首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It is believed that European beech (Fagus sylvatica L.) will increase its competitive ability at its northern range margin in Scandinavia due to climate change. In mixed old-growth forests of beech and Norway spruce (Picea abies (L.) Karst.) at Siggaboda nature reserve (southern Sweden), stand structure characteristics were sequentially recorded in the years 2004, 2005 and 2007 as well as growth in stem diameter using tree-coring analyses. Using these measurements, we studied the effects on stand dynamics of an extreme storm event (2005 “Gudrun” hurricane), drought and heat (mid-summer 2006, spring 2007) and subsequent bark beetle attacks on spruce (growing season 2007), overlaid with warming tendencies. The storm, which caused disastrous damage in many stands nearby, had comparatively little impact on the structure of the spruce–beech stand. All together, only 32 trees (19 spruces, 10 beeches, 3 other species) per hectare were thrown or broken mainly in the leeward direction (NE) or impacted by secondary damage by uprooted neighbour trees; this represents 7% of the total tree number and 11% of the growing stock. Diameter and height structure did not change significantly. However, the 2006 drought and the 2007 attack of biotic agents changed the stand structure and composition strongly due to the death of about 19% of the dominating older spruce trees that accounted for 35% of total stand volume. This resulted in a considerable increase in beech’s contribution to stem number (4% increase) and wood volume of the living stand (7% increase). A comparison of diameter growth of beech and spruce during the periods 1894–1949 and 1950–2005 showed a distinct decrease in growth superiority of spruce during the last 50 years. These results support the idea of a northward migration of European beech as a nemoral tree species in Sweden, due to a higher tolerance to the abiotic and biotic threats accompanying climate change and an increased competitive ability compared to boreal tree species Norway spruce.  相似文献   

3.
Voles and shrews are key species in northern forest ecosystems. Thus, it is important to quantify to what extent new forestry practices such as planting of non-native tree species impact these small mammals. In northern Norway stands of coastal subarctic birch forests have increasingly been converted to non-native spruce stands during the last century. This leads to changes in the forest floor vegetation and soil conditions that can be expected to negatively impact the community of ground-dwelling small mammals. In this 10-year trapping study we contrasted seasonal small mammal population abundances in spruce plantations with four birch forest varieties. Six different small mammal species were trapped (in descending order of abundance; common shrew Sorex araneus, red vole Myodes rutilus, field vole Microtus agrestis, grey-sided vole M. rufocanus, pygmy shrew S. minutus and water shrew Neomys fodiens). None of the voles appeared to exhibit temporal dynamics resembling population cycles. The three most numerous species were clearly less abundant in the spruce plantations compared to the other forest types. Autumn abundances were most impacted by spruce plantations, indicating that growth rates in the reproductive season were more influenced than winter declines. Species associated with productive forest habitats (i.e. field vole and common shrew) were most impacted by tree species conversion. Still young spruce plantations inter-mixed with birch trees and the ecotone habitat, sustained small mammal abundances comparable to the native birch forests. This implies that managing spruce plantations to maintain a mix of different tree species and high spatial heterogeneity (i.e. more ecotones), will reduce the negative impacts on the small mammal community. On the contrary, if young spruce plantations, as they age become spruce monocultures covering larger parts of the landscapes than they do presently, the negative effects on small mammal communities may be larger than observed in the present study.  相似文献   

4.
Tree growth and carbon dynamics are important issues especially in the context of climate change. However, we essentially lack knowledge about the effects on carbon dynamics especially in mixed stands. Thus, the objective of this study was to test the effects of climatic changes on the above and below ground carbon dynamics of a mixed stand of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) by means of scenario simulations. To account for the typical tree interactions in a mixed-species stand a spatial explicit tree growth model based on eco-physiological processes was applied. Three different climate scenarios considering altered precipitation, temperature, and radiation were calculated for an unthinned and a thinned stand. The results showed significant changes of above and belowground biomass over time, especially when temperature and radiation were increased additionally to decreased precipitation. The reduction in biomass increments of Norway spruce were more attenuated above than below ground. In contrast, the results for beech were the opposite: The belowground increments were reduced more. These results suggest a shift in the species contribution to above and belowground biomass under dryer and warmer conditions. Distinct effects were also found when thinned and unthinned stands were compared. A reduced stand density changed the proportions of above and below ground carbon allocation. As a main reason for the changed growth reactions the water balance of trees was identified which lead to changed biomass allocation pattern. This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

5.
European beech Fagus sylvatica and Norway spruce Picea abies are economically and ecologically important forest trees in large parts of Europe. Today, the beech forest reaches its northern distribution limit in south-eastern Norway and it is expected to expand northwards due to climate warming. This expansion will likely result in fundamental ecosystem changes. To increase our knowledge about the competitive balance between spruce and beech, we have investigated how beech and spruce litter affect spruce seedling emergence, growth and uptake of C and N. We did this in a seed-sowing experiment that included litter layer removal as well as reciprocal transplantations of litter layers between spruce and beech forests. Our results show that spruce seedling emergence was significantly impaired by both litter layer types, and especially so by the beech litter layer in the beech forest. The low seedling emergence in beech forests is concurrent with their lower light availability.  相似文献   

6.
GURNELL  J. 《Forestry》1993,66(3):291-315
Seed production and seed losses were monitored in an oak (Quercusrobur) wood in southern England between 1975 and 1988. In additionto acorns, seeds from several large beech (Fagus sylvatica)and sweet chestnut (Castanea sativa) trees which occurred withinthe wood, and from the understorey of hazel (Corylus avellana)trees, were also monitored. The seeds from these four tree speciesare all subject to heavy predation by rodents, as well as otherseed-eaters such as birds and insects. Seed fall tended to be irregular and three years, 1976, 1985and 1987 were considered oak mast years. There were too fewyears with large acorn crops to examine whether resource depletionin these years resulted in poor crops in subsequent years. Therewas no correlation in seed production between the four treespecies which does not agree with one of the predictions ofthe predator satiation theory of masting behaviour. The effectsof weather on seed production were investigated but few significantcorrelations were found. In general the results tended to supportprevious findings. Between 1980 and 1982 a serious outbreakof Tortrix moth caterpillars occurred within the wood and mayhave affected acorn production. A negative relationship wasfound between oak defoliation and acorn production in the subsequentyear. The loss of seeds from the forest floor was initially rapidand in 9 years no seeds survived into the following year andfood conditions were poor for granivores. In 3 of the remaining4 years acorns survived well into spring and early summer providinggood food conditions for forest rodents through to the timeswhen alternative food supplies became available. Although oaktrees contributed most seed energy in good years, the othertree species, especially beech, became important when acornproduction was poor. Predispersal losses due to predators werefrequently high and averaged 80 per cent, 40 per cent, 38 percent and 33 per cent in hazel, sweet chestnut, oak and beechrespectively. On average, hazel nuts tended to fall first, some6 weeks before acorns which tended to be the last seeds to fallof the four tree species. Knopper galls and weeviled acornsfell earlier than sound acorns. A key-factor analysis indicatedthat a failure to mature, predispersal predation and insectinfestation from weevils and Knopper galls contributed equallyto changes in numbers of acorns among years.  相似文献   

7.
Canopy litterfall is a significant pathway for return of nutrients and carbon (C) to the soil in forest ecosystems. Litterfall was studied in five even-aged stands of Norway spruce, Sitka spruce, Douglas-fir, European beech and common oak at three different locations in Denmark; two sandy sites, Ulborg and Lindet in Jutland, and one loamy site, Frederiksborg on Zealand. Litterfall was collected during three years from 1994 to 1996 in all five species and during six years from 1994 to 1999 in Norway spruce, Sitka spruce and European beech. The average total litterfall was in the range of 3200–3700 kg ha−1 yr−1 and did not differ significantly among tree species. There were no significant differences in total litterfall among sites during the short period, but during the longer period the richer site Frederiksborg had significantly higher total and foliar litterfall amounts compared to the more nutrient-poor sites Lindet and Ulborg. There were close relationships between foliar and total litterfall suggesting that foliar litterfall can be reliably estimated from total litterfall. Beech and oak bud scale litter was significantly related to foliar litterfall. The amount of branch and twig litter was significantly higher in oak than in other tree species. The average foliar litterfall was well related to the annual volume increment. The relationship differed markedly from previously reported relationships based on global litterfall data suggesting that such relationships are better evaluated at the regional level. Nutrient concentrations and fluxes in foliar litterfall were not significantly different among the five tree species. However, there was a significant effect of site on most nutrient concentrations of the three litterfall fractions, and foliar fluxes of P, Ca and Mn were all significantly highest at Frederiksborg and lowest at Ulborg. The similarity in litterfall inputs to the forest floor under these five tree species suggested that previous reports of large variability in forest floor accumulation should primarily be attributed to differences in litter decomposition.  相似文献   

8.
To study the decay of coarse woody debris (CWD) in forest ecosystems, it is necessary to determine the time elapsed since tree death, which is difficult at advanced decay stages. Here, we compare two methods for age determination of CWD logs, dendrochronological cross-dating and radiocarbon analysis of the outermost tree ring. The methods were compared using samples from logs of European beech, Norway spruce and Sessile oak decomposing in situ at three different forest sites. For dendrochronological cross-dating, we prepared wood discs with diameters of 10–80 cm. For radiocarbon analysis, cellulose was isolated from shavings of the outermost tree rings. There was an overall good agreement between time of death determined by the two methods with median difference of 1 year. The uncertainty of age determination by the radiocarbon approach did not increase with decreasing carbon density, despite incomplete separation of chitin from the extracted cellulose. Fungal chitin has the potential to alter the radiocarbon signature of tree rings as the carbon for chitin synthesis originates from different sources. Significant correlations between year of tree death and carbon density of wood were found for beech and spruce, but not for oak due to relatively small decreases in carbon density within 50–60 years. Total residence times of CWD were calculated from these correlations and revealed 24 years for beech and 62 years for spruce. The uncertainty of total residence times results mainly from huge natural variability in carbon density of CWD rather than uncertainty in the age determination. The results suggest that both methods are suitable for age determination of CWD.  相似文献   

9.
We examine whether different guilds of foragers remove seeds differentially according to seed quality (seed size and insect infestation) and seed location (habitat and microhabitat) in a mixed oak-beech forest. Video recordings indicated that the wood mouse (Apodemus sylvaticus) was first to encounter seeds. Foragers preferred acorns to beechnuts, large to small size and sound to infested. Nevertheless, infested seeds were removed by rodents even when sound seeds were present. Seeds that were not preferred by scatter-hoarding rodents remained longer on the ground and were more vulnerable to predation and desiccation (4% moisture loss per day). However, seeds that were removed by scatter-hoarders were moved away from their mother trees (96%) and cached individually (32%), increasing their moisture content (3% per day). Buried seeds, simulating scatter-hoarding behavior, experienced only a 17% removal after 4 months. Seed removal differences among habitats were not due to habitat attributes but to the spatial distribution of rodent-preferred microhabitats. Thus, a significant lower seed removal was observed under the tree canopy with no shrubs. However, seed removal in forest gaps with deadwood cover was not significantly different from the preferred microhabitat (under shrub cover). In pure beech forests, seed removal by rodents only occurred under Ilex aquifolium (the only perennial cover) and under woody debris. This study concludes that seed quality and seed location determine the contribution of different removers (predators vs. dispersers), their seed selection and their removal speed, leading to different seed fates which will eventually affect tree regeneration.  相似文献   

10.
Water use efficiency (WUE) was compared in three upland South Moravian forested microwatersheds in the light of effects of global climate change on forest ecosystems (GCC). The experimental catchments were characterized as upland headwater forested microwatersheds of similar size and morphology and silvicultural system, but each with different dominant tree species in the stands (over 50% of forest stand composition in living stock): Norway spruce, European beech and mixed forest. WUE was evaluated according to mean daily streamflow reduction, measured at the discharge points of the recipients of the individual catchments in precipitation-free periods lasting more than 5 days. During these times, streamflow dynamics are mainly influenced by evapotranspiration processes occurring in the forest stands. Four precipitation-free periods were observed, two in the middle of the growing season and two at its end. Two of these periods were long (15 days or more), and two were shorter (6 days). The results indicated that WUE of upland forested catchments can be very different, depending upon the dominant tree species and the seasonal phase. Highest WUE at the catchment scale (never decreasing below 80%) was exhibited by beech predominating site. WUE of mixed forest was high as well, never decreasing below 69%. The lowest WUE was exhibited by spruce predominating site, especially during a long precipitation-free period in the summer where it decreased down to 39%. In the context of the landscape, upland microwatersheds with pure spruce stands could cause its accelerated dry out in the summer and pose a significant threat to sustainable water and forest management of these areas. In comparison, mixed forests stands where spruce is not the dominant species or beech stands should still be a viable option even under the effects of GCC.  相似文献   

11.
Seed production in tropical timber trees is limited by abiotic resources, pollination and pre-dispersal seed predation. Resource availability is influenced by the number of competing trees and by lianas that often reach high densities in disturbed parts of tropical forests. The distance between conspecific trees affects pollination efficiency and seed predation intensity, and may therefore indirectly affect the long-term sustainability of selective logging. Here we investigate how reproductive status and the number of seeds dispersed per tree are affected by liana load, distance to the nearest conspecifics, number of competing neighbours and tree diameter in the timber trees Cariniana ianeirensis and Terminalia oblonga. The study is based on a large-scale silvicultural experiment in lowland Bolivia. We found that the reproductive status of the two species was negatively correlated with liana cover and positively with tree diameter. In C. ianeirensis the most liana-infested trees dispersed fewer seeds. In T. oblonga the intensity of pre-dispersal seed predation decreased with distance to the nearest conspecifics. There was no evidence that seed viability or seed production decreased with distance to nearest conspecifics in either species as would be expected if isolation resulted in increased self-pollination. Our results indicate that reproduction can be severely reduced in timber trees if the largest, most healthy and least liana-covered trees are logged, but that liana cutting on the remaining seed trees can considerably improve seed production. In some species seed production may be further improved by ensuring that seed trees are located far apart.  相似文献   

12.
Elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) affect primary metabolism of trees in opposite ways. We studied their potential interactions on carbohydrate concentrations and contents. Two hypotheses currently under debate were tested. (1) Stimulation of primary metabolism by prolonged exposure to elevated [CO2] does not compensate for the adverse effects of O3 on carbohydrate accumulation and biomass partitioning to the root. (2) Growth in a mixed-species planting will repress plant responses to elevated [O3] and [CO2] relative to conditions in a monoculture. To this end, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) saplings grown under conditions of intra- and interspecific competition were pre-acclimated for 1 year to ambient or elevated [CO2]. In the following 2-year phytotron study, trees were exposed to factorial combinations of ambient and elevated [O3] and [CO2]. The total carbohydrate content (sugar and starch) of spruce was greater in plants exposed to elevated [CO2] than in plants exposed to ambient [CO2]. In beech, the opposite response was observed, especially when this species was grown in combination with spruce. Overall, the data did not support Hypothesis 1, because the adverse effects of O3 were counteracted by elevated [CO2]. Support for Hypothesis 2 was species-dependent. In beech saplings, reduction of carbohydrates by elevated [O3] and stimulation by elevated [CO2] were repressed by competitive interaction with spruce. In contrast, in spruce, stimulation of carbohydrates by elevated [CO2] was similar in mono- and mixed cultures. Thus Hypothesis 2 was supported for beech but not spruce. We conclude that, in juvenile beech and spruce, a 3-year exposure to elevated [CO2] counteracts the adverse effects of O3 on carbohydrate concentrations and contents. For beech, sensitivity to elevated [CO2] and [O3] was high in monoculture but was largely repressed by interspecific competition with spruce. In contrast, the response of spruce to perturbations of atmospheric chemistry was not significantly affected by either intra- or interspecific competition.  相似文献   

13.
Litterfall was investigated in three even-aged Norway spruce (Picea abies), sitka spruce (Picea sitchensis) and beech (Fagus sylvatica) stands on a nutrient poor-soil in Southern Denmark. Dry weights and N, P, K, S, Mg, Ca, Na, Al, and Fe concentrations and fluxes were examined in litterfall fractions. Foliage litter amounted to 90% of total litterfall. The tree stands showed a similar mean annual litterfall. In the spruce stands, annual litterfall was correlated negatively with the current year increment and positively with the previous year increment. Annual litterfall in beech was constant during the 6 study years whereas Norway spruce and sitka spruce showed large fluctuations between years caused by drought, spruce aphid infestations and probably sea salt stress. Norway spruce responded with a long lasting elevated needle loss. Sitka spruce responded to infestations with premature needle loss during short periods. The presence of a large syrphid (Coccinellidae) population was important in regulating aphid (Elatobium abietinum) population density. The between-year variation in element concentrations of litterfall was small whereas variations during the year were large. Interspecific levels were recognized: Norway spruce>beech>sitka spruce. High concentrations in Norway spruce were ascribed to a combination of drought, sea salt stress and elevated transpiration. In sitka spruce, aphid infestations reduced the litterfall N content. Sitka spruce showed the smallest amount of base cation fluxes with litterfall. In contrast, spruce and beech exhibited even litterfall element fluxes. Litterfall studies revealed reduced vitality in the non-native spruce stands and underlined the perception of a healthy stand of native beech.  相似文献   

14.
Seed predation and dispersal are key processes in the survival and distribution of plant species. Many animals cache seeds for later consumption, and, failing to recover some of these seeds, act as seed dispersers, influencing post-dispersal seed and seedling survival. Both animal and plant benefit from scatterhoarding and natural selection of seed characteristics and adaptations of seed predators (and dispersers) is one of the most important examples of co-evolution and mutualism. We studied the producer–consumer Arolla pine (Pinus cembra)–red squirrel (Sciurus vulgaris) system in a subalpine forest in the Italian Alps. Arolla pine produced large seed-crops (masting) at irregular intervals, followed by years with poor or moderate seed production. Squirrel density fluctuated in synchrony with the food resource, eliminating the time-lag normally present when resources are produced in pulses. In all years except 2009 (a mast-crop year), all Arolla pine cones were harvested (their seeds consumed and/or cached) by September to late October by different species. Both squirrels and nutcrackers (Nucifraga caryocatactes) fed on seeds, and their relative pre-dispersal predation rates (on cones in the canopy) differed between years. Overall, nutcrackers consumed more seeds between July and October than squirrels, but in 1 year squirrels took the largest number of seeds. Pre-dispersal seed predation by squirrels tended to be lower in years with large seed-crop size and there was a positive correlation, over the entire study period, between density of recovered hoards and Arolla pine seed density of the previous year. We conclude that (i) squirrels and nutcrackers are important pre-dispersal seed predators and seeds dispersers; (ii) squirrels are also post-dispersal seed predators, and (iii) the proportion of cached seeds consumed by squirrels increased with the size of the Arolla pine seed-crop, suggesting that red squirrel is a conditional mutualistic scatterhoarder of Arolla pine seeds.  相似文献   

15.

A 7-year study was conducted to examine the growth (diameter and root) response of Norway spruce (Picea abies (L.) Karst.) seedlings to elevated CO2 (CO2ELV, 770 μmol (CO2) mol?1) in different mixture types (monospecific (M): a Norway spruce seedling surrounded by six spruce seedlings, group-admixture (G): a spruce seedling surrounded by three spruce and three European beech seedlings, single-admixture (S): a spruce seedling surrounded by six beech seedlings). After seven years of treatments, no significant effect from elevated CO2 was found on the root dry mass (p?=?0.90) and radial growth (p?=?0.98) of Norway spruce. Neither did we find a significant interaction between [CO2]?×?mixing treatments (p?=?0.56), i.e. there was not a significant effect of CO2 concentrations [CO2] in all the admixture types. On the contrary, spruce responses to admixture treatments were significant under CO2AMB (p?=?0.05), which demonstrated that spruce mainly increased its growth (diameter and root) in M and neighbouring with beech was not favourable for spruce seedlings. In particular, spruce growth diminished when growing beside high proportions/numbers of European beech (S). Here, we also evaluated the association between tree-ring formation and climatic variables (precipitation and air temperature) in different admixture types under elevated and ambient CO2 (CO2AMB, 385 μmol (CO2) mol?1). Overall, our result suggests that spruce responses to climate factors can be affected by tree species mixing and CO2 concentrations, i.e. the interaction between climatic variables?×?admixture types?×?[CO2] could alter the response of spruce to climatic variables.

  相似文献   

16.
In Central Europe, the conversion of pure Norway spruce stands (Picea abies [L.] Karst.) into mixed stands with beech (Fagus silvatica L.) and other species like e.g. Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) is accomplished mainly by underplanting of seedlings beneath the canopy of overstorey spruce trees after partial cutting treatments what means exposure to shade and below-ground root competition by the overstorey to the seedlings. Particularly about the second factor, our knowledge is limited. Therefore, we carried out a below-ground competition exclusion experiment by root trenching and investigated the effects on soil resources, growth, and biomass partitioning of underplanted beech and Douglas fir saplings under target diameter and strip cutting treatments. The exclusion of overstorey root competition by trenching increased the soil water potential in the second year that had a fairly dry growing season and led to significantly higher foliar concentrations of most nutrients, particularly in Douglas fir, indicating an amended nutrient supply. Both improvements were accompanied by an increase in length and diameter increment of the underplanted saplings, appearing in both species only after having surpassed a species-specific threshold light value (Douglas fir 16% of above canopy radiation, beech 22%). We also found significant interactions between trenching and light for specific fine root length and further biomass and morphological parameters. Judged by the much steeper increase in height and diameter growth with increasing light after release from below-ground competition, Douglas fir saplings appeared to be more sensitive to root competition than beech saplings what conforms to older findings for beech. According to our results, a strip cutting seems to be more appropriate than a target diameter cutting treatment to replace a pure spruce stand by a mixed stand with beech and Douglas fir.  相似文献   

17.
Fluorescein diacetate as a viability stain for tree roots and seeds   总被引:1,自引:0,他引:1  
Noland  Thomas L.  Mohammed  Gina H. 《New Forests》1997,14(3):221-232
Fluorescein diacetate (FDA) was tested as a viability stain for roots of green ash as well as for seeds of green ash and 10 other tree species. The viability level indicated by FDA staining of green ash roots agreed well with root growth potential results, bud condition assessment, and foliage browning measurements. In seed viability experiments, the FDA staining intensity of embryos was related to germination in 9 out of 11 species tested using a 30 minute stain incubation period. In the other 2 species, eastern hemlock and Scotch pine, embryo FDA staining intensity and germination were also similar, provided an 18 h stain incubation period was used. When two seedlots of differing viability were tested in each of white spruce, Douglas-fir, and pitch pine, significantly higher germination was reflected in significantly higher embryo FDA staining intensity. In Sitka spruce seed that was heat treated to produce a range of viabilities, the semilog plot of germination (log scale) and FDA staining intensity of the embryo (linear scale) had an r2= 0.95. Based on these preliminary results, FDA shows promise as a rapid viability stain for tree roots and seeds.  相似文献   

18.
Seeds from each of six full‐sib families of Norway spruce were separated into fractions of light and heavy seeds. The mean difference in 1000 seed weight between the two lots within families was 1.6 g. The terminal bud‐set after the first growth season was assessed in a nursery test. No significant differences between the seedlings from the light and heavy seed lot fraction within full‐sib families were found. No relationships were observed between the 1000 seed weights of the lots and the mean bud‐sets of their seedlings.  相似文献   

19.
In deciduous forests, tree seeds and seedlings are frequently exposed to high predation by small rodents, and this predation can have an important effect on forest regeneration. However, damage to large trees by small rodents has not been studied, except for damage observed during timber production. To determine factors affecting damage to large trees by the grey red-backed vole (Myodes rufocanus bedfordiae), the characteristics and spatial patterns of tree damage by voles at vole wintering sites were examined over 3 years in a deciduous forest in Hokkaido. This study found that the location of damaged trees was related to vole wintering sites. Vole damage was affected by tree species. Damaged trees were heavily concentrated in small areas. Leaning trees and trees that had suffered previous damage were more likely to be damaged. However, the diameter at breast height was not significantly related to vole damage. These differences in susceptibility to vole damage may result in different tree mortality.  相似文献   

20.

Understanding how species-specific disturbances affect the dynamics of mixed forests is becoming increasingly important due to rapidly changing disturbance regimes. This study estimated the effect of Norway spruce (Picea abies (L.) Karst.) mortality on the disturbance processes in two mixed beech stands of the Western Carpathians that were affected by a bark beetle outbreak. We evaluated the size distribution, fraction of canopy and expanded gaps, the characteristics of gapmakers and the contribution of different species to gap size. The measured canopy gap fraction was <5%, and most canopy gaps were small (<100 m2). Spruce was the most abundant gapmaker, and its share among gapmakers was 3–6 times higher than its share in the canopy. We found that the increase in spruce mortality due to the outbreak resulted in a fine-scale mortality pattern. However, spruce gapmakers did not contribute much to gap area size, as shown by a weak correlation between the number of spruce gapmakers and the area of expanded gaps. Diameter distribution of living versus recently dead trees showed that beech mortality occurred disproportionately in large size classes. However, dead spruce trees were equally frequent in all diameter classes, which means beetles did not exclusively attack larger trees in these stands during the outbreak. We conclude that spruce mortality may have influenced successional processes by giving a competitive advantage to two other species that were not affected by the outbreak, provided that a high deer browsing intensity does not hinder the regeneration of new seedlings.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号