首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Regression of the corpus luteum (CL) is characterized by a decay in progesterone (P4) production (functional luteolysis) and disappearance of luteal tissues (structural luteolysis). In mares, structural luteolysis is thought to be caused by apoptosis of luteal cells, but functional luteolysis is poorly understood. 20α-hydroxysteroid dehydrogenase (20α-HSD) catabolizes P4 into its biologically inactive form, 20α-hydroxyprogesterone (20α-OHP). In mares, aldo-keto reductase (AKR) 1C23, which is a member of the AKR superfamily, has 20α-HSD activity. To clarify whether AKR1C23 is associated with functional luteolysis in mares, we investigated the expression of AKR1C23 in the CL in different luteal phases. The luteal P4 concentration and levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA were higher in the mid luteal phase than in the late and regressed luteal phases (P<0.05), but the level of 3β-HSD protein was higher in the late luteal phase than in the regressed luteal phase (P<0.05). The luteal 20α-OHP concentration and the level of AKR1C23 mRNA were higher in the late luteal phase than in the early and mid luteal phases (P<0.05), and the level of AKR1C23 protein was also highest in the late luteal phase. Taken together, these findings suggest that metabolism of P4 by AKR1C23 is one of the processes contributing to functional luteolysis in mares.  相似文献   

4.
Soon after ovulation, the newly formed corpus luteum (CL) starts secreting progesterone (P(4)), necessary for implantation. The CL, an ovarian transient endocrine organ, undergoes growth and regression throughout its life span. The objective of this study was to evaluate if caspase-3 mediates cell death in the equine cyclic luteal structures and relate it to luteal endocrine function. Blood and luteal tissue were collected during the breeding season after slaughter from 38 randomly assigned cycling mares. Luteal tissues were classified as corpora haemorrhagica (CH; n = 7); mid luteal phase corpora lutea (Mid-CL; n = 17); late or regressing corpora lutea (Late-CL; n = 9) and corpora albicans (CA; n = 5). Plasma P(4) concentration, determined by radioimmunoassay, showed a significant increase from CH to Mid-CL (p < 0.001), followed by a decrease to Late-CL (p < 0.001) and CA (p < 0.001). Caspase-3 processing and poly (ADP) ribose polymerase (PARP) degradation were assessed by western blotting. Active caspase-3 was twofold increased in Mid-CL, Late-CL and CA as compared with CH (p < 0.05). Immunocytochemistry also showed a significant increase in caspase-3 expression in large luteal cells in all structures when compared with CH (p < 0.05). Consistently, the endogenous caspase-3 substrate, PARP, was markedly degraded from CH to CA (p < 0.05). In fact, the ratio of full-length to degraded PARP showed a significant decrease from CH to Mid-CL, Late-CL and CA (p < 0.05). Finally, the decrease in P(4) from Mid- to Late-CL coincided with no further increases in apoptosis. In conclusion, these results suggest that the effector caspase-3 of apoptosis, might play an important role during luteal tissue involution in the mare, even though its relationship with P(4) remains to be elucidated.  相似文献   

5.
6.
Cell-to-cell interaction via cell contact-dependent pathway is essentially important for maintenance and regulation of corpus luteum (CL) integrity and its physiological actions. The objective of the present study was to evaluate the mRNA expression of the cell adhesion molecules (CAMs) that are constituent factors of gap junctions [connexin (Cx) 43] and adherence junctions (VE-, E-, N-cadherin) in two types of endothelial cells from the mid CL and in CL tissue during the estrous cycle and PGF(2alpha)-induced luteolysis in the cow. Specific mRNA expression for Cx43 and N-cadherin was detected in cytokeratin-positive (CK+) and cytokeratin-negative (CK-) luteal endothelial cells (EC) and fully luteinized granulosa cells (LGC). E-cadherin mRNA was expressed in CK+EC and LGC, but not in CK-EC. VE-cadherin mRNA was expressed in both CK+ and CK-EC. During the estrous cycle, Cx43 mRNA expression was significantly lower in the regressing CL. VE-cadherin expression also tended to increase in the mid CL and increased significantly in the regressing CL. E-cadherin mRNA expression was higher in the early and late CL than in the mid- and regressing CL. N-cadherin mRNA expression gradually increased from the early to late CL followed by a decrease in the regressing CL. During PGF(2alpha)-induced luteolysis, Cx43 mRNA expression appeared to increase, and VE-cadherin and E-cadherin mRNA significantly increased at 24 h. N-cadherin mRNA expression decreased 2 and 4 h after PGF(2alpha) administration. Collectively, expression of the mRNAs for CAMs was different in the two types of luteal endothelial cells and fully luteinized granulosa cells and changed independently in the CL during the estrous cycle and PGF(2alpha)-induced luteolysis in the cow. The results suggest that CAMs play physiological roles in cell-to-cell communication to regulate both gap and adherence junctions during CL development and regression in the cow.  相似文献   

7.
Expression of mRNAs encoding cytochrome P450 side-chain cleavage (P450scc), cytochrome P450 17 -hydroxylase (P450c17), and cytochrome P450 aromatase (P450arom) were characterized by the RT-PCR technique and concentrations of progesterone (P4), testosterone (T0) and estradiol (E2) were measured by radioimmunoassay during follicular development of prepubertal goats. Synthesis of mRNAs encoding P450scc and P450c17 began in preantral follicles, but mRNA encoding P450arom was not detectable until early antral formation. While mRNA for P450scc was expressed in both theca and granulosa cells, mRNA for P450c17 was expressed only in theca cells while P450arom mRNA only in granulosa cells. In nonatretic follicles from prepubertal ovaries, the relative quantity of mRNA expression of all the three enzymes increased with follicle size; however, while the concentration of P4 and E2 increased, that of T0 decreased with follicle size. While expression of mRNA encoding P450scc was unaffected, that of P450c17 mRNA decreased to the lowest level and mRNA for P450arom became undetectable following atresia; accordingly, while the concentration of P4 increased in the atretic medium follicles, that of T0 and E2 decreased to the lowest level after atresia. While the adult follicular stage follicles showed a similar cytochrome expression as the nonatretic follicles of prepubertal goats, the former contained higher levels of E2 and P4 than the latter. The presence of corpus luteum in an ovary decreased expression of P450scc, significantly in large follicles while it increased concentration of P4. These findings indicated that (1) similar to other species, changes in follicular steroid production in goats were explained in large measure by changes in steroidogenic enzyme expression; (2) while mRNA expression was similar, activities of some of the steroidogenic enzymes may differ between sexually mature and immature goats.  相似文献   

8.
Cytokines and nitric oxide (NO) are potential mediators of luteal development and maintenance, angiogenesis, and blood flow. The aim of this study was to evaluate (i) the localization and protein expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) in equine corpora lutea (CL) throughout the luteal phase and (ii) the effect of a nitric oxide donor (spermine NONOate, NONOate) on the production of progesterone (P4) and prostaglandin (PG) E(2) and factor(s) that stimulate endothelial cell proliferation using equine luteal explants. Luteal tissue was classified as corpora hemorrhagica (CH; n = 5), midluteal phase CL (mid-CL; n = 5) or late luteal phase CL (late CL; n = 5). Both eNOS and iNOS were localized in large luteal cells and endothelial cells throughout the luteal phase. The expression of eNOS was the lowest in mid-CL (P < 0.05) and the highest in late CL (P < 0.05). However, no change was found for iNOS expression. Luteal explants were cultured with no hormone added or with NONOate (10(-5) M), tumor necrosis factor-α (TNFα; 10 ng/mL; positive control), or equine LH (100 ng/mL; positive control). Conditioned media by luteal tissues were assayed for P4 and PGE(2) and for their ability to stimulate proliferation of bovine aortic endothelial cells (BAEC). All treatments stimulated release of P4 in CH, but not in mid-CL. TNFα and NONOate treatments also increased PGE(2) levels and BAEC proliferation in CH (P < 0.05). However, in mid-CL, no changes were observed, regardless of the treatments used. These data suggest that NO and TNFα stimulate equine CH secretory functions and the production of angiogenic factor(s). Furthermore, in mares, NO may play a role in CL growth during early luteal development, when vascular development is more intense.  相似文献   

9.
The aim of this study was to evaluate mRNA expression, protein concentration and localization of the assumedly important lymphangiogenic factors VEGFC and VEGFD and the receptor FLT4 in bovine corpora lutea (CL) during different physiological stages. In experiment 1, CL were collected in a slaughterhouse and stages (days 1–2, 3–4, 5–7, 8–12, 13–16, >18) of oestrous cycle and month <3, 3–5, 6–7 and >8 of pregnancy. In experiment 2, prostaglandin F2α (PGF)‐induced luteolysis was performed in 30 cows, which were injected with PGF analogue on day 8–12 (mid‐luteal phase), and CL were collected before and 0.5, 2, 4, 12, 24, 48 and 64 h after PGF injection. The mRNA expression was characterized by RT‐qPCR. All three factors were clearly expressed and showed significant changes during different groups and periods examined in both experiments. Protein concentrations of VEGFD and FLT4 measured by ELISA were not detectable in early cyclic CL but increased to higher plateau levels during pregnancy. After PGF‐induced luteolysis FLT4 protein showed an increase within 2–24 h after the injection. FLT4 localization by immunohistochemistry in the cytoplasm of luteal cells was relatively weak in early CL. It increased in late CL and especially in CL during pregnancy. During pregnancy, a positive FLT4 staining in both the nucleus and cytoplasm of lymphatic endothelial cells in peripheral tissue was observed. In conclusion, our results lead to the assumption that lymphangiogenic factors are produced and regulated in CL and may be involved in mechanisms regulating CL function, especially during pregnancy.  相似文献   

10.
The objective of this study was to investigate immunolocalization of steroidogenic enzymes 3βHSD, P450c17 and P450arom and their expression during the breeding season in wild male raccoon dogs. The testicular weight, size and seminiferous tubule diameters were measured, and histological and immunohistochemical observations of testes were performed. The messenger RNA expression (mRNA) of 3βHSD, P450c17 and P450arom was measured in the testes during the breeding season. 3βHSD was found in Leydig cells during the breeding and non‐breeding seasons with more intense staining in the breeding season. P450c17 was identified in Leydig cells and spermatids in the breeding season, whereas it was present only in Leydig cells in the non‐breeding season. The localization of P450arom changed seasonally: no immunostaining in the non‐breeding season; more extensive immunostaining in Leydig cells, Sertoli cells and elongating spermatids in the breeding season. In addition, 3βHSD, P450c17 and P450arom mRNA were also expressed in the testes during the breeding season. These results suggested that seasonal changes in testicular weight, size and seminiferous tubule diameter in the wild raccoon dog were correlated with spermatogenesis and immunoreactivity of steroidogenic enzymes and that steroidogenic enzymes may play an important role in the spermatogenesis and testicular recrudescence and regression process.  相似文献   

11.
The present study was conducted to gain insight into the insulin-like growth factor (IGF) system in the bovine corpus luteum (CL). Specific aims were to measure the levels of IGF binding protein-3 (IGFBP-3) and RNA encoding IGFBP-3 in the CL throughout diestrus, and to investigate the effects of IGFBP-2 and -3 on IGF-I-stimulated progesterone (P4) production and IGF-I-receptor binding. Bovine CL were collected from a local abattoir and classified according to stage of diestrus based on anatomical characteristics. Corpora lutea from early, mid and late diestrus were each analyzed for the presence of IGFBP-3 by ligand blot analysis, and for RNA encoding IGFBP-3 by Northern blot analysis. Dissociated cells from mid-cycle CL were treated with IGF-I, IGFBP-2 or -3, or a combination of IGF-I and IGFBP-2 or -3. The effect of IGFBP-2 and IGFBP-3 on [(125)I] IGF-I binding to its receptor on CL plasma membranes also was investigated. IGFBP-3 protein and RNA expression were higher in early CL, compared to mid or late CL (p < 0.05). IGF-I stimulated P4 production in a dose-dependant manner (p < 0.05). IGFBP-2 and -3 blocked the stimulatory effect of IGF-I on P4 production (p < 0.05). Both IGFBP-2 and -3 inhibited [(125)I]-IGF-I binding to its receptor in a dose-dependant manner. These results demonstrate that IGFBP-3 protein and RNA are expressed predominantly during early diestrus in the bovine CL. Moreover, both IGFBP-2 and -3 can modulate IGF-I actions in the CL by interfering with binding of IGF-I to its receptor.  相似文献   

12.
Our aim was to compare Corpus luteum (CL) development and blood plasma concentration of progesterone ([P4]) in thoroughbred mares after spontaneous (Control: C) or human chorionic gonadotrophin (hCG)‐induced ovulation. Lactating mares (C = 12; hCG = 21) were daily teased and mated during second oestrus post‐partum. Treated mares received 2500 IU hCG i.v. at first day of behavioural oestrus when dominant follicular size was >35, ≤42 mm and mated 12–24 h after. Control mares in oestrus were mated with dominant follicular size ≥45 mm. Dominant follicle before ovulation, CL and gestational sac were measured by ultrasound and [P4] by radioimmunoassay (RIA). Blood sampling and ultrasound CL exams were done at days 1, 2, 3, 4, 8, 12, 16, 20, 25, 30, 35, 40, 45, 60 and 90 after ovulation and gestational sac from day 12 after ovulation in pregnant (P) mares; non‐pregnant (NP) were followed until oestrus returned. Data analyses considered four subgroups: hCG‐P, hCG‐NP, C‐P and C‐NP. Preovulatory follicular size was smaller in hCG mares than in C: 39.2 ± 2.7 mm vs 51.0 ± 1.8 mm (p < 0.0001). All hCG mares ovulated 24–48 h after treatment and presented similar oestrus duration as controls. C. luteum size in P mares showed the same pattern of development through days 4–35, presenting erratic differences during initial establishment. Thus, on days 1 and 3, CL was smaller in hCG‐P (p < 0.05); while in hCG‐NP, CL size was greater than in C‐NP on day three (p = 0.03). Corpus luteum size remained stable until day 90 in hCG‐P mares, while in C‐P a transient and apparently not functional increase was detected on days 40 and 45 (p < 0.05) and the decrease from day 60 onwards, made this difference to disappear. No differences were observed in [P4] pattern between P, or between NP subgroups, respectively. So, hCG‐induced ovulation does not affect CL development, neither [P4] during early pregnancy. One cycle pregnancy rate tended to be lower in hCG mares while season pregnancy rates were similar to controls.  相似文献   

13.
The present study characterized the luteal status and the dynamic of the conceptus during the first 20 days of gestation in mares with different ages and degrees of endometrial degeneration. Total area of the corpus luteum (CL), luteal vascularity, CL area with blood signals, progesterone concentrations (P4), embryonic vesicle diameter, number of embryonic location changes, embryonic fixation position and uterine contractility were evaluated. In Experiment 1, mares ≤6 years of age (Young group, 5.6 ± 0.2 years, n = 7 mares) and mares ≥15 years of age (Old group, 17.2 ± 0.9 years, n = 6 mares) were used to investigate the effect of age. In Experiment 2, the luteal and embryonic parameters were compared between mares with minimal (Mild group, endometrial category I, n = 9 mares) and severe (Severe group, endometrial category III, n = 7 mares) endometrial degeneration. The Old and Severe groups had greater (p ≤ 0.04) total CL area and reduced luteal vascularity (p ≤ 0.04) than the Young and Mild groups, respectively. However, P4 levels and CL area with blood signals were similar (p ≥ 0.8) between the groups. A negative effect of age (p < 0.01), but not of endometrial degeneration (p = 0.6), was found for the embryonic vesicle diameter. The conceptus mobility was high (p > 0.1) until day 14 of gestation in the Severe group, while a reduced number of changes of the embryo location was detected earlier (p < 0.05) in the Old group. In conclusion, the newly formed CL of aged mares and mares with severe endometrial degeneration suffered a structural remodelling to safeguard the local blood supply and the continuous P4 output during early gestation. Moreover, an earlier reduction of the embryonic mobility and a delayed development of the conceptus were associated with advanced age, regardless of the degree of endometrial degeneration.  相似文献   

14.
Mares that had previously been fed to attain body condition scores (BCS) of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) were used to determine the interaction of BCS with the responses to 1) administration of equine somatotropin (eST) daily for 14 d beginning January 20 followed by administration of GnRH analog (GnRHa) daily for 21 d and 2) 4-d treatment with dexamethasone later in the spring when mares in low BCS had begun to ovulate. The majority of mares with high BCS continued to cycle throughout the winter, as evidenced by larger ovaries (P < 0.002), more corpora lutea (P < 0.05), greater progesterone concentrations during eST treatment (P < 0.04), and more (P < 0.05) large- and medium-sized follicles. Treatment with eST alone or in combination with GnRHa had no effect (P > 0.05) on ovarian activity or ovulation. Plasma leptin concentrations were greater (P < 0.002) in mares with high BCS; however, there was no effect (P > 0.10) of eST treatment. Plasma IGF-I concentrations were greater (P < 0.0001) in mares treated with eST compared with mares given vehicle, and mares with high BCS had greater IGF-I (P < 0.02) and LH concentrations (P < 0.02) than mares with low BCS. Plasma leptin concentrations in mares with high BCS were increased (P < 0.001) within 12 h of dexamethasone treatment; the leptin response (P < 0.001) in mares with low BCS was greatly reduced (P < 0.001) and transient. Glucose and insulin concentrations also increased (P < 0.0001) after dexamethasone treatment in both groups, and the magnitude of the response was greater (P < 0.0001) in mares with high BCS than in mares with low BCS. In summary,low BCS in mares was associated with a consistent seasonal anovulatory state that was affected little by eST and GnRHa administration. In contrast, all but one mare with high BCS continued to experience estrous cycles and(or) have abundant follicular activity on their ovaries. The IGF-I response to eST treatment was also reduced in mares with low BCS, as was the basal leptin concentration and leptin response to dexamethasone. Although low BCS and leptin concentrations were associated with inactive ovaries during winter and early spring, mares with low BCS eventually ovulated in April and May while leptin concentrations remained low.  相似文献   

15.
An attenuated ovulatory rise in circulating concentrations of LH is characteristically associated with the first seasonal reproductive cycle of horse mares. Unlike ovulations (OV) of subsequent estrous cycles, the first OV of the breeding season (OV1) is not preceded by elevated concentrations of progesterone (PROG). Hence, the ability of pretreatment with PROG to abolish attenuation of LH-secretion associated with OV1 was investigated. Ten nonpregnant anestrous mares were randomly divided into 2 groups; control (C) and treated (T). Per individual, when diameter of the largest follicle was consistently greater than or equal to 35 mm, C mares received 3 times daily injections of cottonseed oil (IM), for 15 d or until OV, while T mares received exogenous PROG (IM) for 15 d, in a manner designed to mimic a diestrous pattern of release. Jugular blood samples were collected daily from onset of treatment through 10 d following the third OV (OV3). Repeated measures analyses of area under the ovulatory LH-rise (AUC) and the maximum concentration of LH associated with OV (MAX) revealed a significant main effect of OV (P less than .005) but no main effect of group or OV by group interaction (P greater than or equal to .5). When groups were combined, a significant increase in mean AUC and MAX from OV1 to OV3 was observed (P less than .01). To evaluate the influence of hypothalamic-hypophyseal recrudescence on ovulatory LH-release at OV1, 16 mares were bred to foal, and subsequently initiate reproductive activity, early (E; mid April; n = 8) or late (L; mid July; n = 8) in the year. A significant OV (1, 2 or 3) by group (E or L) interaction was observed for AUC (P less than .06) and MAX (P less than .04). Mean AUC and MAX increased progressively from OV1 to OV3 in E mares (P less than .05). In L mares, neither AUC or MAX changed from OV1 to OV3 (P greater than .4). Based on these data, we suggest that attenuation of the LH-rise at OV1 in the mare, is a consequence of incomplete recrudescence of the hypothalamic-pituitary axis.  相似文献   

16.
Uterine lavage fluids from postpartum and nonparturient mares were compared to determine when the normal secretory capacity of the postpartum uterus is restored. Lavage fluids were obtained from cyclic nonparturient mares on the second, fourth or fifth day of oestrus, and 3, 8, or 14 days after ovulation (seven mares/sampling day). Twelve intact postpartum mares were sampled 1 to 28 days postpartum (group A: 1, 6, 12 and 20; group B: 2, 8, 14 and 24; group C: 4, 10, 16 and 28 days postpartum; four mares/group). Three ovariectomized (OVX) postpartum mares were sampled as mares in group C. Samples were analysed for neutrophils, bacteria, total protein concentration, proteolytic and antiproteolytic activities and for various lysosomal enzyme activities. In nonparturient mares, activities of acid phosphatase, β‐glucuronidase (B‐Gase), and N‐acetyl‐β‐D‐glucosaminidase (NAGase) in uterine lavage fluids were significantly higher in mid‐ and late‐dioestrus than in mid‐ to late‐oestrus (p < 0.05). Lysozyme concentration, trypsin‐inhibitor capacity (TIC), and plasmin activity were below the detection limit in nonparturient mares. One to four days postpartum, total protein, acid phosphatase, B‐Gase, and NAGase were high but declined rapidly thereafter. Lysozyme and plasmin activities were high 1 to 6 days postpartum. TIC peaked around day 6 postpartum. On day 16 postpartum, acid phosphatase, B‐Gase, and NAGase, being progesterone‐dependent, tended to be higher in intact mares than in OVX ones (p < 0.1). Total protein and lysozyme concentrations, TIC, and B‐Gase (p < 0.01) and acid phosphatase (p < 0.05) activities were significantly higher in parturient mares during postpartum oestrus than in oestrous nonparturient mares. High total protein concentration and TIC, and detectable lysozyme and plasmin activities during postpartum oestrus were associated with uterine inflammation. During dioestrus, differences between postpartum and nonparturient mares were not statistically significant and suggested that the endometrium of postpartum mares had resumed its normal secretory capacity by this time.  相似文献   

17.
The objectives of the study were to monitor the detailed pattern for mRNA expression (RT-PCR and RPA) of IGFs, IGFR-1, IGFBPs, GHR and localization of protein (immunohistochemistry) for IGF-1 and IGFR-1 in bovine follicle classes during final maturation and different corpus luteum (CL) stages during estrous cycle and during pregnancy. A relative high expression of IGF-1 in theca interna (TI) was observed before selection (E<0.5ng/mL). In GC, mRNA expression increased after selection. In contrast, IGF-2 was mainly expressed in the TI. The IGFR-1 mRNA was present in the TI and GC with increasing levels during final development. The expression results were confirmed by localization of IGF-1 and IGFR-1 proteins in GC and TI. There is clear evidence for the local expression of IGFBPs in TI and GC compartment with clear regulatory differences. In CL, the highest mRNA expression of IGF-1, IGF-2 and IGFR-1 was observed during early luteal phase, followed by a decrease, and then by a tendency of an increase during the mid and late luteal phases of the cyclic CL. This level remained low during pregnancy. Intense immunostaining for IGFR-1 in CL was observed mainly in large luteal cells. Evidence for a mRNA for all six IGFBPs were obtained with distinct differences for BP-3, -4 and -5. In conclusion, this comprehensive study gives clear evidence for an important role of the IGFs and IGFBPs in bovine follicular development and CL function. The relative amounts of IGFBPs may ultimately determine ovarian IGF action.  相似文献   

18.
Corpus luteum (CL) regression is required during the estrous cycle. During CL regression, luteal cells stop producing progesterone and are degraded by apoptosis. However, the detailed mechanism of CL regression in cattle has not been fully elucidated. The aim of this study was to evaluate autophagy, lysosome activity, and apoptosis during CL regression in cattle. The expression of autophagy-related genes (LC3α, LC3β, Atg3, and Atg7) and the protein LC3-II was significantly higher in the late CL than in the mid CL. In addition, autophagy activity was significantly increased in the late CL. Moreover, gene expression of the autophagy inhibitor mammalian target of rapamycin (mTOR) was significantly lower in the late CL than in the mid CL. Lysosome activation and expression of cathepsin-related genes (CTSB, CTSD, and CTSZ) showed significant increases in the late CL and were associated with an increase in cathepsin B protein. In addition, mRNA expression and activity of caspase 3 (CASP3), an apoptotic enzyme, were significantly higher in the late CL than in the mid CL. These results suggest simultaneous upregulation of autophagy-related factors, lysosomal enzymes and apoptotic mediators, which are involved in regression of the bovine CL.  相似文献   

19.
Ultrasound‐guided follicular aspiration was performed in 26 Criollo crossbred mares, followed by the evaluation of ultrasonographic images of the Corpus luteum (CL) that was formed after puncture of follicles of different diameters (Group 25–29 mm; Group 30–35 mm and Group >35 mm). Serum progesterone (P4) concentrations were measured to determine CL function. The size of the CL was measured and the CL was classified based on the following echoscore: 1– anechoic tissue; 2– poorly defined luteal structure with low echogenicity; 3– echogenicity analogous to a luteal structure. The proportion of aspirated follicles that formed a functional CL (based on P4 concentration) 8 days after aspiration was 57.1% (4/7; CL size 25–29 mm), 75.0% (6/8; CL size 30–35 mm) and 72.7% (8/11; CL size >35 mm), respectively (p > 0.05). The echographic scores of aspirated follicles (indicating the presence or absence of a CL) were consistent with serum P4 concentrations (p < 0.0001). Of 26 aspirations, 18 resulted in luteal function confirmed by increased progesterone concentrations ([P4] > 1.0 ng/ml); 17 of these mares (94.4%) had an echoscore (2–3) compatible with luteinization (p = 0.0372). Eight days after aspiration, serum [P4] > 2.0 ng/ml was associated with high (p = 0.0056) CL echoscore (3) in 15 of 17 mares (88.2%). The echoscore used in this study was valuable as a screening test to detect the presence of a functional CL after aspiration. An echoscore of 3 served as a practical and efficient method to confirm luteinization.  相似文献   

20.
The purpose of this study was to explore the variations in the circulating leptin concentrations of the wild ground squirrels in relation to seasonal changes in testicular activities. Hematoxylin-eosin staining showed all types of elongated spermatids and spermatogenic cells existed in the testis in April, while the primary spermatocytes and spermatogonia were most advanced stages of germ cells in June. In addition, the primary spermatocytes, secondary spermatocytes, and spermatogonia were most advanced stages of germ cells in September. The highest circulating leptin concentration was consistent with the maximum body weight results from accumulation of adipose tissue in September. The mRNA expression level of leptin receptor (Ob-R) and STAT3 was lowest in June, raised in September, and remained increased in April. Ob-R and STAT3 were stronger staining in the Leydig cells in July. Moreover, the concentrations of testosterone (T) showed the maximum values in April, the minimum values in June, and significant increases in September. Furthermore, it is worth noting that the levels of T increased with the mRNA levels of Ob-R, STAT3, StAR, and testicular steroidogenic enzymes (3β-HSD, P450c17, and P450scc). Moreover, RNA-seq analyses of testis during the different periods showed that a total of 4209 genes were differentially expressed genes (DEGs); further analysis revealed that DEGs related with the Jak/STAT pathways and reproduction were altered. Taken together, the results suggested that the leptin regulated testicular function through the Jak/STAT pathways and testicular steroidogenic factor expressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号