首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
硝态氮是植物吸收利用的主要氮源,其吸收利用是一个高度协调复杂的调控过程。植物为了在各种变化的环境中生存,进化出了适宜不同环境的硝态氮吸收利用机制。植物根系中存在不同类型的硝态氮受体,可以感受外界硝态氮浓度变化,并启用高亲和力或低亲和力硝态氮吸收系统,从而吸收硝态氮;硝态氮进入根系后,大部分被运输到地上部进行同化作用,合成大分子物质,以促进植物生长;如果地上部硝态氮含量过多,植物可把多余的硝态氮运送到液泡内储存,待需要时再从液泡转运至细胞质中利用。植物生长发育过程中,老叶和成熟叶片中的硝态氮可被转运到新生组织中,促进新生组织生长。硝态氮吸收利用过程中大量硝态氮吸收、转运、储存、同化和信号调控基因被有序激活并协调工作,促进植物高效吸收利用硝态氮。本文主要针对NRT1和NRT2硝态氮吸收转运相关基因及其功能,以及参与初级硝态氮反应的相关转录因子和小信号多肽在硝态氮信号传导和组织间的信号交流进行综述,以便深入理解植物吸收利用硝态氮的机理,为高效利用氮素的作物育种和栽培技术的创建提供新的思路。  相似文献   

2.
氮素是植物生长发育必不可少的大量元素之一,土壤中的硝酸盐是植物获取氮素的主要来源。植物对硝酸盐的吸收与利用是通过一个精密的信号调控网络来实现的,其中硝酸盐转运蛋白在植物体内硝酸盐的运输和分配过程中发挥着重要的作用。通过对氮素利用途径中不同硝酸盐转运基因在硝酸盐的吸收、转运、同化和再利用进行功能鉴定,可以更好地解析硝酸盐在植物体内的吸收机制,从而找到提高植物氮素利用效率的关键环节。因此,综述了植物硝酸盐转运蛋白对土壤中硝酸盐的响应和信号的传递;硝酸盐转运蛋白在植株体内参与硝酸盐的转运、储存和再利用的功能以及硝酸盐在植物育种中的应用,并从对硝酸盐转运基因的单碱基编辑、关键结构域的改造和基因功能鉴定等方面进行展望。综述了有利于揭示硝酸盐转运基因的功能,拓宽植物吸收转运硝酸盐的分子机制认识,为提高植物氮素利用效率、培育氮高效利用农作物品种提供理论支撑。  相似文献   

3.
通过盆栽试验,研究了在低氮(不施氮)和高氮(施氮0.2 g·kg~(-1))水平下接种不同种类丛枝菌根(AM)真菌[Funneliformis mosseae(BGC-NM03D)、Claroideoglomus etunicatum(BGC-NM01B)和Rhizophagus intraradices(BJ09)]对小麦生长、氮吸收及根内4个硝态氮转运蛋白(NRT)基因、1个辅助蛋白(NAR)基因和2个铵态氮转运蛋白(AMT)基因表达的影响。结果表明,3种AM真菌均能够侵染小麦根系,以R.intraradices菌根的侵染率最高;接种R.intraradices或C.etunicatum能够显著提高小麦的生物量或地上部氮吸收量;无论是高氮还是低氮处理,接种AM真菌后均显著下调了小麦根内NRT、NAR和AMT基因的表达水平,且不同AM真菌调控小麦根内氮转运蛋白基因表达的能力具有明显差异。  相似文献   

4.
硝态氮供应下植物侧根生长发育的响应机制   总被引:5,自引:2,他引:3  
旱地土壤上硝态氮是作物吸收和利用的主要无机氮形态。硝态氮不仅是植物营养的主要氮源,而且还可以作为信号物质调节植物根系生长发育。为适应土壤中硝态氮非均衡供应,植物侧根发育往往呈现出可塑性反应。本文综述了植物侧根生长发育对硝态氮供应的响应机制。在拟南芥、玉米、大麦等植物上研究表明,硝态氮对植物侧根发育具有双向调节途径,即:1)局部供应硝态氮,硝态氮自身作为信号物质通过信号传导通路发生作用,对侧根具有伸长的刺激效应,硝态氮转运蛋白AtNRT1.1作用于转录因子ANR1的上游,ANR1的转录调节侧根发育;2)植物组织中高浓度的硝态氮对侧根分裂组织活动具有抑制效应,植物激素如生长素和脱落酸可能参与其中的信号传导过程。近些年来研究发现小RNA也参与调控硝态氮供应下植物侧根发育。  相似文献   

5.
非选择性阳离子通道(NSCCs)是生物膜上能同时允许不通价态的阳离子通过的多种通道蛋白的集合体,参与了细胞的营养吸收、膨压控制、信号传导等许多生理过程。NSCCs能够快速转运Ca~(2+)、K~+、Mg~(2+)等细胞代谢必需的营养元素,也能转运有毒重金属离子。了解重金属离子与NSCCs的互作关系,对于调控植物对污染环境中有害重金属的吸收和转运过程具有重要意义。本文综述了重金属离子类型和浓度影响NSCCs门控机制的研究进展,为探索新型离子通道调控剂及其调控机理提供参考。  相似文献   

6.
水稻磷素吸收与转运分子机制研究进展   总被引:6,自引:4,他引:2  
磷素是植物体内重要的大量元素之一,其含量约占植物干重的 0.2%。由于磷元素作为许多重要生物大分子的关键组分,且参与植物体内许多的生理生化反应,因此植物的生长和发育都离不开磷元素。植物在长期的进化过程中,形成了一套高效地吸收和利用磷素的分子调控机制。本文将重点阐述水稻中无机磷从土壤吸收进根系再转运到地上部并进行分配的分子机制,并对今后的水稻磷素吸收和转运的研究重点进行展望。水稻根系主要通过定位在细胞膜上的磷酸盐转运体 (Phosphate Transporter1,PHT1) 吸收土壤中无机磷。当无机磷被吸收进入根系细胞内部后,通过质外体和共质体两种养分的运输途径,将其运输到根中维管束,并通过PHO1 将无机磷由根系加载到地上部。然后水稻根据其地上部不同组织器官对无机磷的需求进行分配,而多余的无机磷将储存在液泡内,维持细胞内无机磷的平衡。目前对磷酸盐转运体吸收磷素的分子机制研究较为清楚,但对于磷素在植物体内的储存、分配和再利用过程的机制还研究较少。液泡作为水稻无机磷储存的主要部位,对于维持细胞内无机磷的平衡尤其重要;节是水稻营养元素 (包括磷素) 在地上部进行分配的重要部位。但目前对于定位于液泡膜上和节上的磷酸盐转运体的机制研究较少。因此,未来挖掘与解析水稻体内负责磷素储存、分配和再利用的磷酸盐转运体及其作用机制,能为培育磷高效利用的水稻提供新的依据。  相似文献   

7.
植物吸收硝态氮的分子生物学进展   总被引:8,自引:1,他引:8  
植物吸收NO3-分为高亲和力(HATS,high.affinitynitratetransportsystem)和低亲和力(LATS,low.affinitynitratetransportsystem)转运系统。这两个系统的编码基因均已被克隆,其中HATS由NRT2基因家族和NAR2基因家族共同编码,LATS由NRT1基因家族编码。本文比较详细地介绍了这些转运蛋白的结构和功能以及在这方面的最新进展,概要性地介绍了这些基因的表达调控;同时摘要点评了该研究领域中还没有解决的一些问题。  相似文献   

8.
高等植物氨基酸吸收与转运及生物学功能的研究进展   总被引:5,自引:1,他引:4  
氨基酸不仅是细胞中蛋白质生物合成的必需底物,而且也参与植物体内的氮代谢途径以及碳氮平衡的调节。近年来,氨基酸的转运与吸收机制及其生物学功能已成为植物分子生物学特别关注和研究的热点之一。最近,学术界亦发现某些氨基酸可能作为信号分子对植物生长发育具有特殊的生物学意义。本文就氨基酸吸收与转运的分子生理机理及其在植物生长发育中的重要功能(如调控生长、 适应各种环境胁迫等)的研究进展进行了较详细地综述。  相似文献   

9.
植物钾吸收的分子水平研究   总被引:6,自引:1,他引:6  
本文从钾离子通道、高亲和力K+ 转运体和H+ -ATP酶等 3方面综述了K+营养的分子生物学、生理生化等的研究结果。植物钾吸收与这 3类转运蛋白的关系极为密切。主要论述K+转运体和K+通道及其介导高低亲和力钾吸收方面的作用 ,以及 3类转运蛋白的调节 ,蛋白的表达 ,调节影响K+的吸收运输和利用  相似文献   

10.
本研究以前期工作中筛选出的硝酸盐积累量存在显著差异的2个不同基因型小白菜品种为材料,在人工气候箱水培条件下研究了不同铵硝比例对小白菜硝酸盐积累量、硝酸还原酶活性(NRA)和硝酸盐吸收基因NRT1和NRT2的表达量的影响。结果表明,不同铵硝比例对小白菜硝酸盐积累量有显著影响,且存在基因型差异。四月慢对硝酸盐吸收、积累及同化利用的能力都强于华冠青梗菜,尤其是在高NO3- 比例处理时。与华冠青梗菜相比,四月慢对NO3- 的同化利用的能力更不易受铵硝比例的影响。NRT1和NRT2主要在根部表达,且NRT1的表达量显著高于NRT2,NRT1和NRT2的表达量变化规律只能在一定程度上解释小白菜不同基因型间硝酸盐积累量的差异,小白菜不同基因型品种间硝酸盐积累量差异的机理还需要进一步研究。  相似文献   

11.
菌根植物适应低磷胁迫的分子机制   总被引:1,自引:1,他引:0  
丛枝菌根 (AM) 真菌能够和绝大多数陆生植物建立共生体系,对于植物适应低磷胁迫具有重要作用。已有很多研究从不同角度揭示了宿主植物和AM真菌协同适应低磷胁迫的生理机制,并已深入到分子和信号水平。本文归纳了近年来相关研究成果,从磷胁迫信号感知、有机酸分泌、磷酸酶与激素合成相关基因、磷酸盐转运蛋白基因、转录因子与小分子物质miRNA等若干方面讨论了菌根共生体系响应和适应磷胁迫的分子机理,重点介绍了1) 环境磷浓度作为营养信号诱发菌根植物的生理响应过程及其在共生体系建立中的关键作用;2) AM真菌调节植物激素平衡进而影响植物生长发育和根系构型的生理机制;3) 丛枝菌根涉及的植物、真菌以及菌根特异诱导植物产生的磷酸盐转运蛋白基因在磷酸盐摄取中的特殊作用及可能调控机制;4) 转录因子作为感知磷胁迫信号和调控转录表达水平的枢纽,在增强植物适应磷胁迫能力方面的重要贡献。这些因素既单独作用又相互关联,共同构成菌根植物适应磷胁迫的分子调控网络。未来需要着重加强菌根共生界面的磷转运机制、菌根植物适应低磷胁迫的转录因子调节,以及各调控因子相互作用研究,从而全面揭示菌根植物适应低磷胁迫的分子调控网络,为发展和应用菌根技术调控植物磷营养奠定理论基础。  相似文献   

12.
13.
Iron is attractive to plant physiologists since J. Sachs has proven in 1868 the essentiality and the possible leaf uptake of Fe. It lasted about 100 years before the principal processes for Fe mobilization in the rhizosphere were discovered and classified as two distinct strategies for Fe acquisition. During the 80's and 90's of the last century the uptake of Fe2+ and FeIII-phytosiderophores by specific transporters in strategy I- and strategy II-plants, respectively, were postulated without any application of the new approaching molecular techniques. In the following decade, the various transporters for Fe uptake by roots, such as AtIRT1 in Arabidopsis or ZmYS1 in maize and their possible regulation were characterized. In the following years with fast developing molecular approaches further Fe trans ortsrs were genetically described with often only vague physiological functions. In view of a plant nutritionist, besides uptake processes by roots, the following transport processes within the respective target tissue have to be considered by molecular biologists in more detail: 1) radial transfer of Fe from the root cortex through the endodermis, 2) xylem loading in roots, 3) transfer of Fe from xylem to phloem via transfer cells, 4) phloem loading with Fe in source leaves and retranslocation to sink organs, and 5) remobilization and retranslocation via the phloem during senescence of perennial plants. The importance of these various specific transport processes for a well-regulated Fe homeostasis in plants and new strategies to identify and characterize proteins involved in Fe transport and homeostasis will be discussed.  相似文献   

14.
以高硝酸盐积累品种四月慢和低硝酸盐积累品种华冠青梗菜为材料,采用溶液培养方法,测定了0.2和2mmol/L NO3-处理下的硝酸盐积累量和硝酸还原酶活性,并应用Real-Time PCR技术检测了NO3-吸收基因NRT1和NRT2的表达量。结果表明:(1)除0.2 mmol/L NO3-处理时的叶片硝酸盐含量没有显著差异外,四月慢植株各部位的硝酸盐含量都显著高于华冠青梗菜,高浓度培养使品种间硝酸盐积累量差异增加,四月慢对NO3-水平增加的响应能力强于华冠青梗菜。(2)吸收液NO3-浓度12~0 mmol/L范围内,四月慢对NO3-离子吸收速率显著高于华冠青梗菜,且在高浓度下表现更显著。(3)在2 mmol/L NO3-处理下,NRT2在根、叶片、叶柄中的表达量都是四月慢显著高于华冠青梗菜,NRT1的表达量只有在根中四月慢显著高于华冠青梗菜,而在叶片和叶柄中都没有显著差异;在0.2 mmol/L NO3-处理下,NRT1和NRT2表达情况相同,都是在叶片和叶柄中四月慢显著高于华冠青梗菜,而在根中表达量品种间没有显著差异。(4)NRT1和NRT2的表达在一定程度上可以解释硝酸盐积累量的差异,可能还有其他的基因对硝酸盐积累的基因型差异起重要作用,尤其是0.2 mmol/L NO3-处理时。(5)四月慢的硝酸还原酶活性显著高于华冠青梗菜,即四月慢对硝酸根同化利用的能力强于华冠青梗菜。  相似文献   

15.
Transport of cadmium from soil to grain in cereal crops: A review   总被引:2,自引:0,他引:2  
Due to rapid urbanization and industrialization, many soils for crop production are contaminated by cadmium(Cd), a heavy metal highly toxic to many organisms. Cereal crops such as rice, wheat, maize, and barley are the primary dietary source of Cd for humans, and reducing Cd transfer from soil to their grains is therefore an important issue for food safety. During the last decade, great progress has been made in elucidating the molecular mechanisms of Cd transport, particularly in rice. Inter-and intraspecific variations in Cd accumulation have been observed in cereal crops. Transporters for Cd have been identified in rice and other cereal crops using genotypic differences in Cd accumulation and mutant approaches. These transporters belong to different transporter families and are involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of Cd. Attempts have been made to reduce Cd accumulation in grains by manipulating these transporters through overexpression or knockout of the transporter genes, as well as through marker-assisted selection breeding based on genotypic differences in Cd accumulation in the grains. In this review, we describe recent progress on molecular mechanisms of Cd accumulation in cereal crops and compare different molecular strategies for minimizing Cd accumulation in grains.  相似文献   

16.
磷是构成许多关键性大分子的重要底物,在植物体内许多生理生化反应中都发挥着重要作用,磷供应不足会极大地限制作物的产量和品质。在漫长的进化过程中,植物形成了一系列适应低磷胁迫的机制,其中,蛋白质水平的泛素化修饰对植物响应低磷胁迫起重要作用。泛素化修饰可以改变靶蛋白的活性、稳定性及其在亚细胞的定位等。对关键蛋白的泛素化修饰在植物低磷胁迫响应中的调控功能和机制进行归类总结,综述植物蛋白质泛素化途径调控低磷胁迫的研究进展。蛋白质泛素化修饰研究主要从泛素、酶和靶蛋白3个组分方面进行。泛素由76个氨基酸组成,并以逐步共轭级联的方式与靶蛋白相连,形成泛素–蛋白质复合体,该复合体被运输至26S蛋白酶体内消化与降解,从而调控众多生理过程。蛋白质泛素化修饰通过改变根系形态构型,影响磷转运子和转录因子的活性和定位,从而促进或抑制植物对土壤磷的吸收以及向地上部的运输,进而调节磷稳态。最后,提出了对植物响应低磷胁迫的蛋白质泛素化需要进行的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号