首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Head lice resistance to permethrin is mainly conferred by the knockdown resistance (kdr) trait, a voltage-sensitive sodium channel (VSSC) insensitivity factor. Three VSSC mutations (M815I, T917I and L920F) have been identified. Functional analysis of the mutations using the house fly VSSC expressed in Xenopus oocytes revealed that the permethrin sensitivity is reduced by the M827I (M815I) and L932F (L920F) mutations when expressed alone but virtually abolished by the T929I (T917I) mutation, either alone or in combination. Thus, the T917I mutation is primarily responsible for permethrin resistance in head lice. Comparison of the expression rates of channel variants indicates that the M815I mutation may play a role in rescuing the decreased expression of channels containing T917I. A step-wise resistance monitoring system has been established based on molecular resistance detection techniques. Quantitative sequencing (QS) has been developed to predict the VSSC mutation frequency in head lice at a population basis. The speed, simplicity and accuracy of QS made it an ideal candidate for a routine primary resistance monitoring tool to screen a large number of wild louse populations as an alternative to conventional bioassay. As a secondary monitoring method, real-time PASA (rtPASA) has been devised for more precise determination of low resistance allele frequencies. To obtain more detailed information on resistance allele zygosity, as well as allele frequency, serial invasive signal amplification reaction (SISAR) has been developed as an individual genotyping method. Our approach of using three tiers of molecular resistance detection should facilitate large-scale routine resistance monitoring of permethrin resistance in head lice using field-collected samples.  相似文献   

2.
The resistance levels of different human head louse populations from the USA to 1% permethrin were evaluated using permethrin-impregnated, filter paper disk-contact bioassay. Populations from southern California, south Florida and south central Texas showed 1.5-, 3.1-, and 1.5- to 5.1-fold resistance compared to insecticide-susceptible head louse populations from Panama or Ecuador. Permethrin-resistant or permethrin-susceptible homozygous or heterozygous genotypes were determined from sequences of PCR-amplified genomic DNA fragments of the voltage-sensitive sodium channel α-subunit gene by the presence of a T or C, or both, respectively, at nucleotide positions 36 and 44 in the sequence. The presence of a T at both these positions resulted in the amino acid substitutions, T929I and L932F, respectively. Of the 424 louse samples examined that had the T929I mutation, all also possessed the L932F mutation, indicating that the two mutations were tightly linked. The southern California population was phenotypically determined by bioassay to be comprised of 45% resistant individuals and had a resistant allele frequency of 0.53 by DNA sequence analysis. The south Florida population was phenotypically determined to consist of 87% resistant individuals and had a resistant allele frequency of 0.97. The four Texas populations varied in the level of resistance and in resistant allele frequency. The Mathis population was phenotypically determined to consist of 15% resistant individuals and had a resistant allele frequency of 0.33. However, the populations from San Antonio, Mansfield, and Corpus Christi were likewise phenotyped to have 91%, 94%, and 100%, respectively, resistant individuals and a 0.98, 1.00 and 1.00, respectively, resistant allele frequency. The log survival time versus logit mortality regression lines of susceptible-homozygotes, resistant-homozygotes, and heterozygotes determined that the resistance trait was complete recessive. Thus, the presence of homozygotes of the T929I and L932F mutations in the voltage-sensitive sodium channel correlated well with increased survival time following exposure to permethrin and indicates that a knockdown-type nerve insensitivity mechanism is functioning as the major mechanism causing permethrin resistance in USA head louse populations. Our results substantiate that permethrin resistance in human head louse population in the USA is widespread but variable. Permethrin resistance is highly correlated with the presence of the T929I and L932F point mutations, which are suitable for detection by a variety of DNA-based diagnostic techniques [Pest Manag. Sci. 57 (2001) 968]. Large-scale monitoring of permethrin resistance is possible utilizing these techniques and would provide critical information necessary for the development of an effective resistance management program for pediculosis.  相似文献   

3.
Resistance in a dual malathion- and permethrin-resistant head louse strain (BR-HL) was studied. BR-HL was 3.6- and 3.7-fold more resistant to malathion and permethrin, respectively, compared to insecticide-susceptible EC-HL. S,S,S-Tributylphosphorotrithioate synergized malathion toxicity by 2.1-fold but not permethrin toxicity in BR-HL. Piperonyl butoxide did not synergize malathion or permethrin toxicity. Malathion carboxylesterase (MCE) activity was 13.3-fold and general esterase activity was 3.9-fold higher in BR-HL versus EC-HL. There were no significant differences in phosphotriesterase, glutathione S-transferase, and acetylcholinesterase activities between strains. There was no differential sensitivity in acetylcholinesterase inhibition by malaoxon. Esterases from BR-HL had higher affinities and hydrolysis efficiencies versus EC-HL using various naphthyl-substituted esters. Protein content of BR-HL females and males was 1.6- and 1.3-fold higher, respectively, versus EC-HL adults. Electrophoresis revealed two esterases with increased intensity and a unique esterase associated with BR-HL. Thus, increased MCE activity and over-expressed esterases appear to be involved in malathion resistance in the head louse.  相似文献   

4.
BACKGROUND: Pediculosis is the most prevalent parasitic infestation of humans. Resistance to pyrethrin‐ and pyrethroid‐based pediculicides is due to knockdown (kdr)‐type point mutations in the voltage‐sensitive sodium channel α‐subunit gene. Early detection of resistance is crucial for the selection of effective management strategies. RESULTS: Kdr allele frequencies of lice from 14 countries were determined using the serial invasive signal amplification reaction. Lice collected from Uruguay, the United Kingdom and Australia had kdr allele frequencies of 100%, while lice from Ecuador, Papua New Guinea, South Korea and Thailand had kdr allele frequencies of 0%. The remaining seven countries investigated, including seven US populations, two Argentinian populations and populations from Brazil, Denmark, Czech Republic, Egypt and Israel, displayed variable kdr allele frequencies, ranging from 11 to 97%. CONCLUSION: The newly developed and validated SISAR method is suitable for accurate monitoring of kdr allele frequencies in head lice. Proactive management is needed where kdr‐type resistance is not yet saturated. Based on sodium channel insensitivity and its occurrence in louse populations resistant to pyrethrin‐ and pyrethroid‐based pediculicides, the T917I mutation appears to be a key marker for resistance. Results from the Egyptian population, however, indicate that phenotypic resistance of lice with single or double mutations (M815I and/or L920F) should also be determined. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
6.
For testing the susceptibility of the head louse to insecticides impregnated bunches of polyamide fibres, whose diameter resembled that of human hair (0.1 mm) were used. In this manner a low mortality of control lice collected from infected persons was obtained (2.9% after 16 hours of exposure). Even after 25 years of DDT use no apparent resistance could be demonstrated in 25 tested louse populations and cross resistance to permethrin in 7 tested populations. The diagnostic concentration for resistance to pp'-DDT was established at 1%. Of the tested insecticides the highest toxicity was shown by malathion (LC50 = 0.000 018%), pirimiphos-methyl had on average a twice lower toxicity, trichlorphon 104 times lower, tetramethrin 1220 times lower, permethrin 2.5 times lower and pp'-DDT 630 times lower toxicity.  相似文献   

7.

BACKGROUND

The control of Aedes aegypti (L.), the main urban vector that causes arboviral diseases such as dengue, Chikungunya and Zika, has proved to be a challenge because of a rapid increase in insecticide resistance. Therefore, adequate monitoring of insecticide resistance is an essential element in the control of Ae. aegypti and the diseases it transmits. We estimated the frequency and intensity (Resistance Frequency Rapid Diagnostic Test [F‐RDT] and Resistance Intensity Rapid Diagnostic Test [I‐RDT]) of pyrethroid resistance in populations of Ae. aegypti from Mexico using the bottle bioassay and results were related to the frequencies of knockdown resistance (kdr) mutations V1016I and F1534C.

RESULTS

All populations under study were resistant to the pyrethroids: bifenthrin (99%), d‐(cistrans)‐phenothrin (6.3% cis, 91.7% trans) and permethrin (99.5%) according to F‐RDT, and showed moderate to high‐intensity resistance at 10× the diagnostic dose (DD) in I‐RDT. Frequencies of the kdr mutation V1016I in Ae. aegypti populations were correlated with moderate permethrin resistance at 10× DD, whereas F1534C mutation frequencies were correlated with high bifenthrin resistance at 5× DD. Both I1016 and C1535 were highly correlated with high‐intensity phenothrin resistance at 1× to 10× DD.

CONCLUSIONS

This study showed that high frequencies of kdr mutations V1016I and F1534C are reflected in the results of F‐RDT and I‐RDT tests. Bioassays in conjunction with the characterization of genetic resistance mechanisms are indispensable in the strategic and rational management of resistance in mosquitoes. © 2018 Society of Chemical Industry
  相似文献   

8.

BACKGROUND

Pyrethroids are among the most applied adulticides worldwide to control mosquito vectors for prevention of arboviral diseases transmission. However, pesticide resistance development in a mosquito population could lead to decreased control efficacy. While most studies investigate the resistant genotype (i.e. kdr, CYP450, etc.) as explanatory variables, few field efficacy studies have measured pesticide quantities deposited at different distances from the sprayer in association with observed mosquito mortality. The current study determined field delivered amounts of an applied ULV permethrin/PBO formulation (31% permethrin + 66% piperonyl butoxide) by GC/MS and estimated practical resistance ratios using caged mosquito females.

RESULTS

For field samples, the extraction method recovered 78 ± 3.92–108 ± 8.97% of the permethrin/PBO formulation when utilizing the peaks of PBO from GC/MS to estimate the concentrations of adulticide deposited near the mosquito cages. The field bioassay showed that the spatial distribution of permethrin/PBO formulation was heterogeneous among three pseudo-replicates within the same distance. Within the quantifiable permethrin/PBO range of 15.7–51.4 ng/cm2, field-collected mosquito mortalities started at 64% and linearly increased reaching 100% only in two areas, while all Sebring susceptible mosquitoes died. The field LC95 resistance ratio (RR) of F0 Cx. quinquefasciatus ranged from 2.65–3.51, falling within the 95% CI of RR95 estimated by laboratory vial assays. Tests with and without PBO indicated P450's enzymes contributed to field resistance.

CONCLUSION

Results showed the suitability of the collection and quantification method to estimate the field resistance ratio at the applied pesticide rate. Pesticide quantification would also allow the association of the known frequencies of resistance mechanisms (e.g. kdr, CYP450) with field mortalities to estimate the resistance level conferred by such mechanisms. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

9.
Enhanced oxidative metabolism appeared to be a major factor involved in resistance to permethrin in a field strain of house flies, selected with permethrin over 4 years. This was shown in the 7.8-fold synergism by piperonyl butoxide which reduced the resistance ratio from 97 to 15. The rate of permethrin detoxication was significantly higher (P=0.05) in the resistant flies compared with a susceptible strain or resistant flies pretreated with piperonyl butoxide. The esterase inhibitor S,S,S-tributyl phosphorotrithioate did not reduce the level of resistance to permethrin in the resistant strain, although some hydrolytic metabolism was apparent. Rates of penetration were similar in susceptible and resistant flies and in resistant flies pre-treated with piperonyl butoxide. A minor unidentified resistance factor, possibly reduced sensitivity of the nervous system, may also have been present in the resistant strain.  相似文献   

10.
BACKGROUND: Insecticide resistance is a likely cause of field control failures of Tuta absoluta, but the subject has been little studied. Therefore, resistance to ten insecticides was surveyed in seven representative field populations of this species. The likelihood of control failures was assessed, as well as weather influence and the spatial dependence of insecticide resistance. RESULTS: No resistance or only low resistance levels were observed for pyrethroids (bifenthrin and permethrin), abamectin, spinosad, Bacillus thuringiensis and the mixture deltamethrin + triazophos (<12.5‐fold). In contrast, indoxacarb exhibited moderate levels of resistance (up to 27.5‐fold), and chitin synthesis inhibitors exhibited moderate to high levels of resistance (up to 222.3‐fold). Evidence of control failures was obtained for bifenthrin, permethrin, diflubenzuron, teflubenzuron, triflumuron and B. thuringiensis. Weather conditions favour resistance to some insecticides, and spatial dependence was observed only for bifenthrin and permethrin. CONCLUSION: Insecticide resistance in field populations of the tomato pinworm prevails for the insecticides nowadays most frequently used against them—the chitin synthesis inhibitors (diflubenzuron, triflumuron and teflubenzuron). Local selection favoured by weather conditions and dispersal seem important for pyrethroid resistance evolution among Brazilian populations of T. absoluta and should be considered in designing pest management programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Sodium channel mutations were investigated through nucleotide sequencing of three cDNA fragments amplified from permethrin resistant and susceptible Aedes aegypti from northern Thailand. There was a novel nucleotide substitution (T → G) at the second position of codon 1552 resulting in the replacement of Phenylalanine by Cysteine in segment 6 domain III. This amino acid was indicated by another study to involve an aromatic-aromatic contact between the sodium channel protein and the first aromatic ring of the pyrethroid alcohol moiety. Reciprocal crosses between the homozygous parental susceptible and resistant strains indicated that resistance was autosomal and incompletely recessive, and highly associated with the homozygous mutation. The bioassay of the F2 progeny, formed by backcrossing the F1 with the resistant parental strain, did not show a clear plateau curve across the range of doses, suggesting that resistance to permethrin was controlled by more than one gene locus. Other possible resistance mechanisms involved are discussed.  相似文献   

12.
Permethrin was metabolised by attack at the ester bond, in vivo by adult cockroaches, Periplaneta americana and in vitro by esterase preparations. Metabolites retaining the ester linkage could not be detected. In all cases, the (1RS)-trans-isomer (transpermethrin) was more labile than the (1RS)-cis-isomer. Cypermethrin was metabolised at one-fifth the rate for permethrin. In-vitro and in-vivo studies with synergists indicated that cleavage of the ester bond in permethrin can be both oxidative for the (1RS)-cis-isomer and hydrolytic for the (1RS)-trans-isomer. The penetration of permethrin through the cuticle of the cockroach was significantly greater than that of cypermethrin. The penetration and metabolism of permethrin and cypermethrin in sixth-instar larvae of susceptible and resistant strains of the Egyptian cotton-leafworm, Spodoptera littoralis, were studied as possible factors in resistance. No significant differences were found. It is suggested that the major resistance factor to permethrin in S. littoralis is probably non-metabolic.  相似文献   

13.
Dengue fever is an important mosquito-borne viral disease in Taiwan. Insecticide resistance has been shown to significantly reduce the efficacy of vector control interventions. The detection of insecticide resistance is an important component in mosquito abatement programs. In this study, we used the insecticide-impregnated papers bioassay method to reveal high levels of resistance to permethrin in the LYPR and field strains of Aedes aegypti. We used the standard glass cylinder method to observe the knockdown effect of paralysis within 2 to 4 minutes after exposing mosquitoes to pyrethroid vapors. Biochemical assays showed elevated detoxification enzyme activities. Glutathione S-transferases, monooxygenases and β-esterases were the enzymes predominantly responsible for the permethrin resistance of Ae. aegypti in Taiwan. Molecular screening for common insecticide target-site mutations revealed the presence of V1023G and D1794Y mutations. Pearson’s correlation analysis was used to investigate the correlations between the allelic frequency of kdr mutation associated increase with the LC50 values of permethrin and the KT50 values of pyrethroid vaporizers. These findings will be used to assess resistance levels, estimate resistance potential, and formulate monitoring and resistance management strategies.  相似文献   

14.
Dengue is one of the most important vector-borne diseases worldwide and is a public health problem in Mexico. Most programs in dengue endemic countries rely on insecticides for Aedes control. In Mexico, pyrethroid insecticides (mainly permethrin and deltamethrin) have been extensively used over a decade as adulticides and represented a strong selection for insecticide resistance for dengue vectors in several parts of the country. We studied the type, frequency and distribution of insecticide resistance mechanisms in Aedes aegypti from six municipalities in the state of Guerrero selected on the basis of historically intense chemical control and a high risk for dengue transmission. Ae. aegypti eggs were collected from October 2009 to January 2010 using ovitraps. F1 adults, emerged from these collections, were exposed to permethrin, deltamethrin and DDT in WHO diagnostic tests and showed high resistance levels to both pyrethroids and DDT. This was consistent with the presence of increased metabolic enzyme activities and target site insensitivity due to kdr mutations. Biochemical assays showed elevated esterase and glutathione S-transferase activities in the six municipalities. The V1016I kdr mutation on the IIS6 domain of the sodium channel gene was present in an overall frequency of 0.80. A second mutation, F1534C on the IIIS6 domain of the same gene was also detected, being the first report of this mutation in Guerrero. The multiple resistance mechanisms present in Ae. aegypti from Guerrero state represent a warning for the efficacy of the pyrethroid usage and consequently for the success of the dengue control program.  相似文献   

15.
Genetic work with 51 fenarimol-selected strains of Nectria haematococca var. cucurbitae identified a polygenic system for resistance with at least nine chromosomal loci involved. The mutant genes, designated fen-1 to fen-9, gave low levels of resistance to fenarimol and to three other C-14 demethylation inhibiting (DMI) fungicides, namely triforine, imazalil, and triadimenol. Haploid strains carrying two fen mutations exhibit higher levels of resistance, indicating additivity of gene effects. All fen mutations appear to be pleiotropic, having more or less adverse effects on growth, sporulation, spore germination, pathogenicity, and tolerance of somewhat high temperatures. Accumulation of fenarimol in resistant strains was lower than in the wild type, suggesting that fen mutations code for a common resistance mechanism based on a permeability barrier. Various inhibitors of energy generation increased the accumulation level, indicating that accumulation is energy dependent and may be the result of passive influx and energy-dependent efflux. Lower accumulation in resistant strains is probably the result of increased efflux, as has been found with other fungi. A double mutant carrying the mutations fen-7 and fen-9 showed lower accumulation of fenarimol than a strain carrying the fen-7 only, indicating additivity of effects in this regard also.  相似文献   

16.
Susceptibility to acephate, methomyl, and permethrin was determined with laboratory bioassays for adults of greenhouse whitefly, Trialeurodes vaporariorum Westwood, from 12 to 14 sites in Hawaii. Comparisons at LC50 showed up to 42-fold resistance to acephate, 36-fold resistance to methomyl, and 8-fold resistance to permethrin. Higher levels of resistance to acephate and methomyl than to permethrin are consistent with greater use of organophosphates and carbamates than pyrethroids by growers. Insecticide use varied from 1 to 98 insecticide sprays per site per season. Significant positive associations between LC50 for each insecticide and frequency of application of the same insecticide were found across sites. This finding suggests that local variation in insecticide use was an important cause of variation in susceptibility.  相似文献   

17.
In May 2001 a sample of Culex pipiens pipiens variety molestus Forskål from Marin County, California, collected as larvae and reared to adults, was found to show reduced resmethrin and permethrin knock‐down responses in bottle bioassays relative to a standard susceptible Cx pipiens quinquefasciatus Say colony (CQ1). Larval susceptibility tests, using CQ1 as standard susceptible, indicated that the Marin mosquitoes had LC50 resistance ratios of 18.3 for permethrin, 12 for deltamethrin and 3.3 for pyrethrum. A colony of Marin was established and rapidly developed higher levels of resistance in a few generations after exposure to permethrin as larvae. These selected larvae were shown to cross‐resist to lambda‐cyhalothrin as well as to DDT. However, adult knock‐down time in the presence of permethrin, resmethrin and pyrethrum was not increased after increase in tolerance to pyrethroids as larvae. Partial and almost complete reversion to susceptibility as larvae was achieved with S, S, S‐tributylphosphorotrithioate and piperonyl butoxide (PBO), respectively, suggesting the presence of carboxylesterase and P450 monooxygenase mediated resistance. Insensitive target site resistance (kdr) was also detected in some Marin mosquitoes by use of an existing PCR‐based diagnostic assay designed for Cx p pipiens L mosquitoes. Carboxylesterase mediated resistance was supported by use of newly synthesized novel pyrethroid‐selective substrates in activity assays. Bottle bioassays gave underestimates of the levels of tolerance to pyrethroids of Marin mosquitoes when compared with mortality rates in field trials using registered pyrethroid adulticides with and without PBO. This study represents the first report of resistance to pyrethroids in a feral population of a mosquito species in the USA. Copyright © 2003 Society of Chemical Industry  相似文献   

18.
Larvae of the Malchi and DDT-R pyrethroid-resistant strains of ticks, compared with larvae of the Yeerongpilly (susceptible) strain, exhibited knock-down resistance equally to (1 RS)-cis- and (1 RS)-trans-permethrin but little resistance to either (1 RS)-cis- or (1 RS)-trans-cypermethrin. Kill resistance was higher in Malchi than in DDT-R ticks and more pronounced against the permethrin isomers. The cis-isomers were more potent overall than the trans-isomers. Cypermethrin isomers penetrated more slowly than permethrin isomers, especially into Malchi larvae. Metabolic detoxication, mainly esteratic, was fastest in Malchi larvae, trans-isomers consistently being attacked faster than cis-isomers. The greatei resistance of Malchi ticks is therefore probably due to a combination of these two differences. Dual mechanisms of the toxic action of pyrethroids are discussed.  相似文献   

19.
Synergists were used to diagnose possible mechanisms of permethrin resistance in permethrin-selected strains of the tobacco budworm, Heliothis virescens (F.). In addition to permethrin, these strains of the tobacco budworm were resistant to α-cyano-pyrethroid insecticides, organophosphorus insecticides and DDT. The monooxygenase-inhibiting prop-2-ynyl aryl ethers were the only effective synergists of permethrin among 16 candidates tested. The most effective synergist was 1,2,4-trichloro-3-(2-propynyloxy)benzene. Piperonyl butoxide, a common monooxygenase-inhibiting synergist in other species and tobacco budworm strains, was inactive. These results suggested the presence and contribution of an unusual monooxygenase in the enzymatic detoxication of permethrin. DDT cross-resistance, which was not synergized, and broad pyrethroid cross-resistance supported previous evidence for target site insensitivity as a second pyrethroid-resistance mechanism in these strains. The actions of S,S,S-tributyl phosphorotrithioate (TBPT) and triphenyl phosphate (TPP) suggested that hydrolytic detoxication, important in methyl parathion-resistance tobacco budworm strains, had little or no role in conferring pyrethroid resistance in these strains.  相似文献   

20.
Fenvalerate and permethrin residues on hair of groups of cattle that received either two tags per adult animal or one tag for every other adult animal were determined using gas chromatography over a three-month period in 1987 and 1988. Cattle with two tags had consistently higher residues than cattle with one tag. This difference was statistically significant (P < 0.05) in the first month for residues on the head and in the first two weeks for residues from the body in 1987. Residues on cattle with one tag and without a tag in the same herd were similar (P > 0.05) on each sampling day on all regions. Residues on the hair from the head of cattle with two tags were greater than on the body and rump (P < 0.05) during the first 28 days. Residues found on hair on days 14 and 84 following tag application declined by 80–86% on the head, 73–78% on the body, and 36–86% on the rump. Isomeric compositions of fenvalerate (range 51–61% SR, RS: 39–49% SS, RR) and permethrin (range 61–67% trans: 33–39% cis) were consistent during the study. Rainfall reduced residues on hair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号