virus shedding.  相似文献   

20.
The objective of this study was to evaluate the efficacy of a vaccine in the prevention of Giardia duodenalis infection in calves. Six 2-week old calves were vaccinated subcutaneously with a sonicated G. duodenalis trophozoite vaccine. Six 2-week old control calves received a subcutaneous injection of sterile phosphate-buffered-saline mixed with adjuvant. Injections were repeated after 28 days. Eleven days after the second injection, calves were challenged orally with 1x10(5) purified G. duodenalis cysts from a naturally infected calf. Throughout the study, fecal samples were collected at regular intervals and examined for the presence of G. duodenalis cysts. Blood samples were collected weekly until G. duodenalis challenge and bi-weekly following challenge. Calves were euthanized 14 days after challenge and G. duodenalis trophozoites within the small intestines were enumerated. Serum antibody titers were significantly higher in vaccinated compared to non-vaccinated calves. Vaccinated calves tended to excrete more G. duodenalis cysts in their feces than non-vaccinated calves. The number of trophozoites in the small intestine was not different between vaccinated and non-vaccinated calves. Changes consistent of moderate enteritis were found in the intestines of one vaccinated and one non-vaccinated calf. Despite a serological immune response following vaccination, this vaccine was not efficacious in preventing giardiasis or reducing cyst shedding in calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号