首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seven wild and ten cultivated blackberries (Arapaho, Bartin, Black Satin, Bursa 1, Bursa 2, Cherokee, Chester, Jumbo, Navaho, and Ness), and six lowbush (Vaccinium arctostaphylos) and four highbush (Vaccinium corymbosum) blueberries fruits (Ivanhoe, Jersey, Northland, and Rekord) were analyzed for total anthocyanins, total phenolics, and antioxidant activity as ferric reducing antioxidant power (FRAP) in this study. The respective ranges of total anthocyanin and total phenolic contents of the tested samples were: blackberries, 0.95–1.97 and 1.73–3.79 mg g−1 and blueberries, 0.18–2.94 and 0.77–5.42 mg g−1. FRAP values varied from 35.05 to 70.41 μmol g−1 for blackberries, 7.41 to 57.92 μmol g−1 for blueberries. Wild blackberries had the highest FRAP values while wild blueberries had the highest total phenolic and total anthocyanin contents. A linear relationship was observed between FRAP values and total phenolics for blueberries (r = 0.981). The anthocyanin pigments in samples were isolated and characterized by high-performance liquid chromatography (HPLC) with UV–visible detection. Cyn-3-glu was the predominant anthocyanin in all blackberry fruits.  相似文献   

2.
Mal secco (caused by Phoma tracheiphila (Petri) Kantsch. and Gik.) is the most destructive fungal disease of lemon plantations worldwide and seedless lemons would be preferred by most consumers. Five dosage levels, 0, 3, 5, 7, and 9 kiloradian (krad), of cobalt (60Co) gamma irradiation were applied to budstick of ‘Kutdiken’ lemon (Citrus limon (L.) Burm. f.) clone KT-2A. Mutations were stabilized in three vegetative generations. Three hundred fifty-eight and 478 M1V3 (mutation one and vegetation three) plants were evaluated for seed number and mal secco tolerance in the field and the greenhouse, respectively. LD50 was around 5 krad gamma irradiation for ‘Kutdiken’ lemon. The seed number varied from 0 to 34 per fruit. The level of mal secco tolerance also varied significantly among the plants from 1.0 (no symptom) to 4.3 (high level of disease occurance). The stable seedless and mal secco tolerant plants were obtained from 5 and 7 krad irradiation: the three mutants from 5 krad irradiation gave more lemon-like fruits, while 7 krad irradiation caused altered tree morphology and early maturation of fruits. This study shows considerable potential for lemon cultivar improvement aiming to obtain seedless and mal secco tolerant lemons.  相似文献   

3.
Chromosome observation is necessary to elucidate the structure, function, organization, and evolution of octoploid strawberry plants’ genes and genomes. However, distinguishing strawberries’ chromosomes from one another using light microscopy is extremely difficult, not only because of their small size and large number, but also because current chromosome observation methods are insufficient. Chromosome preparation and staining using maceration enzymes, acetic acid, and DAPI (4′,6-diamidino-2-phenylindole) were improved for this study to obtain clear images of somatic chromosomes in Fragaria vesca (2n = 14) and Fragaria×ananassa (2n = 56). Collected root tips of octoploid plants were placed in 0.002 M 8-hydroxyquinoline solution for 1 h and stored at 4 °C for 16 h. Subsequently, they were fixed using 3:1 absolute alcohol:glacial acetic acid for 40 min, hydrolyzed in the 1N HCl solution at room temperature for 2 h, macerated using an enzyme solution for 25 min at 42 °C, and stained in 1.5% lacto-propionic orcein solution. On the other hand, in case of DAPI staining, the macerated root tips of octoploid plants were soaked in 60% acetic acid for 5 min before staining. Clear digital images of F. vesca and F.×ananassa were obtained using light and fluorescent microscopy. Their respective 14 and 56 chromosomes were counted. Fluorescent microscopy yielded clear chromosome images at the pro-metaphase in F. vesca and F.×ananassa. This chromosome observation method alleviates the difficulties that have heretofore hindered chromosome analyses of strawberry plants.  相似文献   

4.
We assessed the effect of soil-applied derivatives of melia (Melia azedarach L.) and neem (Azadirachta indica A. Juss) on nitrogen (N) soil availability, root uptake and peach (Prunus persica L.) growth. First we evaluated the effectiveness of experimentally prepared amendments made with fresh ground melia leaves or commercial neem cake incorporated into the soil as nitrification inhibitors, then we evaluated the effect of fresh ground melia fruits and neem cake on growth and N root uptake of potted peach trees, and on soil microbial respiration. Soil-applied fresh ground melia leaves at 10 and 20 g kg−1 of soil as well as commercial neem cake (10 g kg−1) were ineffective in decreasing the level of mineral N after soil application of urea-N as a source of mineral N, rather they increased soil concentration of nitric N and ammonium N. The incorporation into the soil of fresh ground melia fruits (at 20 and 40 g kg−1) and neem cake (at 10 and 20 g kg−1) increased N concentration in leaves of GF677 peach × almond (Prunus amygdalus) hybrid rootstock alone or grafted with one-year-old variety Rome Star peach trees. An increase in microbial respiration, leaf green color and plant biomass compared to the control trees were also observed. The Meliaceae derivatives did not affect, in the short term (7 days), N root uptake efficiency, as demonstrated by the use of stable isotope 15N, rather they promoted in the long term an increase of soil N availability, N leaf concentration and plant growth.  相似文献   

5.
The effects of plant growth promoting bacteria (PGPB) on the fruit yield, growth and nutrient element content of strawberry cv. Fern were investigated under organic growing conditions between 2006 and 2008. The experimental plot was a completely randomized design with 3 replicates. Three PGPB strains (Pseudomonas BA-8, Bacillus OSU-142 and Bacillus M-3) were used alone or in combination as bio-fertilizer agent in the experiment. Data through 3 years showed that the use of PGPB significantly increased fruit yield, plant growth and leaf P and Zn contents. Root inoculation of M3 and floral and foliar spraying of OSU-142 and BA-8 bacteria stimulated plant growth resulting in significant yield increases. M3 + BA-8, BA-8 + OSU-142, M3, M3 + OSU-142 and BA-8 applications increased cumulative yield by 33.2%, 18.4%, 18.2%, 15.3% and 10.5%, respectively. Number of fruits per plant significantly increased by the applications of M3 + BA-8 (91.73) and M3 (81.58) compared with the control (68.66). In addition, P and Zn contents of strawberry leaves with bacterial inoculation significantly increased under organic growing conditions. Available P contents in soil were increased from 0.35 kg P2O5/da at the beginning of the study to 2.00, 1.97 and 1.82 kg P2O5/da by M3 + OSU-142, M3 + BA-8 and M3 + BA-8 + OSU-142 applications, respectively. Overall, the results of this study suggest that root inoculation of Bacillus M3 alone or in combination with spraying Bacillus OSU-142 or Pseudomonas BA-8 have the potential to increase the yield, growth and nutrition content of strawberry plant under organic growing conditions.  相似文献   

6.
Hairy roots were induced from leaf-derived calli of lavandin (Lavandula × intermedia Emeric ex Loisel.) by infection with wild-type strains of Agrobacterium rhizogenes, A-5 (MAFF 02-10265) and A-13 (MAFF 02-10266). A-5-inoculated calli formed hairy roots more efficiently than A-13 ones. The transgenic shoots could be obtained from hairy root segments mediated by each Agrobacterium strain. However, different plant growth regulators were required for efficient adventitious shoot formation in each strain. In A-5, the most efficient adventitious shoot formation rate of 23.8% was observed in a medium with 4.4 × 10−6 M of 6-benzylaminopurine. On the other hand, a significantly higher rate of 13.2% was detected in a medium with 4.0 × 10−7 M of N-(2-chloro-4-pyridyl)-N′-phenylurea in A-13. Most of the regenerated plants showed dwarfism with closed internodes and extensive lateral branching, which were typical characteristics of ‘hairy root syndrome’. On the other hand, only nine of the 45 regenerated plants formed flower buds in early June, a delay of about one month compared with nontransgenic regenerated plants. The floral stalks and spikes of these plants were very short, resulting in a compacted form. Many regenerants showed a significantly lower productivity of essential oil than nontransgenic regenerants. Moreover, the relative percentage of the linalyl-cation-derived compounds, linalool and linalyl acetate, decreased in most of the regenerated plants. Compact plants with the ability of flower bud formation are assumed to be valuable not only for lavandin breeding, but also for clarifying the interaction between rol genes expression and essential oil production.  相似文献   

7.
Poultry manure (PM) must be disposed of from poultry farms, but is a potentially valuable source of macro- and micronutrients for plant growth. The objective of this study was to examine the effects of poultry manure on the growth of tomato (Lycopersicon esculentum) plants. Yields of fruits and vegetative material of plants grown in soil with 0, 10, 20 and 40 g kg−1 PM added were measured. Concentrations of N, P, K, Ca, Mg, S, Fe, Zn, Cu, Mn, Mo, Cl, Si, Br, Rb, Sr and Ba in leaves at flowering and at final harvest and in fruits were determined by polarized energy dispersive X-ray fluorescence (PEDXRF). Poultry manure fertilization improved tomato shoot growth and also fruit yield and increased leaf N concentrations at the harvest stage. In addition, P concentrations of the leaves and fruits were increased as the application rate of PM was increased. Fruit Ca and Mg were significantly reduced by increased rate of PM application, but not to the extent to cause the calcium deficiency disorder blossom end rot. Applied high levels of PM slightly increased the concentrations of leaf Mo and Br at the harvest stage. Poultry manure applications had a positive effect on the concentrations of leaf Zn, Cu, Cl and Rb at both sampling stages, but leaf Si concentration was reduced by PM treatments. The concentrations of Zn and Rb were increased in the fruits by PM treatments, but the concentrations of Br were decreased. Applied PM levels had no significant effects on the concentrations of K, S, Fe, Sr or Ba in tomato plants. It is concluded that the increased fruit yield, and the increased concentration of Zn (an element required in the human diet) and the lowered concentration of potentially harmful Br in the fruit make poultry manure a valuable growing medium for tomato production.  相似文献   

8.
The effects of NaCl stress on plant growth, gas-exchange, activity of superoxide dismutase (SOD), rate of lipid peroxidation, and accumulation of Na+ ion and sugar were investigated in leaves and fruits of pepper plants (Capsicum annuum L.). Especially, the gene expression of l-galactono-1,4-lactone dehydrogenase (GalLDH), which is the last enzyme of ascorbic acid (AsA) biosynthesis, and the relationships between AsA level and Na+ concentration in plant tissue were investigated with increasing salinity. Plants were treated with three treatments: the control (0 mM NaCl) and two salinity levels (50 and 100 mM NaCl) for 21 days under greenhouse conditions. Plant growth was markedly restricted due to the reduction of photosynthetic rate and the increase of Na+ accumulation in leaves with the increasing intensity of NaCl stress. Salinity had more effect on fruit growth comparing to leaf growth, suggesting that fruits could be more sensitive to salinity than leaves. In comparison with the control, salt stress significantly increased lipid peroxidation (as measured as malondialdehyde content) but decreased SOD activity in both fruits and leaves although the effect was larger in fruits; and the rate of the decrease in SOD activity was greater than that of the increase in lipid peroxidation. The AsA concentration transiently increased first 7 days but it slightly decreased from the initial level in the end of treatment day 21. The change in GalLDH gene expression was similar to AsA concentration. The accumulation of Na+, the reduction of AsA level at severe salinity stress were greater in fruits than in leaves; and AsA level had a negative relationship with Na+ concentration in both leaves and fruits. These results suggest that the difference in salt sensitivity between fruits and leaves in pepper plants can be related to the difference in inhibition of AsA synthesis, which in turn is probably due to the toxicity of extreme accumulation of Na+.  相似文献   

9.
Several factors, i.e. the duration of thermal shock pretreatment at 35 °C, the concentrations of TDZ and the silver nitrate were investigated for their effects on embryo formation in a variety of cucumber (Cucumis sativus L) ovary culture. The results showed that a thermal shock for 3 days at 35 °C at the start of the culture resulted in higher frequency of embryo formation than 2 or 4 days. TDZ had a positive effect on the embryo formation. Highest embryo formation frequency (72.7%) was recorded by adding 0.04 mg/L TDZ into the induction medium. The results found that addition of AgNO3 to induction medium had no significant effect on frequency of embryo formation but shortened embryo sprouting period and improved number of embryos formed in each ovary slice. All the experiment materials responded well to ovary culture, and there were no difference among genotypes used in this study. Among the forty regenerated plants obtained, two were identified as haploid plants (2n = x = 7), five were tetraploid plants (2n = 4x = 28), and the rest were diploid plants. Microsatellite markers (SSR) were used to analyze the homozygosity of the diploid plants, the putative chromosome-doubled haploids. Of the 33 diploid plants, 17 (51.5%) were identified as double haploids. Based on the above results, we have established a useful protocol for production of cucumber doubled haploids with ovary culture.  相似文献   

10.
Floral initiation of a wild strawberry strain, Fragaria chiloensis CHI-24-1, is strongly induced by a 24 h day-length (DL) treatment for 40 days consisting of natural daylight and continuous lighting at night by an incandescent lamp. To use the characteristics of floral initiation in CHI-24-1 as a genetic resource for breeding of cultivated strawberries, the photoperiodic reactions of sexual and asexual reproductive growth under various temperature conditions should be clarified. For that purpose, we examined: (1) floral initiation, inflorescence emergence and runner production seasons of CHI-24-1 plants grown under natural climatic conditions in an open field at the Faculty of Agriculture, Kagawa University and (2) the effects of various DLs and temperatures on floral initiation and runner production of CHI-24-1 plants. When the CHI-24-1 plants were grown under natural conditions, the floral initiation, inflorescence emergence and runner production were observed, respectively, in late autumn, spring, and from spring to autumn. Floral initiation of CHI-24-1 plants was induced strongly by 24 h DL at mean temperatures greater than 20 °C. The maximum floral initiation rates were 90% in the parent plant and 94% in the daughter plants, which were linked by runners to the parent plant. The floral initiation of the daughter plants occurred under 20, 22, and 23 h DL at mean temperatures greater than 20 °C, but not for the parent plants. Floral initiation was induced in 100% of the parent plants by the 8 h DL and the lowest mean-temperature conditions. Results of those experiments indicated that CHI-24-1 was an absolute long day plant having critical DL of about 20 h at mean temperatures greater than 20 °C, even though it was a June-bearing strawberry plant. In addition, CHI-24-1 was a facultative short-day plant at mean temperatures of less than 15 °C.  相似文献   

11.
Inoculation of growing media with plant growth promoting rhizobacteria (PGPR) has a number of potential benefits for the production of ornamental plants. Certain rhizobacteria synthesise the enzyme ACC deaminase, which cleaves ACC, the precursor of the plant hormone ethylene. Bacterial metabolism is now known to lead to a reduction in [ACC] in the plant transpiration stream and bacteria are hypothesised to act on ACC exuded from roots. This in turn reduces the ethylene generated in plants growing in growing media inoculated with these bacteria. Here we tested if applications of the ACC deaminase containing rhizobacteria Variovorax paradoxus5C–2could be of benefit to ornamental growers by reducing ethylene generation in stressed plants. Ethylene is produced at levels that are inhibitory to growth and development under a number of abiotic stresses. The propagation and production of hardy ornamentals is deleteriously affected by abiotic stresses that involve ethylene signalling, including drought and physical wounding. Inoculation of growing media with V. paradoxus 5C-2 lowered ethylene emission from mature leaves of Cytisus × praecox experiencing drought stress. In addition, bacterial inoculation of the growing media resulted in significantly reduced abscission of the mature leaves under drought treatment. Beneficial effects of inoculation where also found in the wounding response of Fargesia murielae following divisional propagation and late season senescence in Aquilegia × hybrida in response to drought stress. Together these results demonstrate that V. paradoxus5C–2has real potential for use on ornamental nurseries in situations where plant stresses are unavoidable.  相似文献   

12.
In Chile, like in other countries, a high percentage of apple (Malus domestica Borkh) orchards are grafted on vigorous or semi-vigorous rootstocks. The need to decrease the amount of labor involved and increase efficiency has motivated this study on the effect of reducing the height of cv. Ultra Red Gala/MM111 trees in a commercial orchard in the Maule Region of Chile. Apple trees were planted in 2003, and their tree heights were adjusted to 2.5, 3.0 and 3.6 m prior to blooming in 2006. The reduction of plant height from 3.6 m to 2.5 m determined a significant reduction in canopy volume (26% and 29% in 2007/2008 and 2008/2009, respectively), but no differences were detected in leaf area index (LAI) and the photosynthetic active radiation (PAR) transmitted through the canopy. However, a higher proportion of the canopies of the shorter trees had over 30% of incident PAR, the threshold for the production of good fruit quality and flower-bud differentiation. There were no differences in fruit production among plant heights, accumulating 131 tonnes ha−1 in the three growing seasons. Over the three seasons, the shortest plants (2.5 m) required 19, 57 and 42% less labor time at harvest, respectively, than the plants maintained at a height of 3.6 m. There were no evident differences in fruit quality among the treatments; flesh firmness varied between 73.0 and 74.0 N, soluble solids between 11.6 and 12.6°Brix, mean weight between 180 and 200 g, and the percentage of red coloring exceeded 59% of the Premium fruit in the three growing seasons. Our results suggest that it is possible to manage plants with reduced height on semi-vigorous rootstocks and thus reduce the time necessary for harvesting, without affecting fruit yield and quality.  相似文献   

13.
A method was developed and optimized for the accelerated ripening of date fruits of cultivar ‘Mazafati’ to prevent diseases and decay. The date fruits were incubated in hot acetic acid solution 0.5% at 40 + 1 °C for 72 h. During the process some physicochemical changes in the fruits were studied and were found to be comparable with the changes in the fruits that naturally ripened on the tree. Fruit firmness, water insoluble solid (WIS), protein, pH, L*a*b* and E decreased during accelerated ripening whereas in control samples at 4 °C increased. Total solid (TS), total soluble solid (TSS) and acidity were slightly higher in treated fruits compared to control fruits. The greatest loss of fruit firmness occurred during the first 12 h of incubation. Organoleptic tests also showed little difference between the naturally ripened fruits on trees and accelerated ripened fruits in hot acetic acid. Overall there was no difference between the fruits and were readily acceptable to consumers.  相似文献   

14.
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.  相似文献   

15.
Protocols for in vitro regeneration and production of in vitro-propagated plants and a transformation system were developed for Mirabilis jalapa (Nyctaginaceae). Among the types of explants and the different media tested, consistent shoot regeneration was obtained only from nodal segments grown in a regeneration medium consisting of Murshashige and Skoog medium supplemented with 2 mg l−1 6-benzyladenine, 2 mg l−1 zeatin and 1 mg l−1 indole acetic acid. Regeneration efficiency was dependent on the type of plant – white or pink flowers – used as the source of explants. Stable transformation was obtained following inoculation of nodal segments with Agrobacterium tumefasciens strain EHA105, which harbours the binary plasmid pAD1339 containing both nptII and gus genes under the control of the 35S promoter. Transformation was confirmed by PCR and Southern blot analysis of genomic DNA from mature regenerated plants. β-Glucuronidase (GUS) activity was observed only in tissues regenerated from in vitro-grown plants and not in tissues originating from greenhouse-grown plants. GUS expression was not uniform in regenerated leaves and showed a chimera pattern.  相似文献   

16.
The genus Ptilotus has immense potential for ornamental horticulture but its commercial development has been hindered by propagation limitations. Poor seed quality and germination are reported. Cutting propagation is limited by cutting supply as the juvenile phase of Ptilotus is short. Micropropagation has been used in an attempt to overcome these difficulties but explants become floral in vitro and this causes plantlets to elongate. Ethephon has been used to control flowering of stock plants of many ornamental species. This study investigated the effect of ethephon applied to young (3-week-old, deflasked from tissue culture) and mature (1-year-old) Ptilotus plants in a greenhouse. A system of applying gaseous ethylene at 0, 100, 200 and 300 mg l−1 to the headspace of in vitro plantlets in glass jars was developed and the response of in vitro plantlets to ethylene studied. One-year-old Ptilotus plants were treated with 500 mg l−1 ethephon 2 days before pruning or 1 or 2 weeks after pruning. Ethephon application 2 days before pruning decreased the number of inflorescences and increased the number of shoots (compared to the control) but was phytotoxic. Ethephon applications of 150 or 300 mg l−1 applied weekly or fortnightly to 3-week-old plants deflasked from tissue culture reduced plant height and number of inflorescences and at low concentrations increased the number of new shoots. A fortnightly application at 150 mg l−1 is recommended. Previous reports on the effects of ethylene on inflorescence production on plantlets in vitro are limited. Our study showed that exposure of in vitro plantlets of P. nobilis to ethylene gas at 100 mg l−1 for 1 h significantly increased the number of shoots and plant height but this did not occur for plantlets of P. spicatus. Plantlets of P. spicatus exposed to transient ethylene at 200 and 300 mg l−1 showed significantly greater rooting (52.4%) than the control (13.6%).  相似文献   

17.
Rootstocks differentially influence tree physiology and these differences may be due to varying responses to root zone temperature (RZT). To determine if this is the case, the physiology, leaf development and nitrogen relationships of five different Prunus rootstocks with chill requirements between 100 and 1100 h were examined during and after growth at RZTs of 5, 12 and 19 °C for 6 weeks. RZT correlated positively with leaf numbers, expansion rates and final leaf area, and significant differences existed among the rootstocks in the magnitude of these parameters at different RZTs. In particular, leaf expansion and area were less affected at low RZT in the low chill varieties. Net assimilation (An), leaf nitrogen (N%) and photosynthetic nitrogen use efficiency (An/N) also correlated positively with RZT: again, there were differences in the magnitude of these parameters among the rootstocks. No associations amongst An, N% or An/N could be found for the rootstocks; hence, they all differed in their physiological responses to RZT. Low RZT alone was sufficient to reduce An and decreased both leaf area and photosynthetic activity. Leaf expansion was related to N%, as the varieties with the lowest N% also had the lowest expansion rates. Infrared thermography of the cv. Golden Queen showed a negative correlation between RZT and leaf temperature with leaves of plants at the lowest RZT being 2 °C warmer than ambient whilst those at the highest RZT were 2 °C cooler than ambient. These differences were due to transpiration, as transpiration for the variety used decreased with reducing RZT. Transpiration from the other rootstock varieties was lowest at the 5 °C RZT but, depending on variety, at 12 °C was either higher, lower or the same as that from plants whose roots were at 19 °C. Together, the results of this study explain some of the rootstock-induced changes in tree growth and suggest the need to incorporate seasonal changes in RZT into development models for peaches.  相似文献   

18.
Two transgenic strawberry lines (Pel 1 and Pel 3) containing the open reading frame of a fruit specific strawberry pectate lyase gene (FaplC) under the control of the CaMV35S promoter have been obtained to evaluate the role of this gene on fruit softening. Ripen fruits from both lines showed a significant down-regulation of FaplC, being the percentage of silencing of 84 and 71% on Pel 1 and Pel 3, respectively. The agronomic behaviour of transgenic plants was evaluated during two consecutive years. Fruit set increased in the two transgenic lines when compared with control plants, although Pel 1 showed a significant reduction on fruit weight. Firmness of full ripen fruits from Pel lines was significantly higher than control fruits, while color and soluble solids were not affected. The increase of firmness in Pel lines was maintained when ripe fruits were stored for 3 days at 25 °C. Histological analysis of ripe fruits showed lower intercellular spaces and a higher degree of cell to cell contact area in transgenic fruits when compared with controls. Altogether, these results suggest a direct relationship between pectate lyase gene expression and strawberry fruit softening.  相似文献   

19.
The present investigation was undertaken to develop PRSV (Papaya ringspot virus) resistant hybrids through intergeneric hybridization. Intergeneric hybridization was done involving nine Carica papaya cultivars as female and Vasconcellea cauliflora as male. To break the intergeneric hybridization barrier, various nutrient combinations were used. Among the combinations used, sucrose 5%, sucrose 5% + boron 0.5% and sucrose 5% + CaCl2 0.5% improved the fruit set and seed set percentage. A total number of 1197 flowers were pollinated and 308 fruits were obtained. On extraction, 721 seeds were obtained from CO 7, Pusa Nanha and CP 50. Out of 721 F0 seeds (crossed seeds) sown, 419 seeds germinated and artificial screening for PRSV was carried out 27 days after sap inoculation. Out of 29 F1 hybrid plants from CO 7 x V. cauliflora cross, only six plants namely CO 7V1 to CO 7V6 were found free from PRSV symptoms. Similarly, out of 55 F1 hybrids from cross involving Pusa Nanha x V. cauliflora only 23 plants namely PNV1 to PNV23 were found free from the symptoms and 70 plants namely CPV1 to CPV70 out of 335 plants of CP50 x V. cauliflora cross were found free from PRSV symptoms. Among the crosses, Pusa Nanha x V. cauliflora had higher yield under PRSV infected conditions, however, total soluble solids and total sugars were found lesser than the CO 7 x V. cauliflora cross. The hybridity of the progenies were confirmed by using ISSR (Inter Simple Sequence Repeats) primers by the amplification of DNA from progenies and their parents. ISSR primers UBC 856, UBC807 and ISSR primer combinations UBC 856-817, UBC 810-817, UBC 861-817, UBC 856-810, UBC 861-810 and UBC 856-817 clearly amplified specific bands of the male parent, which were present in F1 progenies, but it was absent in female parents.  相似文献   

20.
Cucumber fruits (Cucumis sativus L., cv. Trópico F1) grown on perlite substrate and NFT (Nutrient Film Technique) were harvested during two seasons (winter and spring) to monitor the effects of climatic conditions and hydroponic growth systems on fruit quality at harvest. The best fruit quality at harvest, as measured by lightness and hue angle parameters, was obtained during the 3 weeks following the first winter picking. When values of a parameter of preharvest climate value called G* were lower than 0.4 MJ m−2 °C day−1 interval−1, the cucumber achieved its optimum quality at harvest, as measured by the dark green color of the skin. NFT-grown fruits showed darker and greener skin color (higher hue angle and lower lightness) compared with perlite-grown fruit, irrespective of the season considered. During the winter season, the plant transpiration rate was 30% higher in perlite than in NFT culture, which correlates with higher differences in G* and 40% additional yield in perlite. However, in spring G* was not sensitive enough to discriminate between the two hydroponic systems. In general, fruit quality at harvest in spring was lower than during the winter, due to flesh whitening, higher longitudinal and equatorial calibers, and slightly higher pH, as well as worse epidermal color coordinates (ranging from the dark and dull green color typical of winter fruit to light and a vivid green-yellow color). During the spring season, NFT-grown fruit were less acid than perlite-grown fruit with no apparent correlation with the climatic conditions or fruit nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号