首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While studying powdery mildew resistance in a recombinant line (code 81882) derived from a Hordeum vulgare (cv. ‘Vada’) ×Hordeum bulbosum hybrid, a low infection type of resistance to leaf rust was observed. To determine the mode of inheritance of the leaf rust resistance and whether there was linkage between the two resistances, F2 and F3 progenies from crosses between 81882 and ‘Vada’ were inoculated with the leaf rust and powdery mildew pathogens. Southern blots were prepared using restricted DNA extracted from leaves of 82 F2 plants and four chromosome 2HS sequences were hybridized with the blots to define the length of the introgression. The leaf rust resistance appears to be inherited as a single dominant gene on chromosome 2HS, which co-segregates with the powdery mildew resistance. There was an almost complete association between the resistances and the respective molecular markers, but it is likely that the strong linkage results from the frequent inheritance of the introgressed H. bulbosum DNA as an intact segment of chromatin with only low levels of recombination within the segment.  相似文献   

2.
Septoria speckled leaf blotch (SSLB), caused by Septoria passerinii, has become one of the most serious diseases of barley in the Upper Midwest region of the USA. The recombinant line 36L5 derived from a backcross of the susceptible barley cultivar ‘Emir’ and a resistant Hordeum bulbosum parent Cb2920/4/Colch was found to be resistant to S. passerinii. Two doubled haploids derived from 36L5 were backcrossed to cv.‘Emir’ to obtain two BCF2 populations for determining the inheritance of resistance to S. passerinii. BCF2 progeny and BCF2:3 families were evaluated at the seedling stage in the greenhouse for reaction to S. passerinii. BCF2 progeny and BCF2:3 families from both crosses segregated 3 : 1 (resistant : susceptible), and 1:2:1 (resistant : segregating : susceptible), respectively, indicating that the H. bulbosum‐derived SSLB resistance is conferred by a single dominant gene. The H. bulbosum introgressions were positioned on chromosome 4HL by genomic and fluorescent in situ hybridizations (GISH and FISH, respectively) and by Southern hybridization with the rye repetitive sequence pSc119.2. These findings indicate that SSLB resistance in H. bulbosum has the potential to be transferred and utilized in barley breeding programs.  相似文献   

3.
P. Devaux 《Plant Breeding》1988,100(3):181-187
The comparison, between the efficiency of anther culture and the Hordeum bulbosum method in barley was extended to the chromosome number distributions of all planes derived from the two techniques and the proportions of fertile doubled haploid plants which survived until maturity. The frequencies of haploid and spontaneously doubled haploid plants which were useful for practical breeding purposes were found to be around 90 % for both techniques. The remainder consisted of polyploid, mixoploid and aneuploid variants in the case of microspore-derived plants and diploid interspecific hybrids in the progeny of the H. bulbosum method. The ploidy level distributions of the microspore- and H. bulbosum-derived plants appeared to be independent of the genotype of the donor. There were no significant differences between techniques regarding the proportions, of plants which survived a severe winter and the production of fertile doubled haploid plants. Both techniques can therefore complement each other in a breeding programme and their relative merits are discussed. Possible ways of improving doubled haploid production in barley are suggested for increasing its use in breeding schemes.  相似文献   

4.
Summary Possible negative effects of tissue culture on qualitative and quantitative characters have been investigated in three crosses of spring barley, using doubled haploid lines produced by anther culture (AC, with maltose as a carbon source) or the Hordeum bulbosum-method (HB). In one cross inbred lines produced by single seed descent (SSD) have also been included. Quantitative characters were investigated in a 2-year field experiment at one location. The results show that although the methods in the majority of cases gave similar results, the genotypic arrays produced were not identical. Different markers deviated in the various cross/method combinations. The ranking of methods as well as the frequencies of lines transgressive for grain yield differed between crosses. Thus no consistently negative impact of anther culture in barley has been found, and, although not identical, the various methods may be considered equivalent.Abbreviations AC Anther Culture method - SSD Single Seed Descent method - HB Hordeum bulbosum method  相似文献   

5.
The aim of the present study was to produce backcross progenies in a new winter wheat (‘Asakaze komugi’) × winter barley (‘Manas’) hybrid produced in Martonvasar. As no backcross seeds were obtained from the initial hybrids, young inflorescences of the hybrids were used for in vitro multiplication in three consecutive cycles until a backcross progeny was developed. The chromosome constitution of the regenerated hybrids was analysed using genomic in situ hybridization (GISH) after each in vitro multiplication cycle. The seven barley chromosomes were present even after the third in vitro multiplication cycle but abnormalities were observed. Sixteen BC; plants containing, according to GfSH analysis, one to three complete barley chromosomes, two deletion barley chromosomes and a dicentric wheat‐barley translocation were grown to maturity from the single backcross progeny. The barley chromatin was identified using 20 chromosome‐specific barley SSR markers. All seven barley chromosomes were represented in the BC: plants. A deletion breakpoint at FL ±0,3 on the 5HL chromosome arm facilitated the physical localization of microsatellite markers.  相似文献   

6.
Hordeum bulbosum has several desirable attributes, including disease resistance, which would be worthwhile transferring to H. vulgare. Despite homoeologous chromosome pairing in the interspecific hybrids, there have been few reports of successful gene introgression between the two species. A possible explanation for this is that recombinant male gametes are at a competitive disadvantage with normal balanced gametes during post-pollination events. To circumvent this problem, the possibility of obtaining plants directly from immature pollen grains was investigated. Anthers from diploid, triploid and tetraploid H. vulgare × H. bulbosum hybrids were cultured on defined media. Only hybrids with dehiscent anthers in vivo responded in culture, and after transfer of calli and embryoids to regeneration medium, 36 albino and 12 green plants were obtained. Seven of the green regenerants survived, one of which contained 15 H. vulgare chromosomes (including one acrocentric chromosome) and one H. bulbosum chromosome. Another regenerant (Ac166) resembled a diploid H. vulgare × H. bulbosum hybrid but had partial anther dehiscence and a slightly modified chromosome constitution. Mostly normal H. vulgare progeny were obtained from crosses between H. vulgare cv.‘Emir’ and Ac166, but three plants involved chromosome additions and substitutions.  相似文献   

7.
杨宙  陈浩  唐微  林拥军 《作物学报》2012,38(5):814-819
农杆菌介导的转化引起许多体细胞变异, 影响了转基因植物的农艺性状。因此, 转基因作物的培育需要大量的T0代再生植株。在本研究中, 我们将转基因水稻株系与原始品种连续回交, 然后评价其回交后代的表现, 消除体细胞变异, 恢复转基因亲本的农艺性状。回交的供体亲本是3个转基因水稻株系, 分别带有来自于苏云金芽胞杆菌(Bt)的抗虫基因。与原始品种连续回交至BC3F1代, 每代BCnF1单株再自交两代, 同时对各个世代进行抗虫性选择。通过发芽试验获得转基因纯合的BCnF3株系, 在室内抗性试验中, 所有的BCnF3纯合株系都能杀死100%的幼虫。在田间试验中, 这些株系的单株产量明显高于供体亲本, 大部分农艺性状与原品种没有显著的差异。这些结果说明连续回交能够在很大程度上恢复转基因水稻株系的农艺性状, 从而减少转基因育种过程中所需的工作量。  相似文献   

8.
A breeding programme was developed to obtain barley yellow dwarf virus (BYDV)-resistant winter genotypes using the Yd2 gene. The aim was to incorporate the Yd2 allele into the new high-yielding genotypes to release cultivars that allow barley cultivation in areas where BYDV is endemic. The resistant lines were developed using pedigree selection. An ICARDA resistant line (83RCBB130) carrying the Yd2 gene was crossed with three susceptible, high-yielding winter varieties and their F1 lines were either selfed or backcrossed to the matching susceptible parent. The best lines selected from subsequent selfing generations were evaluated in replicated trials in the presence or absence of BYDV, starting from F6 and BC1F5 to F8 and BC1F7 generations. Four genotypes with superior agronomic traits and BYDV resistance were selected.  相似文献   

9.
W. Lange 《Euphytica》1971,20(1):14-29
Summary From crosses between diploid and autotetraploid cytotypes of Hordeum vulgare L. (cultivated barley) and H. bulbosum L. (bulbous barley grass) diploid, triploid and tetraploid interspecific hybrids were produced. Both directly and after vegetative segregation crosses in either direction also gave rise to haploids and dihaploids resembling H. vulgare. The use of embryo culture was necessary. Plant morphology of the hybrids was much like that of H. bulbosum, although the hybrid plants were less vigorous. Meiosis in the hybrids was more or less disturbed, and this seemed to be the main cause of the high level of sterility.  相似文献   

10.
Z. L. Ren    T. Lelley  G. Röbbelen 《Plant Breeding》1990,105(4):265-270
Hybrid plants with 21 pairs of wheat chromosomes and with a haploid rye genome were produced by backcrossing a primary octoploid triticale with its parental hexaploid wheat. Upon a second backcrossing or selfing, the rye chromosomes were eliminated rapidly. Added rye chromosomes, in varying numbers, affected the transmission rate of wheat chromosomes significantly. Loss of wheat chromosomes ranging from 0.06 to 0.35 per plant in different populations was observed. In these plants a remarkably high incidence of wheat/rye and rye/rye translocations occurred. Translocations were identified by using the C-banding technique. Among 837 analyzed plants 64 wheat/rye and 256 rye/rye translocations were identified. In different generations of backcrossing or selfing the frequency of wheat/rye translocations varied between 4.23 % and 14.67 %. All 14 rye chromosome arms were involved in translocations but with different frequencies. BC1F3 plants with homozygous wheat/rye translocations were isolated The results indicate that monosomic wheat/rye addition lines may be directly used as an effective means to transfer genetic material from rye into bread wheat.  相似文献   

11.
W. Lange  G. Jochemsen 《Euphytica》1976,25(1):621-631
Summary To produce hexaploid (or other polyploid) hybrids, diploid or tetraploid Hordeum vulgare was crossed with hexaploid or octoploid H. bulbosum, and perennial triploid hybrids between the two species were treated with colchicine. The crosses did not yield viable plants: seedset was low, the seed aborted and embryo culture was unsuccessful. The colchicine treatments geve rise to plants in which hexaploid chromosome numbers were observed. At the hexaploid level chromosomal instability occurred, resulting in chromosome elimination.The colchicine-treated triploid hybrids showed in the first years after the treatment better fertility after open flowering than untreated plants, but the level of fertility remained very low. The offspring consisted of haploid, diploid and approximately triploid plants like H. vulgare, tetraploid and approximately tetraploid plants like H. bulbosum, and plants with hybrid morphology and unstable chromosome number, which were highly sterile. Thus the crossing barrier between H. vulgare and H. bulbosum could not be broken down at higher ploidy level.  相似文献   

12.
Summary Transgenic barley plants (Hordeum vulgare L. cv. Kymppi) were obtained by particle bombardment of various tissues. Immature embryos and microspore-derived cultures were bombarded with gold particles coated with plasmid DNA carrying the gene coding for neomycin phosphotransferase II (NPTII), together with plasmid DNA containing the gene for -glucuronidase (GUS).Bombarded immature embryos were grown to plants without selection and NPTII activity was screened in small plantlets. One plant proved to be transgenic (T0). This chimeric plant passed the transferred nptII gene to its T1 progeny. The presence of the nptII gene was demonstrated by the PCR technique and enzyme activity was analyzed by an NPTII gel assay. Four T0 spikes and 15 T1 offspring were transgenic. The integration and inheritance was confirmed by Southern blot hybridization. Transgenic T2 and T3 plants were produced by isolating embryos from green grains of transgenic T1 and T2 plants, respectively and growing them to plants. After selfing, the ratio of transgenic to non-transgenic T2 offspring was shown to follow the rule of Mendelian inheritance. The general performance of transgenic plants was normal and no reduction in fertility was observed.Microspore-derived cultures were bombarded one and four weeks after microspore isolation. After bombardment, cultures were grown either with or without antibiotic selection (geneticin R or kanamycin). When cultures were grown without selection and regenerated plants were transferred to kanamycin selection in rooting phase, one out of a total of about 1500 plants survived. This plant both carried and expressed the transferred nptII gene. The integration was confirmed by Southern blot hybridization. This plant was not fertile.  相似文献   

13.
Hordeum chilense is a wild barley species that has a high degree of genetic variability and significant potential for use in plant breeding. To establish a series of trisomics in H. chilense (2n = 14), plants with 2n + 1 chromosome numbers were isolated from the progenies of selfed triploid plants. Based on both fluorescent in situ hybridization with pAs1 and pTa71 repetitive DNA probes and C-banding patterns, seven different trisomics were tentatively identified. Primary trisomic plants were for chromosomes 1Hch, 4Hch, 5Hch, 6Hch and 7Hch. A secondary trisomic carrying a 5HchS-5HchS isochromosome as the extra chromosome and a trisomic for chromosome 3Hch heterozygous for the 3HchS-4HchL and 4HchS–3HchL interchange were identified. The trisomic for chromosome 1Hch cannot be phenotypically distinguished from the diploid. The rest of the trisomic types were distinguishable from the diploid by their morphological characteristics (relatively poor vigour, decreased size and shorter spikes) but they were morphologically indistinguishable from each other. The frequencies of trisomics among the progenies derived from self-fertilization of these aneuploids ranged from 10.7% to 37.5%, with an average frequency of 26.1%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
While a diploid potato was continuously selfed by a function of Sli gene, the level of heterozygosity reduced, and the fertility also reduced (inbreeding depression), which might be improved because continuous selfing could eliminate undesirable recessive alleles. To explore what was occurring as advancing self-generations in terms of fertility, 51 plants of an S3 diploid potato family were evaluated for fertility-related traits and analyzed by RFLP markers. The level of heterozygosity was positively correlated with any of fertility-related traits (r = 0.108−0.333). At least six loci on six chromosome sections were associated with fertility-related quantitative trait loci (QTLs), of which three performed better in the heterozygotes and three in the homozygotes. By further continued selfing, QTLs performing better in heterozygotes were likely fixed to homozygotes with secondly better performance, and those performing better in homozygotes were fixed to the best genotypes. Thus, the selfed progenies were cryptically being improved for fertility by genetic fixation to the best or better genotypes in fertility-related QTLs.  相似文献   

15.
Kwan Ho Lee  Hyoji Namai 《Euphytica》1993,72(1-2):15-22
Summary New types of diploids in Brassica crops were synthesized after three consecutive selfing of aneuploids derived from backcrossing of sesquidiploids (2n=29, AAC) with B. campestris (2n=20, AA). The cytogenetic and morphological characteristics of plants with 2n=22, 24 and 40 in the S3 generation were analyzed in order to establish the extent in which these addition and polyploid lines were stabilized. A high frequency of 11II (79.7%), 12II (84.6%) and 20II (100%), were observed at metaphase I of pollen mother cells in 2n=22, 24 and 40 plants, respectively. The chromosome configuration at methaphase II also indicates that a certain level of stability has been attained cytogenetically. Although pollen stainability was relatively high, the seed set percentage was still low. Variation in morphological characteristics indicate the incorporation of one or more chromosome pairs from the C genome of B. oleracea. Other diagnostic characters such as the formation of determinate inflorescence, branching from the base of the stem, and the shift from self-incompatibility to self-compatibility must have resulted from the interaction between A and C genomes. Thus plants with 2n=22, 24 and 40 have been stabilized to some extent and can be developed into new breeding lines of Brassica. It is suggested that limited pollination could be effective in increasing the seed fertility of these plants.  相似文献   

16.
R. A. Pickering 《Euphytica》1982,31(2):439-449
Summary The effects of different spike covering materials have been investigated in crosses between Hordeum vulgare and H. bulbosum and in selfed H. vulgare. It was found that after lemmas and paleas were clipped, improvements in seed quality (H. vulgare × H. bulbosum) and weight (selfed H. vulgare) were obtained by covering heads with small brown paper bags compared with other treatments. Possible reasons for these effects are discussed but so far the mechanism has not been clarified. However, light is suggested as playing a major role.  相似文献   

17.
P. Devaux    T. Adamski  M. Surma 《Plant Breeding》1990,104(4):305-311
Crosses were made between four spring barley (Hordeum vulgare L.) cultivars and five F1, hybrids with one genotype of Hordeum bulbosum L. in two locations to investigate further previous low crossabilities which had been found in the barley cultivar ‘Apex’ with H. bulbosum. Data at all the main steps of the H. bulbosum technique were recorded and statistically analyzed. Significant differences between barley genotypes were demonstrated for all characters. It was confirmed that ‘Apex’ has poor crossability with H. bulbosum. Out of the three F1 hybrids having ‘Apex’ as one parent, two exhibited low crossability similarly to ‘Apex’ but one showed significantly higher seed setting than ‘Apex’. The effect of the location was only significant on seed setting, while genotype X location interactions were significant on seed setting, seed quality and rate of haploid plants in relation 10 florets pollinated. Another problem which has influenced the success rate of the H. bulbosum method was found in the cultivar ‘Havilla’. Although seed setting and seed quality were high for this cultivar, embryo differentiation was low. However, this latter problem was found to influence less the overall success rate than poor crossability. Mahalanobis's distances were calculated and the dendrite of the shortest distances between barley genotypes was plotted.  相似文献   

18.
K. H. Lee  H. Namai 《Euphytica》1992,60(1):1-13
Summary Aneuploids with 2n=21 and 2n=22 derived from crossing of sesquidiploids (2n=29, AAC) and Brassica campestris (2n=20, AA) were selfed successively in order to follow the changes in chromosome number of the progenies for three consecutive generations. Progenies with 2n=22, 23 and 24 obtained after selfing of S0 generation and the succeeding S1, S2 and S3 generations were analyzed in terms of pollen stainability, % seed set as well as cytogenetically based on meiotic behaviour with the aim of determining the possibility of addition of one or more alien chromosomes into n=10 species which may lead to differentiation of single or plural disomic addition lines. The generation of aneuploids with 2n=21 progressed in such a way that most plants seem to revert to the 2n=20 chromosome number of B. campestris after selfing. From 2n=22 aneuploids, however, the succeeding progenies showed high frequency of plants with two additional chromosomes which accounted for 50.6% and 52.9% of total S3 progenies via 2n=22 and 2n=24 S2 generations, respectively. The meiotic behaviour of these progenies indicated evidence for a rule governing the frequency distribution of chromosome number among these addition lines and high possibility to breed such disomic plants with 2n=22. A method of selecting stable aneuploids was suggested in addition to the possible role of pollination biology at various processes of such breeding program.  相似文献   

19.
Scald is a serious foliar disease that infects barley (Hordeum vulgare L.) causing reduced yields and adversely affecting quality. A means to combat the disease is to breed cultivars that possess genetic resistance. However, all known resistance alleles have so far originated from within the primary genepool of barley. This reliance on H. vulgare and H. vulgare ssp. spontaneum as resistance sources may encourage virulent forms of the pathogen to become established. To broaden the genetic base of cultivated barley and provide novel resistances to many diseases we have used a species from the secondary genepool of barley, H. bulbosum, in a resistance‐breeding programme. In this study we describe the development and trialling of a scald‐resistant recombinant line derived from a hybrid between H. vulgare and H. bulbosum. The scald resistance is simply inherited and located on the short arm of barley chromosome 4 (4HS).  相似文献   

20.
Wheat-barley translocations were identified by genomicin situ hybridization (GISH) in backcross progenies originating from in vitro regenerated wheat (Triticum aestivum L. cv. Chinese Spring) × barley (Hordeum vulgare L. cv. Betzes) hybrids. The regenerated hybrids were pollinated with the wheat line Martonvásári 9 kr1. Five translocated wheat-barley chromosomes were recovered among 51 BC2F2 progeny from the in vitro regenerated wheat × barley hybrids. All were single breakpoint translocations with the relative positions of the breakpoints ranging from the centromere to about 0.8 of the relative arm length. Of the four translocations with intercalary breakpoints, three were transfers of terminal barley segments to wheat chromosomes; one was a transfer of a terminal wheat segment to a barley chromosome. Because of the absence of diagnostic N-bands, the identity of three barley segments could not be determined; in one translocation the barley chromosome involved had a NOR so it must have been 5H or 6H, and the centric translocation was 4HS.2BL. Following selfing, homozygotes of four translocations were selected. The experiment suggests that in vitro culture conditions are conducive for major genome rearrangements in wheat-barley hybrids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号