首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Cucumber fruits (Cucumis sativus L., cv. Trópico F1) grown on perlite substrate and NFT (Nutrient Film Technique) were harvested during two seasons (winter and spring) to monitor the effects of climatic conditions and hydroponic growth systems on fruit quality at harvest. The best fruit quality at harvest, as measured by lightness and hue angle parameters, was obtained during the 3 weeks following the first winter picking. When values of a parameter of preharvest climate value called G* were lower than 0.4 MJ m−2 °C day−1 interval−1, the cucumber achieved its optimum quality at harvest, as measured by the dark green color of the skin. NFT-grown fruits showed darker and greener skin color (higher hue angle and lower lightness) compared with perlite-grown fruit, irrespective of the season considered. During the winter season, the plant transpiration rate was 30% higher in perlite than in NFT culture, which correlates with higher differences in G* and 40% additional yield in perlite. However, in spring G* was not sensitive enough to discriminate between the two hydroponic systems. In general, fruit quality at harvest in spring was lower than during the winter, due to flesh whitening, higher longitudinal and equatorial calibers, and slightly higher pH, as well as worse epidermal color coordinates (ranging from the dark and dull green color typical of winter fruit to light and a vivid green-yellow color). During the spring season, NFT-grown fruit were less acid than perlite-grown fruit with no apparent correlation with the climatic conditions or fruit nutrition.  相似文献   

2.
Alpine strawberry (Fragaria vesca L.) was grown in hydroponics with the nutrient film technique, in order to evaluate the effects of four buffer concentrations (1.3, 1.6, 1.9, 2.2 mS cm−1) and two cultural cycles (summer-spring versus autumn-spring) in terms of growth, yield and fruit quality (dry and optical residues, sugars, acids, antioxidants, mineral composition). The longer summer-spring cycle gave a correspondingly higher yield than the autumn-spring one. The 1.3 mS cm−1 nutrient solution was the most effective in terms of overall and spring production. However, the autumn and winter yields were not affected by the buffer EC. Fruit quality did not change with the cultural cycle, but the berries harvested in the spring had higher vitamin C and sucrose content and lower nitrate content compared with berries picked up in the winter. Fruit quality was also improved when the nutrient solution concentration increased. From the productive point of view, the cultural cycle choice should be made considering that 71% of the yield of the more productive summer-spring cycle derived from the spring harvest. Moreover, as regards the nutrient solution strength, 1.3 mS cm−1 EC should be preferred during the spring season, whereas the 2.2 mS cm−1 EC proved to be best in the winter in terms of fruit quality.  相似文献   

3.
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.  相似文献   

4.
The increase in hailstorms, possibly due to climate change, has led to installation of hailnets in fruit orchards worldwide. This is associated with poorer fruit quality, particularly fruit colouration, which is determined by the light conditions viz diminishing light intensities and shorter day length in the autumn. To overcome these adverse effects of hailnets, five materials were examined as possible ground covers as to their light reflection and the subsequent effect on fruit quality including fruit colouration, using a 9-year-old apple orchard cv. ‘Gala Mondial’ on M9 under black hailnet near Bonn. The ground covers included the woven white plastic ExtendayR/Daybright™, the kaolin-coated, bio-degradable paper UniSet O™ and the aluminium-coated plastic Mylar™ and Svensson ILS Alu™; the latter is a white plastic interwoven with aluminium strips used as energy saving screen in greenhouses. The ground covers were spread in the alleyways 4–5 weeks before anticipated harvest; adjacent uncovered grass strips under the hailnet served as control. Light reflection, measured perpendicular at 1 m height in the alleyways at the time of fruit colouration, was 79–80% by ExtendayR/Daybright™, 75% by UniSet O™, 68% by Mylar™ and 58% by Svensson Alu ILS™. Apple fruit with any of the reflective ground covers ripened 2–3 days earlier without affecting internal fruit quality and sugar as indicative of taste. The reflective ground covers under black hailnet improved the proportion of well-coloured class I fruit relative to the control (uncovered grass) by an averaged 9%. Economic analysis showed that ExtendayR, with an expected lifetime of ten years (based on 4–6 weeks spread time per year) under hail nets in North-Western Europe, scored best based on 45 t ha−1 yield in cv. ‘Gala Mondial’ and 0.40 € kg−1 farm-gate price, resulting in 200 € ha−1 net return. Manual labour for spreading and retrieving the ground covers had the major share of the overall gross cost and offers scope for improvement by mechanisation.  相似文献   

5.
The main cherry cultivar grown in the warm climate of Israel, ‘Bing’, produces relatively small fruit. Over three consecutive years (2003–2005), application of 50 mg l−1 2,4-dichlorophenoxypropionic acid [2,4-DP; as its butoxyethyl ester (Power™)], 10 mg l−1 3,5,6-trichloro-2-pyridyloxyacetic acid [3,5,6-TPA; as the free acid (Maxim®)], or 25 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) plus 30 mg l−1 naphthaleneacetic acid (NAA; 0.3% Amigo™), at the beginning of pit-hardening when fruitlet diameter was ca. 13 mm caused appreciable and significant increases in fruit size and total yield, except when the crop load was heavy. Anatomical studies revealed that the main effect of these synthetic auxins was via direct stimulation of fruit cell enlargement. The above auxins had no negative effect on fruit quality, either at harvest or after 1 month of storage at 0 °C, or on return yield in the following year.  相似文献   

6.
Current experiment was laid out in order to compare different kinds of organic manure and chemical fertilizer application in growing spinach under the open-field conditions in two successive seasons. Matador type spinach (Spinacea oleracea L.) was cultivated organically and conventionally and spinach growth, yield, vitamin C and nitrate concentrations were checked throughout two successive seasons (autumn and winter). Commercial chemical fertilizer was used as conventional application, and chicken manure (CM), farmyard manure (FM) and blood meal (BM) were used as organic manure applications as a single and as mixtures at different quantities by aiming to receive 150 kg N ha−1 for each, totally 19 applications. In general, autumn season gave the better results in terms of spinach growth, yield and resulted in lower nitrate concentration, whereas the vitamin C concentration was found to be higher in winter season. Reasonable applications to be recommended should be as follows with regard to the seasons; 3.5 ton ha−1 CM and 0.6 ton ha−1 BM + 0.85 ton ha−1 CM + 4.0 ton ha−1 FM for spinach growth; 3.5 ton ha−1 CM and 5.0 FM + 1.2 CM + 0.4 BM applications for spinach yield; 5.0 ton ha−1 FM + 2.5 ton ha−1 CM and 15.0 ton ha−1 FM for vitamin C and nitrate concentration in the autumn and the winter season, respectively. In conclusion, FM and CM can be used effectively in growing organic spinach especially in the autumn season and can be transferred successfully into an asset.  相似文献   

7.
Most of the Japanese plum (Prunus salicina) cultivars grown in Israel produce relatively small fruit. Application of 2 l solution tree−1 of 25 mg l−1 2,4-dichlorophenoxypropionic acid (2,4-DP) as butoxyethyl ester (Power™), 15 mg l−1 3,5,6-trichloro-2-pyridyloxyacetic acid (3,5,6-TPA) as free acid (Maxim®), or 25 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) + 30 mg l−1 naphthaleneacetic acid (NAA) (0.3% Amigo™) at the beginning of pit-hardening, when fruitlet diameter was ca. 22 mm, caused an appreciable and significant increase in fruit size. The yield of large fruit per cv.: ‘Kesselmen’ (100% increase), ‘Songold’ (100%), ‘Black Diamond’ (800%), ‘Royal Diamond’ (160%) and ‘Royal Zee’ (100%). As a result, the total yield of all five cultivars was also increased dramatically. Anatomical studies with ‘Songold’ revealed that the main effect of these synthetic auxins was via direct stimulation of fruit cell enlargement. The above auxins had no negative effect either on fruit quality at harvest (and after 1 week in shelf-life), or on return yield in the following year.  相似文献   

8.
The effects of mean daily temperature (MDT) and mean photosynthetic daily light integral (MDLI) on flowering during the finish stage of two petunia (Petunia × hybrida) cultivars were quantified. Petunia ‘Easy Wave Coral Reef’ and ‘Wave Purple’ were grown in glass-glazed greenhouses at 14–23 °C or 14–26 °C and under 4–19 mol m−2 d−1 with a 16-h photoperiod. The flower developmental rate was predicted using a model that included a linear MDT function with a base temperature multiplied by an exponential MDLI saturation function. The flower developmental rate increased and time to flower decreased as MDT increased within the temperature range studied. For example, under a MDLI of 12 mol m−2 d−1, as MDT increased from 14 to 23 °C, time to flower of ‘Easy Wave Coral Reef’ and ‘Wave Purple’ decreased from 51 to 22 d and 62 to 30 d, respectively. Flower developmental rate increased as MDLI increased until saturation at 14.1–14.4 mol m−2 d−1. Nonlinear models were generated for effects of MDT and MDLI on flower bud number and plant height at flowering. The number of flower buds at flowering increased as MDT decreased and MDLI increased. For example, at an MDT of 14 °C with 18 mol m−2 d−1, plants had 2.5–2.9 times more flower buds than those grown at 23 °C and 4 mol m−2 d−1. Models were validated with an independent data set, and the predicted time to flower, flower bud number, and plant height were within ±7 d, ±20 flowers, and ±4 cm, respectively, for 96–100%, 62–87%, and 93–100% of the observations, respectively. The models could be used during greenhouse crop production to improve scheduling and predict plant quality of these petunia cultivars.  相似文献   

9.
Nutrient elements and lipoxygenase (LOX) activity were determined in strawberry fruit to establish a relationship, if it exists, between nutrient ratios (N/Ca and K/Ca), and lipoxygenase activity with albinism disorder. About 33% strawberry fruit were affected by albinism. Etna had highest incidence of albinism (48.6%) and Sweet Charlie the lowest (16.2%). Dry matter content (%) was lower in albino fruit (5.23%) than normal fruit (7.36%). The concentration of N, P, and Mg did not differ significantly, but that of K (1.87 mg g−1 fresh weight) was notably higher and of Ca (0.105 mg g−1 fresh weight) was lower in albino fruit than normal fruit. Consequently, the nutrient ratios, N/Ca (9.78) and K/Ca (16.96) were higher in albino fruit than normal fruit. Cultivars differed widely in respect to dry matter (%), mineral content and nutrient ratios. LOX activity determined on dry weight or fresh weight basis was significantly higher in albino fruit than normal fruit, with significant differences among cultivars. Positive correlations existed between nutrient ratios and albinism incidence (r = +0.338), LOX activity and albinism incidence (r = +0.412), and LOX and nutrient ratios (r = +0.448). Thus, it appears from the study that calcium and LOX activity may not the basic cause of albinism in strawberry, but these may be involved in senescence or fruit ripening process, as LOX activity was lower in albino than in normal fruit.  相似文献   

10.
This study was conducted to determine the effects of coconut water (CW) and activated charcoal (AC) on multiplication of Phalaenopsis gigantea protocorms. The protocorms used for this study were obtained by germinating seeds in vitro. Protocorms with trimmed and untrimmed bases were cultured on XER basal medium containing 0, 10, 15 or 20% (v/v) CW; and 0, 1, 2 or 2.5 g AC l−1. Trimmed protocorms exhibited the highest percentage of proliferation on a medium containing 15% (v/v) CW and 2.5 g AC l−1 (56.82 ± 38.86%) with an average of 4.24 ± 2.89 protocorms formed per protocorm. Untrimmed protocorms cultured on a medium containing 20% (v/v) CW without AC produced the highest percentage of new protocorms (6.93 ± 6.28%) with an average of 0.72 ± 0.57 per protocorm. When CW was added to a medium singly, 10% (v/v) CW induced a higher degree of proliferation on trimmed protocorms (5.68 ± 10.14%) with an average 0.50 ± 0.84 new protocorms per protocorm. Untrimmed protocorms proliferate to a much lower extent (2.57 ± 2.74%) with an average of 0.72 ± 0.57 protocorms per protocorm when cultured on a similar medium. A high concentration of CW enhanced proliferation on untrimmed protocorms, but increased mortality of trimmed protocorms. The addition of CW with AC to media increased protocorm proliferation and survival of both trimmed and untrimmed protocorms. When cultured on all media, trimmed protocorms produced a higher number of new protocorms (an average 0.5–7.0) as compared to untrimmed protocorms (0.3–1.9). Comparative studies showed that trimmed protocorms produced up to 10 times more new protocorms than untrimmed ones. Altogether this study showed that trimmed protocorms cultured on a medium containing CW and AC can be used for high-frequency multiplication of P. gigantea seedlings.  相似文献   

11.
CPPU application on size and quality of hardy kiwifruit   总被引:1,自引:0,他引:1  
For the purpose of determining the appropriate conditions of application to increase the size of a hardy kiwifruit, Actinidia arguta ‘Mitsuko’, N1-(2-chloro-4-pyridyl)-N3-phenylurea (CPPU) was applied at three different growth stages of the crop: at petal fall, 10 and 25 days after petal fall (DAPF), and three different concentrations: 1, 5 and 10 mg l−1. A significant increase in fruit size was obtained by treatment at the concentrations of 5–10 mg l−1 and at 10 DAPF. The fruit weight doubled. Although a significant reduction in the concentrations of total soluble solids (TSS), titratable acids (TA) and ascorbic acid (AsA) in the CPPU-treated fruits was recorded, the TSS/TA ratio and AsA content per fruit increased by the treatment. CPPU application at petal fall induced abnormally protruding fruit tip.  相似文献   

12.
We assessed the effect of soil-applied derivatives of melia (Melia azedarach L.) and neem (Azadirachta indica A. Juss) on nitrogen (N) soil availability, root uptake and peach (Prunus persica L.) growth. First we evaluated the effectiveness of experimentally prepared amendments made with fresh ground melia leaves or commercial neem cake incorporated into the soil as nitrification inhibitors, then we evaluated the effect of fresh ground melia fruits and neem cake on growth and N root uptake of potted peach trees, and on soil microbial respiration. Soil-applied fresh ground melia leaves at 10 and 20 g kg−1 of soil as well as commercial neem cake (10 g kg−1) were ineffective in decreasing the level of mineral N after soil application of urea-N as a source of mineral N, rather they increased soil concentration of nitric N and ammonium N. The incorporation into the soil of fresh ground melia fruits (at 20 and 40 g kg−1) and neem cake (at 10 and 20 g kg−1) increased N concentration in leaves of GF677 peach × almond (Prunus amygdalus) hybrid rootstock alone or grafted with one-year-old variety Rome Star peach trees. An increase in microbial respiration, leaf green color and plant biomass compared to the control trees were also observed. The Meliaceae derivatives did not affect, in the short term (7 days), N root uptake efficiency, as demonstrated by the use of stable isotope 15N, rather they promoted in the long term an increase of soil N availability, N leaf concentration and plant growth.  相似文献   

13.
Effects of the commercial product TrichoFlow WP™ (Agrimm Technologies Ltd., New Zealand), based on the fungus Trichoderma harzianum, on quality characteristics and yield of bulb onion was investigated. Bulb sets of the local cultivar Kantartopu was planted in soil with in and between row distances of 0.15 m and 0.40 m, respectively. The product, at considerably high dosages of 5 g m−2, 10 g m−2 and 15 g m−2, was mixed with water and sprinkled once to the plots at planting. Analyses of data at harvest did not show statistical significance for Trichoderma effect on total bulb yield, bulb diameter, leaf length, number of shoot apex, %titratable acidity, number of internal (fleshy) leaves, number of external (papery) leaves, %soluble solids and %bulbs with diameters of 20–39 mm, 40–69 mm and ≥70 mm. The yields obtained from the plots treated with the dosages of 5 g m−2, 10 g m−2 and 15 g m−2 and the control plots were 1063.7 kg da−1, 1051.0 kg da−1, 1066.5 kg da−1 and 985.0 kg da−1, respectively. Our results showed that high dosages of the Trichoderma product were not effective in enhancing onion bulb and yield characteristics under the given conditions.  相似文献   

14.
Soils in central Florida citrus production region are very sandy, hence are vulnerable to leaching of soluble nutrients and chemicals. The objective of this study was to develop nitrogen (N) and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize N leaching below the rootzone. A replicated plot experiment was conducted in a highly productive 20+ year-old ‘Hamlin’ orange [Citrus sinensis (L.) Osbeck] trees on ‘Cleopatra mandarin’ [(Citrus reticulata Blanco)] rootstock grove located on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland County, FL. Nitrogen rates (112–280 kg ha−1 year−1) were applied as fertigation (FRT), water soluble granular (WSG), a combination of 50% FRT and 50% WSG, and controlled release fertilizer (CRF). Tensiometers were used to monitor the soil moisture content at various depths in the soil profile as basis to optimize irrigation scheduling. Fruit yield and quality and nutritional status of the trees were reported in a companion paper. Soil solution was sampled at 60, 120, and 240 cm depths under the tree canopy using suction lysimeters. Concentrations of NO3-N in the soil solution at 240 cm deep, which is an indicator of NO3-N leaching below the tree rootzone, generally remained below the maximum contaminant limit (MCL) for drinking water quality (10 mg L−1) in most samples across all N sources and rates, but for few exceptions. Total N in the fruit was strongly correlated with fruit load, thus, at a given N rate N removal by the fruit was lower during years of low fruit yield as compared to that during the years of high fruit yield. Furthermore, there was a strong linear relation between N and K in the fruit. This supports the need to maintain 1:1 ratio between the rates of N and K applications. In a high fruit production condition, the N in the fruit accounted for about 45% of the total N input on an annual basis. Fifteen percent of the total N input at 280 kg N ha−1 year−1 was not accounted for in the citrus N budget, which could be due to leaching loss. This estimate of potential leaching was very close to that predicted by LEACHM simulation model. The improved N and irrigation management practices developed in this study contributed to an improved N uptake efficiency and a reduction in N losses.  相似文献   

15.
The period between fruit set and full ripening of arazá fruit grown in the Colombian Amazonia was 55 ± 5 days. Three stages of a sigmoidal growth were identified and longitudinal and equatorial traits fitted a logistic model better than three-degree polynomial models. Fruit growth clearly exhibited three different physiological stages, identified as follows: S1, involving cellular division during the first 14 days; S2, maximum fruit growth, during which cellular expansion took place (up to day 50), and a final S3 state of 5 days to reach physiological maturity. After this time, the fruit can be harvested with a dull green coloration. Parenchyma was the principal fruit tissue, and no support tissues (sclerenchyma or collenchyma) were evident. The respiratory pattern of arazá fruit was climacteric, with maximum respiration rates of around 200 mg CO2 kg−1 h−1, preceded by a peak of ethylene production (20 μL C4H4 kg−1 h−1), a change in skin color from green to yellow, a total soluble solids value of 5°Brix, an increase in the sucrose and fructose content up to 2.8 μmol g−1, a pH which increased to 3 units, and a decrease in titratable acidity to 400 mmol H+ L1−. Malic acid was the main organic acid in the edible pulp and ascorbic acid was present in a concentration of 17.8 μmol g−1. Skin color (as measured by hue angle) combined with titratable acidity and fruit firmness can be recommended as harvest indices for arazá fruit.  相似文献   

16.
We investigated the hypothesis that split root fertigation (SRF) approach could provide complementary benefits over traditional fertigation (TF) in terms of water use, vegetative growth and yield formation in the high radiation season and under two atmospheric conditions in a greenhouse. Plants of cucumber (Cucumis sativus L. cv. Cumuli) were grown in a traditional high-wire cultivation system in a peat growing medium. In the SRF method the root system of a plant was separated into two compartments over the crop cycle. One compartment received fertigation solution with low EC (1.2 dS m−1) and the other compartment solution with high EC (3.5 dS m−1) value. In the TF method the EC value of fertigation solution was 2.4 dS m−1. The atmospheric conditions included an open (ventilated) and a semi-closed (cooled) greenhouse. The employment of cooling resulted in an enhancement of the average CO2 in a semi-closed (810 ppm) over an open (530 ppm) greenhouse resulting in a yield improvement (37%). SRF improved water uptake in both atmospheric conditions and water use efficiency (WUE) in an open greenhouse. The water uptake in SRF was highest in the root part with the low EC values, namely 61% in the open and 66% in the semi-closed greenhouse. In both atmospheric conditions, SRF decreased flower abortion, leading to an improved fruit set with a small effect on vegetative growth. SRF increased yield by 21% in the open and 17% in the semi-closed greenhouse compared to TF in corresponding greenhouses.  相似文献   

17.
A greenhouse study was conducted to evaluate the ameliorative effects of zinc (0, 5, 10 and 20 mg Zn kg−1 soil) under saline (800, 1600, 2400 and 3200 mg NaCl kg−1 soil) conditions on pistachio (Pistacia vera L. cv. Badami) seedlings’ photosynthetic parameters, carbonic anhydrase activity, protein and chlorophyll contents, and water relations. Zn deficiency resulted in a reduction of net photosynthetic rate and stomatal conductance. The quantum yield of photosystem II was reduced at zinc deficiency and salt stress. Zinc improved plant growth under salt-affected soil conditions. Increasing salinity in soil under Zn-deficient conditions, generally decreased carbonic anhydrase activity, protein, chlorophyll a and b contents. However, these adverse effects of salinity alleviated by increasing Zn levels up to 10 mg kg−1 soil. Under increasing salinity, chlorophyll a/b ratio significantly increased. Zinc treatment influenced the relationship between relative water content and stomatal conductance, and between leaf water potential and stomatal conductance. It concluded that Zn may act as a scavenger of ROS for mitigating the injury on biomembranes under salt stress. Adequate Zn also prevents uptake and accumulation of Na in shoot, by increasing membrane integrity of root cells.  相似文献   

18.
A tomato (Solanum lycopersicum L.) crop was grown in four greenhouses during the dry season 2005/06 in Central Thailand. Sidewalls and roof vents of two greenhouses were covered with nets and these greenhouses were mechanically ventilated when air temperature exceeded 30 °C (NET). The other two greenhouses were covered with polyethylene film and equipped with a fan and pad cooling system (EVAP). Overall mean air temperature was significantly reduced by 2.6 and 3.2 °C (day) and 1.2 and 2.3 °C (night) in EVAP as compared to NET and outside air, respectively. Temperature maxima in EVAP averaged about 4 °C lower than in NET and outside. The relative humidity was around 20 and 30% (day) and 10 and 15% (night) higher in EVAP than in NET or outside, respectively. Vapour pressure deficit averaged 0.25 kPa in EVAP, 1.03 kPa in NET and 1.48 kPa outside. The crop water-consumption was significantly lower in EVAP (1.2) than in NET (1.8 L plant−1 day−1), which is ascribed to reduced transpiration in EVAP. Total fruit yield was similar in NET (6.4 kg plant−1) and EVAP (6.3 kg plant−1). The quantity of undersized (mostly parthenocarpic) and blossom-end rot (BER)-affected fruits was reduced in EVAP. However, the proportion of marketable yield was significantly higher in NET (4.5 kg plant−1) than in EVAP (3.8 kg plant−1), owing largely to an increased incidence of fruit cracking (FC) in EVAP. Higher FC but lower BER incidence coincided with higher fresh weight and Ca concentration in the fruits in EVAP. It is concluded that in regions with high atmospheric relative humidity evaporative cooling without technical modifications allowing dehumidification will not improve protected tomato production.  相似文献   

19.
Elevated levels of nitrate-nitrogen (NO3-N) in the surficial aquifer above the drinking water quality standard, i.e. maximum contaminant limit (MCL; 10 mg L−1), have been reported in some part of central Florida citrus production regions. Soils in this region are very sandy (sand content >95%), hence are vulnerable to leaching of soluble nutrients and chemicals below the rooting depth of the trees. The objective of this research was to develop N and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize potential leaching of nitrate below the root zone. Six years of field experiment was conducted in a high productive (mean fruit yield > 80 Mg ha−1yr−1) >20-year-old ‘Hamlin’ orange trees [Citrus sinensis (L.) Osbeck] on ‘Cleopatra mandarin’ (Citrus reticulata Blanco) rootstock grown on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland county, FL. Nitrogen rates ranged from 112 to 280 kg ha−1 yr−1 applied as fertigation (FRT), water soluble granular (WSG), 50:50 mix of FRT and WSG, and controlled-release fertilizer (CRF). Tensiometers were used to monitor the soil water content as a basis to schedule optimal irrigation. Fruit yield response over the entire range of N rates was greater for the FRT and WSG sources as compared to that for the WSG + FRT or CRF sources. Using the regression analysis of the fruit yield in relation to N rate, the optimum N rate appeared to be at 260 kg ha−1 yr−1. Based on fruit production response in this study, the N requirement for production of 1 Mg of fruit varied from 2.2 to 2.6 kg across four N sources. This study demonstrated an increased N uptake efficiency, as a result of best management of N and irrigation applications. The optimal N and K concentration in the 4–6-month-old spring flush leaves were 26–30, and 15–18 g kg−1, respectively. However, fruit yield response showed no significant relationship with concentrations of P in the 4–6-month-old spring flush leaves over a range of 0.8–2.4 g kg−1. The results of fate and transport of N in soil and in soil solution with application of different rates and sources of N, and components of citrus tree N budget, are reported in a companion paper.  相似文献   

20.
The effects of interlighting and of the proportion of interlight on the yield and fruit quality of year-round cultivated cucumber (Cucumis sativus L. cv. Cumuli) were investigated for this study. Artificial lighting was provided by high pressure sodium (HPS) lamps and the lighting regimes included top lighting (TL), top + interlighting 24% (T + IL24) and top + interlighting 48% (T + IL48). In TL, all of the lamps were mounted above the canopy. In T + IL24 and T + IL48, top lamps covered 76 and 52% of the lighting, respectively, while 24 and 48% of the lighting came from interlighting lamps which were mounted vertically 1.3 m above the ground between the single plant rows. The outdoor daily light integral (DLI) varied greatly during the cultivation periods; the mean values were 36.8, 5.3 and 19.9 mol m−2 day−1 for the summer, autumn–winter and spring stands, respectively. Lighting regime affected both yield and external fruit quality. Interlighting increased first class yield and decreased unmarketable yield, both in weight and number. The increase in the annual first class yield in weight was 15% in the two T + IL regimes. Interlighting improved energy use efficiency in lighting, being for the whole year 120, 130 and 127 g total yield kW h−1 in TL, T + IL24 and T + IL48, respectively. Interlighting increased the fruit skin chlorophyll concentration in all seasons, but had only a minor effect on the fruit dry matter concentration. The mean total chlorophyll concentration in fruit skin was 70.8, 76.7 and 82.2 μg cm−2 in TL, T + IL24 and T + IL48, respectively. In addition, interlighting extended the post-harvest shelf life of cucumber fruits in spring. Besides interlighting per se, also the higher proportion of interlight tended to further improve the fruit quality. For example, the fruit skin chlorophyll concentration increased along with the higher proportion of interlighting. In general, the effects of lighting regime were more prominent in lower natural light conditions in winter and spring. It is concluded that interlighting is a recommendable lighting method in cucumber cultivation, especially in lower natural light conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号