首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ObjectiveTo evaluate the speed of onset and duration of loss of sensation in the flank following paravertebral administration of lidocaine (with or without epinephrine) or bupivacaine.Study designBlinded, randomized experimental study.AnimalsNine healthy fat-tailed male lambs (mean weight ± SD, 22.9 ± 3 kg). Each animal was used twice.MethodsAnimals were allocated randomly to receive two of three treatments: lidocaine 2% (LID, n = 6), lidocaine with epinephrine 5 μg mL?1 (LIDEP, n = 6) or bupivacaine 0.5% (BUP, n = 6). The sheep received a total volume of 9 mL (3 mL for each paravertebral nerve) of anaesthetic. Onset and duration of loss of sensation on the flank were evaluated using nociceptive stimuli (superficial and deep pin-prick and clamping with a haemostat). Values for heart (HR) and respiratory (fR) rates, rectal and skin temperatures were recorded before and at predetermined intervals after paravertebral injection. Parameters were compared using anova followed by Duncan’s test where relevant.ResultsMean ± SD times to onset of loss of flank sensation following paravertebral administration of LID, LIDEP or BUP were 1.8 ± 1.2, 2.0 ± 0.9 and 3.6 ± 1.3 minutes, respectively. Durations of action in minutes were 65 ± 18, 95 ± 46 and 303 ± 98, respectively. Onset and duration of effects after BUP treatment were significantly longer than after LID or LIDEP (p < 0.05), but did not differ significantly between LID and LIDEP. No clinical signs of local anaesthetic toxicity were noticed and HR and fR remained stable with all protocols.Conclusions and clinical relevanceParavertebral administration of bupivacaine produces a longer duration of anaesthesia when compared to lidocaine with or without epinephrine and is indicated when prolonged flank surgery is to be performed.  相似文献   

3.
ObjectiveTo assess the brachial plexus block in chickens by an axillary approach and using a peripheral nerve stimulator.Study designProspective, randomized, double-blinded study.AnimalsSix, 84-week old, female chickens.MethodsMidazolam (1 mg kg−1) and butorphanol (1 mg kg−1) were administered into the pectoralis muscle. Fifteen minutes later, the birds were positioned in lateral recumbency and following palpation of the anatomic landmarks, a catheter was inserted using an axillary approach to the brachial plexus. Lidocaine or bupivacaine (1 mL kg−1) was injected after plexus localization by the nerve stimulator. Sensory function was tested before and after blockade (carpus, radius/ulna, humerus and pectoralis muscle) in the blocked and unblocked wings. The latency to onset of motor and sensory block and the duration of sensory block were recorded. A Friedman nonparametric one-way repeated-measures anova was used to compare scores from baseline values over time and to compare the differences between wings at each time point.ResultsA total of 18 blocks were performed with a success rate of 66.6% (12/18). The latency for motor block was 2.8 ± 1.1 and 3.2 ± 0.4 minutes for lidocaine and bupivacaine, respectively. The latencies for and durations of the sensory block were 6.0 ± 2.5 and 64.0 ± 18.0 and 7.8 ± 5.8 and 91.6 ± 61.7 minutes for lidocaine and bupivacaine, respectively. There was no statistical difference between these times for lidocaine or bupivacaine. Sensory function was not abolished in nonblocked wings.Conclusions and clinical relevanceThe brachial plexus block was an easy technique to perform but had a high failure rate. It might be useful for providing anesthesia or postoperative analgesia of the wing in chickens and exotic avian species that have similar wing anatomy.  相似文献   

4.
ObjectiveTo compare palpation-guided with ultrasound-guided brachial plexus blockade in Hispaniolan Amazon parrots.Study designProspective randomized experimental trial.AnimalsEighteen adult Hispaniolan Amazon parrots (Amazona ventralis) weighing 252–295 g.MethodsAfter induction of anesthesia with isoflurane, parrots received an injection of lidocaine (2 mg kg?1) in a total volume of 0.3 mL at the axillary region. The birds were randomly assigned to equal groups using either palpation or ultrasound as a guide for the brachial plexus block. Nerve evoked muscle potentials (NEMP) were used to monitor effectiveness of brachial plexus block. The palpation-guided group received the local anesthetic at the space between the pectoral muscle, triceps, and supracoracoideus aticimus muscle, at the insertion of the tendons of the caudal coracobrachial muscle, and the caudal scapulohumeral muscle. For the ultrasound-guided group, the brachial plexus and the adjacent vessels were located with B-mode ultrasonography using a 7–15 MHz linear probe. After location, an 8-5 MHz convex transducer was used to guide injections. General anesthesia was discontinued 20 minutes after lidocaine injection and the birds recovered in a padded cage.ResultsBoth techniques decreased the amplitude of NEMP. Statistically significant differences in NEMP amplitudes, were observed within the ultrasound-guided group at 5, 10, 15, and 20 minutes after injection and within the palpation-guided group at 10, 15, and 20 minutes after injection. There was no statistically significant difference between the two groups. No effect on motor function, muscle relaxation or wing droop was observed after brachial plexus block.Conclusions and clinical relevanceThe onset of the brachial plexus block tended to be faster when ultrasonography was used. Brachial plexus injection can be performed in Hispaniolan Amazon parrots and nerve evoked muscle potentials were useful to monitor the effects on nerve conduction in this avian species. Neither technique produced an effective block at the doses of lidocaine used and further study is necessary to develop a useful block for surgical analgesia.  相似文献   

5.
ObjectiveTo describe an approach for ethmoidal nerve block (EBLOCK) and to compare the effects of a maxillary nerve block (MBLOCK), EBLOCK and their combination (M-EBLOCK) on heart rate (HR), systolic (SAP), mean (MAP), diastolic (DAP) arterial pressures and respiratory rate (fR) during nasal stimulation in dogs.Study designProspective, blinded, randomized, crossover placebo-controlled study.AnimalsBeagle dogs (five cadavers, nine live dogs), with a median (interquartile range) weight of 10.5 (10.3–11.0) kg.MethodsThe accuracy of iohexol injections (each 1 mL) at the maxillary and ethmoidal foramina in cadavers was evaluated using computed tomography. Then, anesthetized dogs were administered four bilateral treatments separated by 1 week, saline or 2% lidocaine 1 mL per injection: injections of saline at the maxillary and ethmoidal foramina (Control), injections of lidocaine at the maxillary foramina and saline at the ethmoidal foramina (MBLOCK), injections of saline at the maxillary foramina and lidocaine at the ethmoidal foramina (EBLOCK) and injections of lidocaine at all foramina (M-EBLOCK). The ventral nasal meatus was bilaterally stimulated using cotton swabs, and HR, SAP, MAP, DAP and fR were continuously recorded. Values for each variable were compared before and after stimulation using Wilcoxon signed-rank test. Changes in variables among treatments were analyzed using Mann–Whitney U and Kruskal–Wallis tests (p ≤ 0.05).ResultsComputed tomography revealed iohexol distribution around the openings of the target foramina in all cadavers. In living dogs, HR, SAP, MAP, DAP and fR significantly increased after stimulation within each treatment (p < 0.03). Physiologic responses were significantly attenuated, but not absent, in the M-EBLOCK [HR (p = 0.019), SAP, MAP, DAP and fR (all p ≤ 0.001)] compared with those in the Control.Conclusions and clinical relevanceConcurrent injections of lidocaine at the maxillary and ethmoidal foramina attenuated HR, arterial pressure and fR responses to nasal stimulation in Beagle dogs.  相似文献   

6.
ObjectiveTo elucidate the antinociceptive, physiologic and biochemical effects of electroacupuncture (EA) and xylazine in hybrid goats.Study designProspective experimental study.AnimalsA total of 30 female hybrid goats aged 1–2 years and weighing 25 ± 2.9 kg (mean ± standard deviation).MethodsThe goats were divided into five groups and administered xylazine (0.1 mg kg−1; group XYL.1), xylazine (0.3 mg kg−1; group XYL.3), EA (group EA), EA + xylazine (0.1 mg kg−1; group XYL.1-EA) and 0.9% saline (0.3 mL; control group CON). Nociceptive threshold and serum glucose concentration were measured at time 0 and at 15, 30, 45, 60 minutes and 24 hours after treatment. Nociceptive threshold was measured by passing potassium ions through the skin using potassium iontophoresis. Mean arterial pressure (MAP), heart rate (HR), respiratory frequency (fR) and rectal temperature (RT) were recorded at times 0 and at 5, 10, 15, 20, 30, 45, 60 minutes and 24 hours. Repeated-measures analyses were performed for each response variable; p < 0.05 was considered significant for all analyses.ResultsAntinociceptive effects in groups XYL.1 and XYL.3 were increased significantly at 15–60 minutes compared with group CON. Antinociceptive effect was higher in group XYL.1-EA than groups XYL.1 or EA at 15–60 minutes (p < 0.05). No significant difference in the nociceptive threshold was recorded in groups XYL.1-EA and XYL.3, except at 30 minutes. HR, MAP, fR, RT values were higher in group XYL.1-EA than in groups XYL.1 or XYL.3. Serum glucose concentration was higher in group XYL.3 at 15–60 minutes than in CON.Conclusions and clinical relevanceThe XYL.1 and EA combination was effective for antinociception with minimum physiologic alteration, suggesting that the combination may be a new and effective strategy for pain relief during clinical procedures in goats.  相似文献   

7.
ObjectiveTo compare, versus a control, the sensory, sympathetic and motor blockade of lidocaine 1% and 2% administered epidurally in bitches undergoing ovariohysterectomy.Study designRandomized, blinded, controlled clinical trial.AnimalsA total of 24 mixed-breed intact female dogs.MethodsAll dogs were administered dexmedetomidine, tramadol and meloxicam prior to general anesthesia with midazolam–propofol and isoflurane. Animals were randomly assigned for an epidural injection of lidocaine 1% (0.4 mL kg−1; group L1), lidocaine 2% (0.4 mL kg−1; group L2) or no injection (group CONTROL). Heart rate (HR), respiratory rate (fR), end-tidal partial pressure of carbon dioxide (Pe′CO2), and invasive systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures were recorded every 5 minutes. Increases in physiological variables were treated with fentanyl (3 μg kg−1) intravenously (IV). Phenylephrine (1 μg kg−1) was administered IV when MAP was <60 mmHg. Postoperative pain [Glasgow Composite Pain Score – Short Form (GCPS–SF)] and return of normal ambulation were recorded at 1, 2, 3, 4 and 6 hours after extubation.ResultsThere were no differences over time or among groups for HR, fR, Pe′CO2 and SAP. MAP and DAP were lower in epidural groups than in CONTROL (p = 0.0146 and 0.0047, respectively). There was no difference in the use of phenylephrine boluses. More fentanyl was administered in CONTROL than in L1 and L2 (p = 0.011). GCPS–SF was lower for L2 than for CONTROL, and lower in L1 than in both other groups (p = 0.001). Time to ambulation was 2 (1–2) hours in L1 and 3 (2–4) hours in L2 (p = 0.004).Conclusions and clinical relevanceEpidural administration of lidocaine (0.4 mL kg−1) reduced fentanyl requirements and lowered MAP and DAP. Time to ambulation decreased and postoperative pain scores were improved by use of 1% lidocaine compared with 2% lidocaine.  相似文献   

8.
ObjectiveTo evaluate the effects of dexmedetomidine administered perineurally or intramuscularly (IM) on sensory, motor function and postoperative analgesia produced by lidocaine for sciatic and femoral nerve blocks in dogs undergoing unilateral tibial tuberosity advancement surgery.Study designProspective, blinded, clinical study.AnimalsA group of 30 dogs.MethodsDogs were anaesthetized with acepromazine, propofol and isoflurane in oxygen/air. Electrolocation-guided femoral and sciatic nerve blocks were performed: group L, 0.15 mL kg–1 2% lidocaine (n = 10); group LDloc, lidocaine and 0.15 μg kg–1 dexmedetomidine perineurally (n = 10); group LDsys, lidocaine and 0.3 μg kg–1 dexmedetomidine IM (n = 10). After anaesthesia, sensory blockade was evaluated by response to forceps pinch on skin innervated by the saphenous/femoral, common fibular and tibial nerves. Motor blockade was evaluated by observing the ability to walk and proprioception. Analgesia was monitored with Short Form of Glasgow Composite Pain Scale for up to 4 hours after extubation. Methadone IM was administered as rescue analgesia. Data were analysed by linear mixed effect models and Kaplan-Meier test (p < 0.05).ResultsMedian duration of the sensory blockade for all nerves was longer (p < 0.001) for group LDloc than for groups L and LDsys and was longer (p = 0.0011) for group LDsys than for group L. Proprioception returned later (p < 0.001) for group LDloc [285 (221–328) minutes] compared with group L [160 (134–179) minutes] or LDsys [195 (162–257) minutes]. Return of the ability to walk was similar among all groups. Dogs in group LDloc required postoperative rescue analgesia later (p = 0.001) than dogs in groups LDsys and L.Conclusions and clinical relevanceDexmedetomidine administered perineurally with lidocaine prolonged sensory blockade and analgesia during the immediate postoperative period. Systemic dexmedetomidine also prolonged the sensory blockade of perineural lidocaine.  相似文献   

9.
ObjectiveTo investigate whether intratesticular injection of lidocaine pre-surgery would reduce the intraoperative responses to elective castration in dogs.Study designDouble-blinded, randomized, controlled, prospective clinical study.AnimalsForty-two client-owned dogs weighing 2.2–38.4 kg and aged between 4.5 and 56 months.MethodsGroup L dogs received an intratesticular injection of 2% lidocaine (2 mg kg?1) and Group S an identical volume of saline prior to surgery. Premedication was with acepromazine and morphine intramuscularly. Anaesthesia was induced with propofol intravenously and maintained with isoflurane vaporized in oxygen. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (fR), end-tidal isoflurane (Fe′ISO) and carbon dioxide concentrations, oxygen saturation and ECG were monitored during surgery. Fe′ISO was maintained at 1.0 ± 0.1%. Supplemental propofol was given in response to gross movement.ResultsGroup L had significantly lower maximum values for both HR and MAP. Group L displayed significantly smaller increases in HR during exteriorization of the first testis than Group S. There was an overall significant difference in MAP between groups during all surgical events (p = 0.041) and time points (p = 0.002). In univariate analysis, Group L showed significantly less changes in MAP during skin incision, exteriorization of the first testis and clamping of both spermatic cords. Group S reached its highest fR significantly earlier. Group L (eight dogs) required additional propofol 33 ± 18 minutes after the start of surgery and Group S (seven dogs) at 19 ± 17 minutes; this difference was not statistically significant. Seven dogs in Group L and 12 dogs in Group S required rescue analgesia with morphine (GCMPS-SF score ≥6); this difference was not statistically significant. No adverse effects were reported postoperatively.Conclusions and clinical relevanceBased on this study, the authors recommend the use of intratesticular lidocaine for surgical castration in dogs.  相似文献   

10.

Objective

To investigate physiological and antinociceptive effects of electroacupuncture (EA) with lidocaine epidural nerve block in goats.

Study design

Prospective experimental trial.

Animals

Forty-eight hybrid male goats weighing 27 ± 2 kg.

Methods

The goats were randomly assigned to six groups: L2.2, epidural lidocaine (2.2 mg kg?1); L4.4, epidural lidocaine (4.4 mg kg?1); EA; EA-L1.1, EA with epidural lidocaine (1.1 mg kg?1); EA-L2.2, EA with epidural lidocaine (2.2 mg kg?1); and EA-L4.4, EA with epidural lidocaine (4.4 mg kg?1). EA was administered for 120 minutes. Epidural lidocaine was administered 25 minutes after EA started. Nociceptive thresholds of flank and thigh regions, abdominal muscle tone, mean arterial pressure (MAP), heart rate (HR), respiratory frequency (fR) and rectal temperature were recorded at 30, 60, 90, 120, 150 and 180 minutes.

Results

Lidocaine dose-dependently increased nociceptive thresholds. There were no differences in nociceptive thresholds between L4.4 and EA from 30 to 120 minutes. The threshold in EA-L2.2 was lower than in EA-L4.4 from 30 to 120 minutes, but higher than in EA-L1.1 from 30 to 150 minutes or in L4.4 from 30 to 180 minutes. The abdominal muscle tone in EA-L2.2 was higher at 30 minutes, but lower at 90 and 120 minutes than at 0 minutes. There were no differences in muscle tone between L4.4 and L2.2 or EA-L4.4, and between any two of the three EA-lidocaine groups from 0 to 180 minutes. The fR and HR decreased in L4.4 at 60 and 90 minutes compared with 0 minutes. No differences in fR, HR, MAP and temperature among the groups occurred from 30 to 180 minutes.

Conclusions and clinical relevance

EA combined with 2.2 mg kg?1 epidural lidocaine provides better antinociceptive effect than 4.4 mg kg?1 epidural lidocaine alone in goats. EA provided antinociception and allowed a decrease in epidural lidocaine dose.  相似文献   

11.
ObjectiveTo assess the sedative and immobilization effect of intranasal administration (INS) of midazolam (MID) without or with INS dexmedetomidine (DXM), and some physiological changes induced by the drugs. The ability of INS atipamezole to reverse the DXM component was also assessed.Study designProspective ‘blinded’ experimental study.AnimalsIn total, 15 pigeons.MethodsPigeons were sedated by INS MID alone at a dose of 5 mg kg−1 (group MID, n = 6) or in combination with INS DXM at a dose 80 μg kg−1 (group MID-DXM, n = 6). Measurements were made of heart rate (HR), respiratory rate (fR) and cloacal temperature (CT). The degree of sedation was assessed at 15 minutes prior to, immediately after, and at intervals until 100 minutes after drug administrations. Following MID-DXM, INS atipamezole (250 μg kg−1) was administered and the same indices measured 5 and 10 minutes later.ResultsMID had no effect on HR and fR, and although CT decreased, it remained within physiological range. MID-DXM caused significant falls in HR, fR and CT that persisted until the end of sedation. Atipamezole antagonized sedation and cardiorespiratory side effects of MID-DXM within 10 minutes of application. In addition, for MID compared to MID-DXM, the lowest sedation scores [10 (7–14) and 10.5 (5–14) versus 2 (1–4) and 2 (1–5)] were achieved in the 10th and 20th minute versus the 20th and 30th minute of the sedation, respectively.Conclusions and clinical relevanceMID alone, given INS had minimal side effects on vital functions but caused inadequate immobilization of pigeons for restraint in dorsal recumbency. MID-DXM caused an effective degree of immobilization from 20 to 30 minutes after administration, at which time birds tolerated postural changes without resistance. Atipamezole antagonized both side effects and sedation, but complete recovery had not occurred within 10 minutes after its application.  相似文献   

12.
ObjectiveTo investigate effects of vatinoxan in dogs, when administered as intravenous (IV) premedication with medetomidine and butorphanol before anaesthesia for surgical castration.Study designA randomized, controlled, blinded, clinical trial.AnimalsA total of 28 client-owned dogs.MethodsDogs were premedicated with medetomidine (0.125 mg m?2) and butorphanol (0.2 mg kg?1) (group MB; n = 14), or medetomidine (0.25 mg m?2), butorphanol (0.2 mg kg?1) and vatinoxan (5 mg m?2) (group MB-VATI; n = 14). Anaesthesia was induced 15 minutes later with propofol and maintained with sevoflurane in oxygen (targeting 1.3%). Before surgical incision, lidocaine (2 mg kg?1) was injected intratesticularly. At the end of the procedure, meloxicam (0.2 mg kg?1) was administered IV. The level of sedation, the qualities of induction, intubation and recovery, and Glasgow Composite Pain Scale short form (GCPS-SF) were assessed. Heart rate (HR), respiratory rate (fR), mean arterial pressure (MAP), end-tidal concentration of sevoflurane (Fe′Sevo) and carbon dioxide (Pe′CO2) were recorded. Blood samples were collected at 10 and 30 minutes after premedication for plasma medetomidine and butorphanol concentrations.ResultsAt the beginning of surgery, HR was 61 ± 16 and 93 ± 23 beats minute?1 (p = 0.001), and MAP was 78 ± 7 and 56 ± 7 mmHg (p = 0.001) in MB and MB-VATI groups, respectively. No differences were detected in fR, Pe′CO2, Fe′Sevo, the level of sedation, the qualities of induction, intubation and recovery, or in GCPS-SF. Plasma medetomidine concentrations were higher in group MB-VATI than in MB at 10 minutes (p = 0.002) and 30 minutes (p = 0.0001). Plasma butorphanol concentrations were not different between groups.Conclusions and clinical relevanceIn group MB, HR was significantly lower than in group MB-VATI. Hypotension detected in group MB-VATI during sevoflurane anaesthesia was clinically the most significant difference between groups.  相似文献   

13.
The aim of this study was to determine the viability and cardiorespiratory effects of the association of epidural alpha-2 adrenergic agonists and lidocaine for ovariohysterectomy (OH) in bitches. Forty-two bitches were spayed under epidural anesthesia with 2.5 mg/kg body weight (BW) of 1% lidocaine with adrenaline (CON) or in association with 0.25 mg/kg BW of xylazine (XYL), 10 μg/kg BW of romifidine (ROM), 30 μg/kg BW of detomidine (DET), 2 μg/kg BW of dexmedetomidine (DEX), or 5 μg/kg BW of clonidine (CLO). Heart rate (HR), respiratory rate (fR) and arterial pressures were monitored immediately before and every 10 min after the epidural procedure. Blood gas and pH analysis were done before, and at 30 and 60 min after the epidural procedure. Animals were submitted to isoflurane anesthesia if they presented a slightest sign of discomfort during the procedure. Time of sensory epidural block and postoperative analgesia were evaluated. All animals in CON and DEX, 5 animals in ROM and CLO, 4 animals in XYL, and 3 in DET required supplementary isoflurane. All groups, except CLO, showed a decrease in HR. There was an increase in arterial pressures in all groups. Postoperative analgesia lasted the longest in XYL. None of the protocols were totally efficient to perform the complete procedure of OH; however, xylazine provided longer postoperative analgesia than the others.  相似文献   

14.
ObjectiveTo determine the impact of epidural phentolamine on the duration of anaesthesia following epidural injection of lidocaine–epinephrine.Study designBlinded randomized experimental study.AnimalsA group of 12 adult ewes weighing 25.7 ± 2.3 kg and aged 8–9 months.MethodsAll sheep were administered epidural lidocaine (approximately 4 mg kg–1) and epinephrine (5 μg mL–1). Of these, six sheep were randomized into three epidural treatments, separated by 1 week, administered 30 minutes after lidocaine–epinephrine: SAL: normal saline, PHE1: phentolamine (1 mg) and PHE2: phentolamine (2 mg). The other six sheep were administered only epidural lidocaine–epinephrine: treatment LIDEP. Each injection was corrected to 5 mL using 0.9% saline. Noxious stimuli were pinpricks with a hypodermic needle and skin pinch with haemostatic forceps to determine the onset and duration of sensory and motor block. Heart rate, noninvasive mean arterial pressure (MAP), respiratory rate and rectal temperature were recorded.ResultsThe onset times were not different among treatments. Duration of sensory block was significantly shorter in SAL (57.5 ± 6.2 minutes), PHE1 (60.7 ± 9.0 minutes) and PHE2 (62.0 ± 6.7 minutes) than in LIDEP (81.7 ± 13.4 minutes) (p < 0.05). Duration of motor blockade was significantly shorter in PHE1 (59.4 ± 5.4 minutes) and PHE2 (54.3 ± 4.0 minutes) than in SAL (84.8 ± 7.0 minutes) and LIDEP (91.5 ± 18.2 minutes) (p < 0.01). MAP in PHE2 was decreased at 10 minutes after administration of phentolamine (p < 0.05).Conclusion and clinical relevanceEpidural administration of 5 mL normal saline after epidural injection of lidocaine–epinephrine reduced the duration of sensory but not motor block in sheep. Epidural administration of phentolamine diluted to the final volume of 5 mL diminished both the duration of sensory and motor block in sheep administered epidural lidocaine–epinephrine.  相似文献   

15.
ObjectiveTo compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy.Study designRandomized, blinded clinical trial.AnimalsTwenty-one adult female cats (mean body weight: 3.1 ± 0.4 kg).MethodsCats received DEX (4 μg kg?1, IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg?1, n = 7), in GII cats were given epidural lidocaine (1 mg kg?1) + DEX (4 μg kg?1, n = 7), and in GIII cats were given epidural lidocaine (1 mg kg?1) + IV constant rate infusion (CRI) of DEX (0.25 μg kg?1 minute?1, n = 7). Variables evaluated included heart rate (HR), respiratory rate (fR), systemic arterial pressures, rectal temperature (RT), end-tidal CO2, end-tidal isoflurane concentration (e′ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, fR, RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. anova was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation.ResultsEpidural and CRI of DEX reduced HR during anesthesia maintenance. Mean ± SD e′ISO ranged from 0.86 ± 0.28% to 1.91 ± 0.63% in GI, from 0.70 ± 0.12% to 0.97 ± 0.20% in GII, and from 0.69 ± 0.12% to 1.17 ± 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI.Conclusions and clinical relevanceEpidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.  相似文献   

16.
ObjectiveTo compare the sedative and clinical effects of intravenous (IV) administration of dexmedetomidine and xylazine in dromedary calves.Study designExperimental, crossover, randomized, blinded study.AnimalsA total of seven healthy male dromedary calves aged 14 ± 2 weeks and weighing 95 ± 5.5 kg.MethodsCalves were assigned three IV treatments: treatment XYL, xylazine (0.2 mg kg−1); treatment DEX, dexmedetomidine (5 μg kg−1); and control treatment, normal saline (0.01 mL kg−1). Sedation scores, heart rate (HR), respiratory rate (fR), rectal temperature (RT) and ruminal motility were recorded before (baseline) and after drug administration. Sedation signs were scored using a 4-point scale. One-way anova and Mann–Whitney U tests were used for data analysis.ResultsCalves in treatments XYL and DEX were sedated at 5–60 minutes. Sedation had waned in XYL calves, but not DEX calves, at 60 minutes (p = 0.037). Sedation was not present in calves of any treatment at 90 minutes. HR decreased from baseline in XYL and DEX at 5–90 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.017). HR was lower in DEX (p = 0.001) and XYL (p = 0.013) than in control treatment at 90 minutes. fR decreased from baseline in XYL and DEX at 5–60 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.013). RT was unchanged in any treatment over 120 minutes. Ruminal motility was decreased in XYL at 5, 90 and 120 minutes and absent at 10–60 minutes. Motility was decreased in DEX at 5, 10 and 120 minutes and was absent at 15–90 minutes.Conclusion and clinical relevanceThe duration of sedation from dexmedetomidine (5 μg kg–1) and xylazine (0.2 mg kg–1) was similar in dromedary calves.  相似文献   

17.

Objective

To compare the effectiveness of ultrasound- and electrostimulation-guided nerve blocks of the brachial plexus and to determine whether ultrasound guidance is feasible in conscious dogs.

Study design

Blinded, crossover, experimental study.

Animals

Six clinically healthy adult Beagle dogs.

Methods

The nerves of the brachial plexus of the right thoracic limb were blocked under ultrasound guidance (UNB) in conscious dogs and under electrostimulation guidance (ENB) in anesthetized dogs with bupivacaine (0.4 mL kg–1, 0.25%). Saline (0.4 mL kg–1) was injected in control animals. Sensory nerve blockade was evaluated by scoring cutaneous sensation in targeted nerves. Motor nerve blockade was evaluated based on weight bearing, conscious proprioception and withdrawal reflex scores. Times to execute the technique in UNB and ENB were compared using t tests (p < 0.05). Scores for sensory and motor nerve blockades in each treatment were compared with scores before treatment and with control treatment scores using nonparametric repeated-measures two-way analysis of variance. Time to onset and duration of sensory nerve block were assessed using scores for four sensory nerve functions. A successful sensory nerve block was defined by decreases in scores for these functions. Success rates of nerve blocks were compared among treatments using McNemar’s test.

Results

In UNB and ENB, onset times of sensory nerve blocks were 1 hour and 1.5 hours, respectively. Onset times of motor nerve blocks were 0.5 hour in both treatments. In UNB and ENB, durations of sensory nerve block were 3 hours and 0.5 hour, respectively, and durations of motor nerve block were 7.5 hours and 6.5 hours, respectively. Success rates did not differ between the techniques.

Conclusions and clinical relevance

The UNB brachial plexus block had a shorter onset time and longer duration than ENB. UNB can be performed in conscious dogs or those under mild sedation.  相似文献   

18.

Objective

To compare the motor and sensory block efficacy and duration of a modified paravertebral brachial plexus block (PBPB) after administration of lidocaine alone (LI) or combined with epinephrine (LE).

Study design

Prospective, randomized, blinded, crossover study.

Animals

A total of eight healthy female Beagle dogs.

Methods

Under general anesthesia, modified PBPB was performed on the left thoracic limb using neurostimulation and/or ultrasound guidance to administer lidocaine (2 mg kg–1; 0.2 mL kg–1) either alone (treatment LI, n = 10) or with epinephrine (1:100,000; treatment LE, n = 9). Sensory block was evaluated through reaction to a painful mechanical stimulus applied at five sites on the limb. Motor block effect was evaluated according to visual gait assessments and thoracic limb vertical force measurements under dynamic and static conditions. Data were analyzed using repeated-measures generalized estimating equations. All statistical tests were performed two-sided at the α = 0.05 significance threshold.

Results

The duration of sensory block did not differ significantly between treatments. Visible gait impairment was more persistent in LE than in LI (118 ± 63 minutes for LI and 163 ± 23 minutes for LE; mean ± standard deviation) (p = 0.027). At nadir value, dynamic peak vertical force was lower in LE than in LI (p = 0.007). For both dynamic and static evaluations, the nadir and the return to baseline force were delayed in LE (return to normal at 180–200 minutes) when compared with LI (130–140 minutes) (p < 0.005).

Conclusions and clinical relevance

The addition of epinephrine to lidocaine prolonged the duration and increased the intensity of the regional block, as verified by visual gait assessment and kinetic analysis. No significant difference was noted between treatments regarding sensory blockade. Kinetic analysis could be useful to evaluate regional anesthetic effect in dogs.  相似文献   

19.
ObjectiveTo evaluate the antinociceptive, sedative and cardiopulmonary effects of subarachnoid and epidural administration of xylazine-lidocaine in xylazine-sedated calves.Study designProspective, crossover study.AnimalsSix clinically healthy Holstein calves.MaterialsThe calves were allocated randomly to receive two treatments, subarachnoid or epidural xylazine (0.025 mg kg?1)–lidocaine (0.1 mg kg?1) diluted to a total volume of 5 mL with physiological saline. Prior to either epidural or subarachnoid injection, sedation was induced in all calves by intravenous administration of 0.1 mg kg?1 xylazine. The quality and duration of antinociception and sedation were monitored. Areas of the cranial abdomen, umbilicus, and caudal abdomen were evaluated for antinociception using pinprick tests with a scoring system of 0–3 (0, none; 1, mild; 2, moderate; 3, complete). Sedation was assessed by using a 4-point scale (0, none; 1, mild; 2, moderate; 3, deep). The following cardiopulmonary variables were monitored: heart rate (HR), respiratory rate (fR), mean arterial pressure (MAP), blood pH, arterial partial pressure of oxygen (PaO2), partial pressure of carbon dioxide (PaCO2), bicarbonate (HCO3), base excess (BE), and oxygen saturation (SaO2).ResultsXylazine sedation and subarachnoid xylazine-lidocaine resulted in significantly higher nociceptive block than the epidural technique. Moreover, subarachnoid xylazine-lidocaine induced a significantly longer duration of complete antinociception (median [IQR]) in the cranial abdomen (15.0 [15.0–30.0] versus 7.5 [1.3–10.0] minutes; p < 0.05) and umbilicus (45.0 [32.5–57.5] versus 10.0 [6.3–17.5] minutes; p < 0.05) compared with epidural xylazine-lidocaine. There was moderate sedation with both techniques. In both treatments, blood pH, MAP and PaO2 decreased significantly, and PaCO2 increased significantly during anaesthesia. No change was evident in HR, fR, HCO3, BE, or SaO2.Conclusion and clinical relevanceThe subarachnoid injection provided better quality and longer duration of antinociception than epidural administration of the same doses of xylazine-lidocaine in xylazine-sedated calves, while cardiopulmonary depressant effects were observed with both regimens.  相似文献   

20.
ObjectiveTo determine the effect of intravenous vatinoxan administration on bradycardia, hypertension and level of anaesthesia induced by medetomidine–tiletamine–zolazepam in red deer (Cervus elaphus).Study design and animalsA total of 10 healthy red deer were included in a randomised, controlled, experimental, crossover study.MethodsDeer were administered a combination of 0.1 mg kg–1 medetomidine hydrochloride and 2.5 mg kg–1 tiletamine–zolazepam intramuscularly, followed by 0.1 mg kg–1 vatinoxan hydrochloride or equivalent volume of saline intravenously (IV) 35 minutes after anaesthetic induction. Heart rate (HR), mean arterial blood pressure (MAP), respiration rate (fR), end-tidal CO2 (Pe′CO2), arterial oxygen saturation (SpO2), rectal temperature (RT) and level of anaesthesia were assessed before saline/vatinoxan administration (baseline) and at intervals for 25 minutes thereafter. Differences within treatments (change from baseline) and between treatments were analysed with linear mixed effect models (p < 0.05).ResultsMaximal (81 ± 10 beats minute–1) HR occurred 90 seconds after vatinoxan injection and remained significantly above baseline (42 ± 4 beats minute–1) for 15 minutes. MAP significantly decreased from baseline (122 ± 10 mmHg) to a minimum MAP of 83 ± 6 mmHg 60 seconds after vatinoxan and remained below baseline until end of anaesthesia. HR remained unchanged from baseline (43 ± 5 beats minute–1) with the saline treatment, whereas MAP decreased significantly (112 ± 16 mmHg) from baseline after 20 minutes. Pe′CO2, fR and SpO2 showed no significant differences between treatments, whereas RT decreased significantly 25 minutes after vatinoxan. Level of anaesthesia was not significantly influenced by vatinoxan.Conclusions and clinical relevanceVatinoxan reversed hypertension and bradycardia induced by medetomidine without causing hypotension or affecting the level of anaesthesia in red deer. However, the effect on HR subsided 15 minutes after vatinoxan IV administration. Vatinoxan has the potential to reduce anaesthetic side effects in non-domestic ruminants immobilised with medetomidine–tiletamine–zolazepam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号