首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

2.

Background

The rice blast resistance gene Pi54 was cloned from Oryza sativa ssp. indica cv. Tetep, which conferred broad-spectrum resistance against Magnaporthe oryzae. Pi54 allelic variants have been identified in not only domesticates but also wild rice species, but the majority of japonica and some indica cultivars lost the function.

Results

We here found that Pi54 (Os11g0639100) and its homolog Os11g0640600 (named as #11) were closely located on a 25 kbp region in japonica cv. Sasanishiki compared to a 99 kbp region in japonica cv. Nipponbare. Sasanishiki lost at least six genes containing one other R-gene cluster (Os11g0639600, Os11g0640000, and Os11g0640300). Eight AA-genome species including five wild rice species were classified into either Nipponbare or Sasanishiki type. The BB-genome wild rice species O. punctata was Sasanishiki type. The FF-genome wild rice species O. brachyantha (the basal lineage of Oryza) was neither, because Pi54 was absent and the orientation of the R-gene cluster was reversed in comparison with Nipponbare-type species. The phylogenetic analysis showed that #11gene of O. brachyantha was on the root of both Pi54 and #11 alleles. All Nipponbare-type Pi54 alleles were specifically disrupted by 143 and 37/44?bp insertions compared to Tetep and Sasanishiki type. In addition, Pi54 of japonica cv. Sasanishiki lost nucleotide-binding site and leucine-rich repeat (NBS–LRR) domains owing to additional mutations.

Conclusions

These results suggest that Pi54 might be derived from a tandem duplication of the ancestor #11 gene in progenitor FF-genome species. Two divergent structures of Pi54 locus caused by a mobile unit containing the nearby R-gene cluster could be developed before domestication. This study provides a potential genetic resource of rice breeding for blast resistance in modern cultivars sustainability.
  相似文献   

3.
Vinal (Prosopis ruscifolia) is an ecologically important wild leguminous tree that grows spontaneously in Argentine deforested lands, the fruit of which is consumed by humans and animals. Because considerable iron content with low to intermediate availability has been previously reported in vinal pulps, its enhancement would be of interest. Iron availability was determined as iron dialyzability using an in vitro technique. Response surface methodology was used to evaluate iron availability increase after adding ascorbic and/or citric acids to vinal pulp at different mM acid/mM Fe ratios. Those ratios ranged from 0.05:1 to 9.95:1 and from 0.5:1 to 99.5:1 for ascorbic acid/Fe (AA:Fe) and citric acid/Fe (CA:Fe), respectively. The obtained second- and first-order polynomial equations showed that AA:Fe and CA:Fe molar ratios linear terms had a significant effect on iron dialyzability increase (P 0.05). It was possible to enhance iron availability to a maximum of 4.6 times. Additional confirmatory experiments were made adding the same organic acids to different vinal pulps and to a traditional cake prepared with vinal pulp called patay. There were no significant differences (p <0.05) between predicted values obtained by the model and experimental results.  相似文献   

4.

Background

Fungal endophytes are the living symbionts which cause no apparent damage to the host tissue. The distribution pattern of these endophytes within a host plant is mediated by environmental factors. This study was carried out to explore the fungal endophyte community and their distribution pattern in Asparagus racemosus and Hemidesmus indicus growing in the study area.

Results

Foliar endophytes were isolated for 2 years from A. racemosus and H. indicus at four different seasons (June–August, September–November, December–February, March–May). A total of 5400 (675/season/year) leaf segments harbored 38 fungal species belonging to 17 genera, 12 miscellaneous mycelia sterile from 968 isolates and 13 had yeast like growth. In A. racemosus, Acremonium strictum and Phomopsis sp.1, were dominant with overall relative colonization densities (RCD) of 7.11% and 5.44% respectively, followed by Colletotrichum sp.3 and Colletotrichum sp.1 of 4.89% and 4.83% respectively. In H. indicus the dominant species was A. strictum having higher overall RCD of 5.06%, followed by Fusarium moniliforme and Colletotrichum sp.2 with RCD of 3.83% and 3%, respectively. Further the overall colonization and isolation rates were higher during the wet periods (September–November) in both A. racemosus (92.22% and 95.11%) and H. indicus (82% and 77.11%).

Conclusion

Study samples treated with 0.2% HgCl2 and 75% EtOH for 30 s and 1 min, respectively, confirmed most favorable method of isolation of the endophytes. Owing to high mean isolation and colonization rates, September–November season proved to be the optimal season for endophyte isolation in both the study plants. Assessing the bioactive potential of these endophytes, may lead to the isolation of novel natural products and metabolites.
  相似文献   

5.
Phthorimaea operculella (Zeller) is one of the most common insect pests of cultivated potato in tropical and subtropical regions. In this research, a potential strategy to improve the insecticidal activity of plant essential oils for the effective management of P. operculella was studied. The insecticidal and residual effects of nanofiber oil (NFO) and pure essential oil (PEO) of Cinnamomum zeylanicum were assessed on PTM under laboratory conditions. The nanofibers were made by the electrospinning method using polyvinyl alcohol (PVA) polymer. The morphological characteristics of the nanofibers were evaluated by scanning electron microscopy and Fourier transform infrared spectroscopy. The chemical constituents of cinnamon essential oil (EO) were detected by GC/MS. Fumigant toxicity of NFO and PEO were evaluated on different growth stages (egg, male and female adults) of P. operculella. SEM and FTIR analyses confirmed the presence of EO on the nanofiber structure. The yield of the EO from C. zelanicum on the nanofibers was 1.86%. GC/MS analysis showed that cinnamaldehyde was the primary constituent (69.88%) of cinnamon EO. LC50 values of C. zelanicum EO and NFO were 4.92 and 1.76 μl/l air for eggs, 0.444 and 0.212 μl/l air for female adults, and 0.424 and 0.192 μl/l air for male adults, respectively. Fumigant bioassays revealed that NFO was more toxic than C. zeylanicum oil against at all stages of P. operculella. The residual effect of PEO and NFO was evaluated against the egg stage of the P. operculella. NFO lost insecticidal effectiveness 47 days after application, while the efficacy of PEO decreased 15 days after application. Our results suggest that NFO of C. zeylanicum can be used as an effective new tool for the management of P. operculella.  相似文献   

6.
The inflorescence of cultivated Coptis chinensis has been valued for tea production for many years in China. The antioxidant activities of C. chinensis inflorescence extracts prepared by various solvents were investigated by using several established in vitro systems: 2,2′-azinobis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS), α,α-diphenyl-β-picrylhydrazyl (DPPH) and superoxide radical scavenging assays, reducing power assay, and ferrothiocyanate (FTC) and thiobarbituric acid (TBA) assays. The results showed that the 70% ethanol extract (EE) had the strongest antioxidant activity in vitro among the various extracts. Based on the in vitro results, EE was used to evaluate the antioxidant activity of C. chinensis inflorescence in vivo. The liver and kidney of intoxicated animals showed a significant decrease in superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) levels, while the malondialdehyde (MDA) level showed a significant increase. These changes were significantly reversed after treatment with EE and the standard vitamin E. Thus, the C. chinensis inflorescence may be a valuable natural source that can be applicable to food industries.  相似文献   

7.
The aim of this study was to investigate the bioactivity of the essential oil isolated from Origanum vulgare L. (EOv). We analyzed the in vivo anti-inflammatory properties in a mouse-airway inflammation model and the in vitro antimicrobial activity, genotoxicity over the anaphase-telophase with the Allium cepa strain and its cytotoxicity/viability in A549 culture cells. In vivo, EOv modified the levels of tumor necrosis factor -α and viable activated macrophages and was capable to mitigate the effects of degradation of conjugated dienes. In vitro, EOv reduced the viability of cultured A549 cells as well as the mitotic index and a number of chromosomal aberrations; however, it did not change the number of phases. We found that EOv presents antimicrobial activity against different Gram (?) and (+) strains, measured by disc-diffusion test and confirmed with a more accurate method, the AutoCad software. We postulate that EOv presents antibacterial, antioxidant and chemopreventive properties and could be play an important role as bioprotector agent.  相似文献   

8.
Teff (Eragrostis tef) is a fine stemmed annual grass and gluten free small grain that is of interest as a forage, cover, or a rotation crop. Little is known about the susceptibility of teff to many diseases. Teff could be grown in rotation with potato in the northwestern United States provided teff cultivation is economical and does not increase soil populations for pathogens affecting rotation crops such as Verticillium dahliae. Verticillium dahliae infects a wide range of dicotyledonous plants, making it one of the most important fungal pathogens of crop plants in North America, including potato. The objective of this study was to quantify the susceptibility of teff to eight V. dahliae isolates and compare the susceptibility of teff to eggplant. Teff was confirmed as a host for V. dahliae, as indicated by the presence of microsclerotia in teff stems and roots after artificial inoculation in two years of greenhouse studies. The number of microsclerotia produced in teff did not differ between mint and potato pathotypes of V. dahliae. No V. dahliae isolate produced significantly greater numbers of microsclerotia than any of the seven other isolates tested in a two-year study. Microsclerotia production of V. dahliae in teff was consistently less than in susceptible eggplant cv. Night shadow in both greenhouse experiments (P?<?0.02). It is unlikely that teff infected by V. dahliae will proliferate microsclerotia of mint or potato-aggressive pathotypes, especially when compared to susceptible eggplant cultivars.  相似文献   

9.

Background

Host-plant resistance is the most desirable and economic way to overcome BPH damage to rice. As single-gene resistance is easily lost due to the evolution of new BPH biotypes, it is urgent to explore and identify new BPH resistance genes.

Results

In this study, using F2:3 populations and near-isogenic lines (NILs) derived from crosses between two BPH-resistant Sri Lankan rice cultivars (KOLAYAL and POLIYAL) and a BPH-susceptible cultivar 9311, a new resistance gene Bph33 was fine mapped to a 60-kb region ranging 0.91–0.97 Mb on the short arm of chromosome 4 (4S), which was at least 4 Mb distant from those genes/QTLs (Bph12, Bph15, Bph3, Bph20, QBph4 and QBph4.2) reported before. Seven genes were predicted in this region. Based on sequence and expression analyses, a Leucine Rich Repeat (LRR) family gene (LOC_Os04g02520) was identified as the most possible candidate of Bph33. The gene exhibited continuous and stable resistance from seedling stage to tillering stage, showing both antixenosis and antibiosis effects on BPH.

Conclusion

The results of this study will facilitate map-based cloning and marker-assisted selection of the gene.
  相似文献   

10.

Background

Rice blast (caused by Magnaporthe oryzae) is one of the most destructive diseases of rice. While many blast resistance (R) genes have been identified and deployed in rice cultivars, little is known about the R gene-mediated defense mechanism. We used a rice transgenic line harboring the resistance gene Piz-t to investigate the R gene-mediated resistance response to infection.

Results

We conducted comparative proteome profiling of the Piz-t transgenic Nipponbare line (NPB-Piz-t) and wild-type Nipponbare (NPB) inoculated with M. oryzae at 24, 48, 72 h post-inoculation (hpi) using isobaric tags for relative and absolute quantification (iTRAQ) analysis. Comparative analysis of the response of NPB-Piz-t to the avirulent isolate KJ201 and the virulent isolate RB22 identified 114 differentially expressed proteins (DEPs) between KJ201-inoculated NPB-Piz-t (KJ201-Piz-t) and mock-treated NPB-Piz-t (Mock-Piz-t), and 118 DEPs between RB22-inoculated NPB-Piz-t (RB22-Piz-t) and Mock-Piz-t. Among the DEPs, 56 occurred commonly in comparisons KJ201-Piz-t/Mock-Piz-t and RB22-Piz-t/Mock-Piz-t. In a comparison of the responses of NPB and NPB-Piz-t to isolate KJ201, 93 DEPs between KJ201-Piz-t and KJ201-NPB were identified. DEPs in comparisons KJ201-Piz-t/Mock-Piz-t, RB22-Piz-t/Mock-Piz-t and KJ201-Piz-t/KJ201-NPB contained a number of proteins that may be involved in rice response to pathogens, including pathogenesis-related (PR) proteins, hormonal regulation-related proteins, defense and stress response-related proteins, receptor-like kinase, and cytochrome P450. Comparative analysis further identified 7 common DEPs between the comparisons KJ201-Piz-t/KJ201-NPB and KJ201-Piz-t/RB22-Piz-t, including alcohol dehydrogenase I, receptor-like protein kinase, endochitinase, similar to rubisco large subunit, NADP-dependent malic enzyme, and two hypothetical proteins.

Conclusions

Our results provide a valuable resource for discovery of complex protein networks involved in the resistance response of rice to blast fungus.
  相似文献   

11.
Verticillium wilt is a fungal disease of potato caused by two species of Verticillium, V. dahliae and V. albo atrum. The pathogen infects the vascular tissue of potato plants through roots, interfering with the transport of water and nutrition, and reducing both the yield and quality of tubers. We have evaluated the reaction of 283 potato clones (274 cultivars and nine breeding selections) to inoculation with V. dahliae under greenhouse conditions. A significant linear correlation (r = 0.4, p < 0.0001) was detected between plant maturity and partial resistance to the pathogen, with late maturing clones being generally more resistant. Maturity-adjusted resistance, that takes into consideration both plant maturity and resistance, was calculated from residuals of the linear regression between the two traits. Even after adjusting for maturity, the difference in the resistance of clones was still highly significant, indicating that a substantial part of resistance cannot be explained by the effect of maturity. The highest maturity-adjusted resistance was found in the cv. Navajo, while the most susceptible clone was the cv. Pungo. We hope that the present abundance of data about the resistance and maturity of 283 clones will help potato breeders to develop cultivars with improved resistance to V. dahliae.  相似文献   

12.
The effect of essential oil (EO) from anise (Pimpinellia anisum) on the mortality of young larvae of Colorado potato beetles has been studied. In our bioassays, P. anisum EO significantly increased the mortality of the second instar larvae of L. decemlineata. Significantly different values of LD50 and LD90 were established for acute (LD50 = 1.76, and LD90 = 8.29) as well as chronic toxicity (LD50 = 0.45, and LD90 = 1.01). Decrease of both values over experimental period was evident, which showed that the larval mortality was slow and cumulative. The composition of EO used for biological experiments was also assessed. The main component detected in EO from P. anisum was anethole (79.87%), followed by anisaldehyde (7.74%), estragole (5.88%) and β-linalool (1.07%). Within five days, residual concentration of EO decreased from 3.87 mg/g of dry weight immediately after foliar applications to 0.9 mg per g of dry weight. The effect of this slow evaporation could be explained by dominant presence of anethole or by the type of formulation and the addition of oil and tween. Results of our study demonstrate that EO from P. anisum has insecticidal properties that may lead to the development of new organic products for the control of Colorado potato beetles.  相似文献   

13.
Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.  相似文献   

14.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   

15.
Antioxidant activity of fresh Allium sativum L. (garlic) is well known and is mainly due to unstable and irritating organosulphur compounds. Fresh garlic extracted over a prolonged period (up to 20 months) produces odourless aged garlic extract (AGE) containing stable and water soluble organosulphur compounds that prevent oxidative damage by scavenging free radicals. The aim of this study was to investigate the in vitro antioxidant activity of aged (up to 20 months) 15% hydroethanolic extracts of different parts (bulbs, bulblets, flower bulblets, flowers, and leaves) of three Allium spontaneous species which are endemic for Italian flora: Allium neapolitanum Cyr., Allium subhirsutum L., Allium roseum L. and to compare it with the in vitro antioxidant activity of aged 15% hydroethanolic extracts of bulbs and leaves of garlic. The antioxidant potential of aged extracts of all species has been evaluated using two different spectrophotometric assays: 2,2-diphenylpicrylhydrazyl (DPPH) test and the ferric reducing/antioxidant power (FRAP) assay. Furthermore the polyphenol content was determined. The aged extracts obtained from the leaves showed the best antioxidant activity, followed by flowers and then by bulbs in both used tests, while flower bulblets and bulblets exhibited lower results or no activity. The polyphenol content was generally directly correlated with antioxidant/antiradical activity. This study confirms the data obtained in previous researches, the wild-type species of Allium and in particular organs other than bulbs are more active and efficacious than garlic bulb. Surely leaves of these Allium spp. deserve special attention.  相似文献   

16.
Coriander is commonly used for medicinal purposes, food applications, cosmetics and perfumes. Herein, the production of antioxidants in vegetative parts (leaves and stems) of in vivo and in vitro grown samples was compared. In vitro samples were clone A- with notorious purple pigmentation in stems and leaves and clone B- green. Seeds were also studied as they are used to obtain in vivo and in vitro vegetative parts. Lipophilic (tocopherols, carotenoids and chlorophylls) and hydrophilic (sugars, ascorbic acid, phenolics, flavonols and anthocyanins) compounds were quantified. The antioxidant activity was evaluated by radical scavenging activity, reducing power and lipid peroxidation inhibition. The in vivo sample showed the highest antioxidant activity mainly due to its highest levels of hydrophilic compounds. Otherwise, in vitro samples, mainly clone A, gave the highest concentration in lipophilic compounds but a different profile when compared to the in vivo sample. Clones A and B revealed a lack of β-carotene, β- and δ-tocopherols, a decrease in α-tocopherol, and an increase in γ-tocopherol and clorophylls in comparison to the in vivo sample. In vitro culture might be useful to explore the plants potentialities for industrial applications, controlling environmental conditions to produce higher amounts of some bioactive products.  相似文献   

17.
A comparative analysis of ethanol extracts from peel, pulp and seed of Prunus persica var. platycarpa (Tabacchiera peach) was done. The total phenol, flavonoid and carotenoid content as well as the antioxidant properties by using different in vitro assays (DPPH, ABTS, FRAP, Fe-chelating, β-carotene bleaching test) were evaluated. Pulp extract was subjected to liquid chromatography-electrospray-tandem mass spectrometry (HPLC-ESI-MS/MS). Gallic acid, protocatechuic acid, protocatechualdehyde, chlorogenic acid, p-coumaric acid, and ferulic acid were identified as main constituents. Pulp extract was characterized by the highest total phytonutrients content and exhibited the highest antioxidant activity in all in vitro assays (IC50 values of 2.2 μg/mL after 60 min of incubation by using β-carotene bleaching test and 2.9 μg/mL by using Fe-chelating assay). Overall, the obtained results suggest that P. persica var. platycarpa displays a good antioxidant activity and its consumption could be promoted.  相似文献   

18.

Background

Rice plays an extremely important role in food safety because it feeds more than half of the world’s population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding.

Results

We characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding.

Conclusion

GNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.
  相似文献   

19.
To develop an in vitro assay method for bacterial wilt resistance in potato, resistant and susceptible standard genotypes were grown in vitro, and different conditions of inoculation with Ralstonia solanacearum phylotype I/biovar 4 were examined. The optimal condition was the inoculation of 6–8 leaf stage plants with a bacterial concentration of 102 CFU ml?1 and an incubation temperature of 28 °C. Evaluation of stem wilting was more reliable than that of leaf wilting. Using this method, nine genotypes with different resistance levels in the field were evaluated. Lower disease indices were obtained for genotypes with high resistance levels in the field, suggesting that this assay is useful for evaluating bacterial wilt resistance in a controlled environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号