首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the mechanisms underlying alleviation of salt stress by arbuscular mycorrhizal fungi Glomus mosseae. Tomato (Lycopersicon esculentum L. cv. Zhongzha105) plants were cultivated in soil with 0, 50 and 100 mM NaCl. Mycorrhization alleviated salt induced reduction of root colonization, growth, leaf area, chlorophyll content, fruit fresh weight and fruit yield. The concentrations of P and K were higher in AM compared with nonAM plants grown under nonsaline and saline conditions. Na concentration was lower in AM than nonAM plants grown under nonsaline and saline conditions. AMF colonization was accompanied by an enhancement of activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) in leaves of both salt-affected and control plants. In addition, inoculation with AMF caused reduction in MDA content in comparison to salinized plants, indicating lower oxidative damage in the colonized plants.  相似文献   

2.
The influence of arbuscular mycorrhizal fungi (AMF) colonization on free amino acid concentrations in strawberry (Fragaria × ananassa Duch., cv.Nohime) plants was investigated using two AMF species [Glomus mosseae (Gm), Gl. aggregatum (Ga)] under phosphorus-supplemented (+P) or non-supplemented (−P) conditions. Ten weeks after AMF inoculation, mycorrhizal plants showed higher values in dry weight of both shoots and roots than did non-mycorrhizal ones among most of the treatments. Shoots and roots of mycorrhizal plants had greater phosphorus concentrations in −P plots, while in +P plots, P concentrations differed little among the inoculation treatments. AMF colonization was greater in plants inoculated with Gm than in plants inoculated with Ga. Total amino acid concentration was higher in most of the plants inoculated with Gm than in non-mycorrhizal ones regardless of P treatment. Serine, glutamic acid, glycine, alanine, leucine and GABA were higher in both mycorrhizal plants in −P plots than in non-inoculated plants. In +P plots, threonine and isoleucine concentrations were greater in both mycorrhizal plants than in non-inoculated ones. Asparagine, glutamic acid, glycine, citrulline, GABA and arginine were greater in plants inoculated with Gm than in non-mycorrhizal ones. These findings verified that inoculation with AMF increases total amino acid concentrations and concentrations of specific amino acids in strawberry plants with or without phosphorus supplementation, though the effects varied with species of mycorrhizal fungus.  相似文献   

3.
Citrus, a cold-sensitive plant, often suffers from low temperature, which seriously affects citrus productivity. The objective of the study was to elevate the roles of an arbuscular mycorrhizal fungus, Glomus mosseae, in growth, photosynthesis, root morphology and nutrient uptake of citrus (Citrus tangerine) seedlings under temperature stress conditions. Three-month-old seedlings with or without G. mosseae were grown for 55 days at moderate temperature (25 °C) and low temperature (15 °C). Low temperature severely restrained symbiotic development including mycorrhizal colonization, entry point, vesicle and arbuscule relative to moderate temperature. Mycorrhizal seedlings grown at 25 °C maintained better stem diameter, plant height, leaf area, root and total dry weights, higher photosynthetic rate, transpiration rate and stomatal conductance, higher root volume, and more uptake of P, Ca and Mg relative to corresponding non-mycorrhizal control. However, mycorrhizal inoculation significantly increased only the root length and the Ca content of the seedlings grown at 15 °C. The results indicated that mycorrhizal formation had the beneficial effects on growth, photosynthesis, root morphology and part nutrient uptake of citrus seedlings grown at moderate temperature, but the beneficial roles of arbuscular mycorrhizas were almost lost at low temperature.  相似文献   

4.
《Scientia Horticulturae》2005,105(1):145-151
Seedlings of litchi (Litchi chinensis Sonn.) were inoculated with two arbuscular mycorrhizal (AM) fungal species, Glomus intraradices and Gigaspora margarita. Plant growth response and morphological changes induced by AM inoculation were investigated. Plant endogenous indoleacetic acid (IAA) and isopentenyl adenosines (iPAs) concentrations were determined. With mycorrhizal infection rate of 9.0–18.8%, plant biomasses increased by 13.5–30.1%. Leaf number, leaflet number, total leaf area and first order lateral root number were significantly increased by AM inoculation. Although G. margarita significantly increased plant P content and uptake, no significant difference in N nutrition was observed between mycorrhizal and non-mycorrhizal plants. Enzyme-linked immunosorbent assay (ELISA) indicated the changes in IAA and iPAs induced by AM inoculation. IAA concentrations in shoots and in roots were 5–7 times and 2–5 times higher in mycorrhizal than in non-mycorrhizal plants, respectively. The iPAs concentrations increased by 1.7 times in shoots and by 1.9–2.5 times in roots, due to mycorrhizal inoculation. We suggest that the changes in endogenous phytohormone level may be responsible for morphological alteration induced by AM inoculation.  相似文献   

5.
The present study investigates the performance of mango seedlings screened with indigenous arbuscular mycorrhizal (AM) fungi and Azotobacter chroococcum strains under solarized, chemical sterilized and natural soil conditions. Two isolates each of AM fungi namely, Glomus fasciculatum (Thaxter sensu Gerdemann) and Glomus mosseae (Nicol. & Gerd.), and two strains of A. chroococcum viz., A. chroococcum strain-I (AZ1) and A. chroococcum strain-II (AZ2) were inoculated at nursery stage under four different moisture conservation practices viz., black polyethylene mulch and organic mulches (grass mulch, cover crops, green manure) and clean cultivation. The observations on microbial population, root colonization, growth parameters and leaf nutrient content of the seedlings were recorded. Mango seedling's inoculated with G. fasciculatum and AZ1 had increased seedling's height, diameter, leaf area and total root length, microbial consortium of the rhizosphere soil and leaf N, P, K and Zn content in plots where solarization and black polyethylene mulching was used. The study revealed that the inoculation of mango stones and the saplings with G. fasciculatum and AZ1 under solarized black polyethylene mulched practice may be considered the best practice for raising mango nursery and maintaining soil health under rain-fed conditions of mid-hills of north-west Himalayas.  相似文献   

6.
We screened the mycorrhizal species for an inoculum protocol would green pepper seedling production and compensate for nutrient deficiency. Three greenhouse studies (on three successive years) were conducted under nursery conditions using five arbuscular mycorrhizal (AM) fungi and their mixture. The AM fungi, Glomus mosseae, G. clarum, G. caledonium, G. intraradices and G. etunicatum propagated on maize roots were used. The AM fungi were inoculated to seed stages and half of the seed stages inoculated plants were re-inoculated at the seedling stages. In Experiment I, plants were harvested once and in Experiments II and III, plants were harvested twice at different developmental stages.  相似文献   

7.
 以‘早钟6号’枇杷(Eriobotrya japonica Lindl.‘Zaozhong 6’)实生苗为试材,研究了3种水分梯度(正常供水、轻度水分胁迫和重度水分胁迫)下,分别接种3种丛枝菌根(arbuscular mycorrhiza,AM)真菌(光壁无梗囊霉Acaulospora laevis、摩西球囊霉Glomus mosseae和苏格兰球囊霉Glomus caledonium)对实生苗生长和养分吸收的影响。结果表明,接种AM真菌的植株具有更高的地上部和地下部干质量;3种AM真菌均可增加枇杷苗氮、钾、磷、钙、镁、铜的吸收。说明接种AM真菌增强了枇杷苗的养分吸收能力,提高了其抗旱性,促进了枇杷苗生长。在3种AM真菌中苏格兰球囊霉是枇杷苗的优势菌种。  相似文献   

8.
盐水胁迫下接种AM真菌对牡丹幼苗抗氧化酶活性的影响   总被引:3,自引:1,他引:2  
郭绍霞  陈丹明  刘润进 《园艺学报》2010,37(11):1796-1802
将牡丹(Paeonia suffruticosa)幼苗接种丛枝菌根(arbuscular mycorrhizas,AM)真菌摩西球囊霉(Glomus mosseae)和地表球囊霉(G. versiforme)后,在4个不同盐水处理(质量百分比0、8%、16%和24%)下,研究AM真菌对牡丹抗氧化酶活性的影响。研究结果表明,8%盐水处理,牡丹幼苗菌根依赖性最高,且接种G. mosseae的处理显著高于接种G. versiforme的处理,分别为172%和150%;该胁迫30 d时,接种G. mosseae和G. versiforme植株干质量分别为0.51和0.45 g,叶片相对含水量分别为80.5%和78.5%,叶片超氧化物歧化酶(SOD)的活性分别为4.72 和4.46 U • g-1,过氧化物酶(POD)活性分别为60.3和57.4 U • min-1 • g-1,过氧化氢酶(CAT)活性分别为51.3和47.2 U • min-1 • g-1,均显著高于对照。16%和24%盐水处理下的表现与此相似。随盐胁迫时间的延长,SOD和CAT活性呈先升高后降低趋势,POD活性呈持续上升趋势。AM真菌通过增强牡丹幼苗抗氧化酶活性,提高其耐盐性,以G. mosseae接种效果较好。  相似文献   

9.
Summary

Papaya (Carica papaya L.) cv. Coorg Honey Dew is one of the most popular cultivars grown in Southern India, but it requires high doses of inorganic phosphorus (P) fertilisation for growth. Arbuscular mycorrhizal fungi (AMF) are known to improve plant growth and nutrient uptake, especially the uptake of P and micronutrients. As papaya plants respond well to high levels of P, inoculation with AMF was studied to see if AMF could fulfill the requirement for P in plants grown under field conditions. Papaya seedlings (n = 36 per AMF) were colonised separately, in polybags, for 45 d by two species of AMF, Glomus mosseae and G. fasciculatum. Seedlings were then transplanted to the field, with uninoculated seedlings as controls, in a replicated randomised block design. Three levels of P were applied [50, 75, or 100% of the recommended dose (240 g plant–1 year–1) of P fertiliser, as super-phosphate]. Plants were studied for root colonisation by AMF, for growth parameters, and for leaf nutrient contents (especially, P, Zn, and Cu). Acidic and alkaline phosphatase activities in the roots of AMF-colonised plants were recorded as these enzymes are involved in the mobilisation of P. The yields of plants up to 18 months-old, and fruit quality, measured by total soluble solids contents (TSSC) and β-carotene contents, were recorded. AMF-inoculated plants performed better than uninoculated control plants at all levels of P applied. G. mosseae was more effective at improving plant growth, fruit yield, and P and Zn contents than G. fasciculatum at the 75% and 50% P-levels. Cu contents increased at all P-levels in G. fasciculatum-colonised plants. Total soluble solids contents showed marginal improvements at the 75% P level with both fungi. β-carotene contents increased significantly in G. mosseae-colonised plants at the 50% and 75% P-levels, and in G. fasciculatum-colonised plants at the 75% P-level. The feasibility of applying on-farm produced AMF inoculum to improve papaya cultivation and to save 25% of the P applied during papaya cultivation is discussed.  相似文献   

10.
非灭菌土接种AM真菌对油蒿抗旱性的影响   总被引:1,自引:0,他引:1  
利用盆栽试验在正常水分和干旱胁迫条件下研究了非灭菌土接种AM真菌摩西球囊霉(Glomus mosseae)和土著AM真菌(Indigenous arbuscular mycorrhizal fungi)对油蒿(Artemisia ordosica)生长及抗旱性的影响。结果表明:干旱胁迫显著抑制了AM真菌对油蒿的侵染。无论在正常水分还是干旱胁迫条件下,接种AM真菌都增加了植株的分枝数、地上部鲜重和干重、地下部鲜重和干重,但没有明显提高株高、茎粗和改善组织水分状况;与未接种相比,干旱胁迫下接种土著AM真菌显著提高了根系氮、磷含量,提高了叶绿素、可溶性蛋白含量,增强了保护酶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性并降低了丙二醛的含量,因此增强了植物的抗旱性。  相似文献   

11.
Summary

The effect of the arbuscular mycorrhizal (AM) fungus Glomus versiforme on chlorosis due to iron deficiency in trifoliate orange (Poncirus trifoliata L. Raf) was studied under calcium bicarbonate stress in sand culture. Seeds were sown in a mixed substrate [1:1 (v/v), perlite:sand] with or without mycorrhizal inoculum. The test was carried out with four treatments: Hoagland and Arnon nutrient solution with normal, no added iron, or 50% normal iron at two levels of calcium bicarbonate. The results showed that the proportion of the total root length infected by the AM fungus was ≥ 83%, and was depressed under Fe deficiency. No root colonisation was found with no added AM fungus (NM plants).

Colonisation by AM fungus resulted in higher dry weights of both shoots and roots compared to NM treatments, suggesting that the AM fungus accelerated plant growth. The activities of peroxidase and catalase in NM plants were lower than in AM fungus-inoculated plants. The results indicate that AM fungus alleviated calcium bicarbonate stress on the cell membranes of host plants. The results also showed that AM fungus increased chlorophyll concentrations, iron contents, and the Fe:P ratios of whole plants, and decreased 50(10P+K):Fe ratios, which implied that the uptake and translocation of iron was strengthened. Therefore, AM fungus had a positive effect on ameliorating chlorosis due to iron deficiency in P. trifoliata L. Raf.  相似文献   

12.
The effects of root colonization by the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck and Smith on growth, flower and fruit production, and fruit quality were studied in field-grown tomato plants exposed to varying intensities of drought stress. Inoculated (M+) and non-inoculated (M−) tomato seedlings were exposed to varying intensities of drought stress by adjusting irrigation intervals. Mycorrhizal plants had significantly higher uptake of N and P in both roots and shoots regardless of intensities of drought stress. AM inoculation also significantly increased shoot dry matter and the number of flowers and fruits. The fruit yields of M+ plants under severe, moderate, mild drought-stressed conditions were higher than M− plants by 24.7%, 23.1%, 16.2% and 12.3%, respectively. Furthermore, M+ plants produced tomato fruits that contain significantly higher quantities of ascorbic acid and total soluble solids (TSS) than M− plants. Mycorrhizal effects increased with increasing intensity of drought. The overall results suggest that mycorrhizal colonization affects host plant nutritional status, water stratus and growth under field conditions and thereby alters reproductive behaviour, fruit production and quality of fruits under both well-watered and drought-stressed conditions.  相似文献   

13.
Protected horticultural crops as well as those planted in open fields particularly in the Mediterranean region have to cope with increasing salinization of irrigation water. High salinity of the supply water has detrimental effects on soil fertility and plant nutrition and reduces crop growth and yield. This study was conducted to determine if pre-inoculation of transplants with arbuscular mycorrhizal (AM) fungi alleviates salt effects on growth and yield of tomato (Lycopersicon esculentum Mill. Cv. Marriha) when irrigated with saline water. Tomato seeds were sown in polystyrene trays with 20 cm3 cells and treated with AM fungi (AM) or without (nonAM) Glomus mosseae. Once the seedlings were reached appropriate size, they were transplanted into nonsterile soil in concrete blocks (1.6 m × 3 m × 0.75 m) under greenhouse conditions. The soil electrical conductivity (ECe) was 1.4 dS m−1. Plants were irrigated with nonsaline water (ECw = 0.5 dS m−1) or saline water (ECw = 2.4 dS m−1) until harvest. These treatments resulted with soil EC at harvest 1.7 and 4.4 dS m−1 for nonsaline and saline water treatments, respectively. Root colonization with AM fungi at flowering was lower under saline than nonsaline conditions. Pre-inoculated tomato plants with AM fungi irrigated with both saline and nonsaline water had greater shoot and root dry matter (DM) yield and fruit fresh yield than nonAM plants. The enhancement in fruit fresh yield due to AM fungi inoculation was 29% under nonsaline and 60% under saline water conditions. Shoot contents of P, K, Zn, Cu, and Fe were higher in AM compared with nonAM plants grown under nonsaline and saline water conditions. Shoot Na concentrations were lower in AM than nonAM plants grown under saline water conditions. Results indicate that pre-inoculation of tomato transplants with AM fungi improved yield and can help alleviate deleterious effects of salt stress on crop yield.  相似文献   

14.
The objective of this study is to investigate the response of screening, and selection of novel indigenous AM fungal species and Azotobacter chroococcum strains for inoculating apple under different soil disinfestations and moisture conservation mulch practices for sustainable nursery management. Two local AM fungal species namely, Glomus fasciculatum (Thaxter sensu Gerdemann) and Glomus mosseae (Nicol. & Gerd.), and two strains of A. chroococcum viz., A. chroococcum strain-I (AZ1) and A. chroococcum strain-II (AZ2) were inoculated at nursery stage under soil solarization, chemical disinfestation and natural soil conditions at four different mulch materials namely, black plastic mulch (BPM), and organic mulches, i.e. grass mulch (GM); cover crops (CC); green manuring + clean cultivation (Gm + Cc). The comparative performance of the seedlings on the impact of local AM species and A. chroococcum strains on growth characteristics, microbial population, root colonization and leaf nutrient status was evaluated. The inoculation of seedlings to G. fasciculatum and AZ1 increased all growth characteristics (plant height, stem diameter, leaf area and total root length), microbial consortium of the rhizosphere soil and leaf N, P, K and Zn content in all those plots where soil solarization and black plastic mulching was used followed by chemical disinfestations and natural soil conditions at all other mulch types used. These findings suggested that the soil inoculation of G. fasciculatum and AZ1 strain to seeds and/or the saplings under soil solarization with black plastic mulch attained a desirable plant height and become ready for grafting which however saved a period of 1 year for nursery management compared to traditional nursery raising practice, and thus, it may be a viable and feasible approach to maintain soil productivity under nutrient limited soils for sustainable apple nursery production under temperate rain-fed conditions.  相似文献   

15.
Mycorrhizal and non-mycorrhizal strawberry plants, var. Cambridge Favourite, were grown in a soil low in available phosphorus as well as in the same soil dressed with KH2PO4. The soil was autoclaved and mycorrhizal plants were produced by inoculating young runner plants with sporo- carps of an Endogone sp. capable of producing vesicular-arbuscular mycorrhiza in strawberry. Leachings of sporocarps were also added to the non-inoculated plants.

In the P-deficient soil, the mycorrhizal plants absorbed significantly more P and gave significantly higher dry matter production than the nonmycorrhizal plants. The latter showed acute phosphorus deficiency symptoms. There were no differences in the P uptake and the growth of mycorrhizal and non-mycorrhizal plants in the phosphate-enriched soil.  相似文献   

16.
The effects of P, fumigation and mycorrhizal inoculation on the growth and nutrient content of pear cv. Bartlett (Pyrus communis L.) seedlings were evaluated on the P-sorbing, Parkdale soil (Vitrandepts). The P treatment levels were 0.03, 0.04, 0.06, 0.09, 0.15, 0.25, and 0.40 mg P I-1 of soil solution, based on a P-sorption isotherm. At age 145 d, dry weight, plant height, and stem diameter responses to P and to biological treatments were highly significant as were all interactions. At P levels between 0.03 and 0.25 mg I'1 the greatest growth was observed in either the unfumigated control seedlings or those given the Glomus intraradices Schenck and Smith treatment. At the highest P level thegreatest growth was observed in the plants treated with Glomus deserticola Trappe, Bloss & Menge. At the highest P level, mycorrhizal colonization and concentration of Zn and Cu declined in control plants, but not in inoculated plants.  相似文献   

17.
Most plants benefit from mycorrhizal symbiosis through improvement of water status and nutrient uptake. A factorial experiment with complete randomized blocks design was carried out in greenhouse at Tabriz University, Iran in 2005–2006. Experimental treatments were (a) irrigation interval (7, 9 and 11 days), (b) soil condition (sterile and non-sterile) and (c) arbuscular mycorrhizal fungi (AMF) species (Glomus versiforme, Glomus intraradices, Glomus etunicatum) and non-mycorrhizal (NM) plants as control. Onion (Allium cepa L. cv. Azar-shahr) seeds were sown in sterile nursery and inoculated with fungi species. One nursery left uninoculated as control. Nine weeks old seedlings then were transplanted to the pots. Average pre-irrigation soil water contents reached to about 67, 61.6 and 57.5% of FC corresponding to 7, 9 and 11 days irrigation intervals, respectively. At onion bulb maturity stage (192 days after transplanting), yield, water use efficiency (WUE) and yield response factor (Ky) were determined. The results indicated that AMF colonization increased soil water depletion significantly. G. versiforme under both soil conditions (sterile and non-sterile) and G. etunicatum in sterile soil depleted soil water effectively (P < 0.05). Mycorrhizal fungi improved WUE significantly (P < 0.0001) in both soil conditions. It raised by G. versiforme about 2.4-fold (0.289 g mm−1) in comparison with the control (0.117 g mm−1). G. intraradices and G. etunicatum also had significantly higher WUE than control. Apparently water deficit in 11-day irrigation interval led to lower yield and WUE compared to 9-day interval; the later resulted highest WUE (0.254 g mm−1). Mycorrhizal plants increased seasonal ET significantly due to enhancing in plant growth; G. versiforme in both sterile and non-sterile soil and G. etunicatum in sterile soil had the highest ET. Bulb yield was influenced by irrigation period and fungi species. G. versiforme produced higher yield than other treatments (135.27 g/pot). Mycorrhizal plants in 11-day irrigation interval in spite of suffering from water stress had more bulb yield than non-mycorrhizal plants in all irrigation intervals. Yield in general was higher in 9-day treatments than other irrigating internals significantly (P < 0.05). Onion yield response factor (Ky) was decreased by AMF colonization; implying that symbiosed plants become less responsive to water deficit (longer irrigation interval) compared to the control ones.  相似文献   

18.
Summary

Growth, development and nutrient status of micropropagated persimmon (Diospyros kaki) ‘Rojo Brillante’ in response to inoculation with two species of arbuscular mycorrhizal (AM) fungi were studied under nursery conditions. The species of AM fungi were Glomus intraradices and G. mosseae. Shoot growth depression and low root colonization percentage were observed to G. mosseae inoculation. Shoot and root growth enhancements were observed for plants colonised by G. intraradices. Inoculated plantlets with G. intraradices and high level of controlled-release fertilizer signi®cantly decreased shoot height in relation to treatment with low fertilization level. Furthermore, G. intraradices had unique effects on the mineral status of the persimmon plantlets. N and Ca were significantly increased and decreased, respectively, within the shoot tissue of plants colonised by G. intraradices. Early inoculation with G. intraradices appears to favour growth of micropropagated persimmon plantlets.  相似文献   

19.
Aptitude for mycorrhizal root colonization in Prunus rootstocks   总被引:1,自引:0,他引:1  
Eighteen Prunus rootstock cultivars were inoculated with three arbuscular mycorrhizal fungi under greenhouse conditions in order to evaluate their affinity for mycorrhizal colonization. The rootstocks were peach–almond hybrids, peaches, plums and cherries of Spanish, French and Italian origin. Mycorrhizal colonization was low in plants inoculated with Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe, and Glomus etunicatum Becker and Gerdemann. In contrast, Glomus intraradices Schenck and Smith, proved to be the most infective endophyte, achieving the highest mycorrhizal colonization rate in most of the rootstocks evaluated. Species of Prunus insititia L. were the only botanical group to show a consistently high affinity for mycorrhizal colonization with G. intraradices.  相似文献   

20.
Arbuscular mycorrhizal fungi have been widely used in agriculture to improve the cultivation of many crops. One of the aims of this study was the isolation and molecular identification of arbuscular mycorrhizal fungi isolated from mountain areas of Northern Greece (Ritini Pieria, Elatochori Pieria, Ambelakia Ossa). Only three isolates were obtained; two of Glomus etunicatum and one of G. lamellosum. The second objective of this study was to investigate the effect of these arbuscular mycorrhizal fungi on the concentration of macro- and micronutrients in tissues, the quantity and quality of essential oils and the growth of oregano and mint plants (two widely used aromatic plants in Greece). It was found that mycorrhizal oregano and mint plants had a higher content of essential oils and nutrient elements, and grew better than non-mycorrhizal plants. In addition, the composition of the essential oil in mycorrhizal plants differed from the oil of non-mycorrhizal plants. These results suggest that the use of mycorrhizal fungi may allow plant growth in low fertility soils, reduce fertilizer inputs and increase aromatic plant production of essential oils, They also indicate that it may be possible to use mycorrhizae to affect the quality of the essential oil produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号