首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fungicides inhibiting the mitochondrial respiration of plant pathogens by binding to the cytochrome bc1 enzyme complex (complex III) at the Qo site (Qo inhibitors, QoIs) were first introduced to the market in 1996. After a short time period, isolates resistant to QoIs were detected in field populations of a range of important plant pathogens including Blumeria graminis Speer f sp tritici, Sphaerotheca fuliginea (Schlecht ex Fr) Poll, Plasmopara viticola (Berk & MA Curtis ex de Bary) Berl & de Toni, Pseudoperonospora cubensis (Berk & MA Curtis) Rost, Mycosphaerella fijiensis Morelet and Venturia inaequalis (Cooke) Wint. In most cases, resistance was conferred by a point mutation in the mitochondrial cytochrome b (cyt b) gene leading to an amino-acid change from glycine to alanine at position 143 (G143A), although additional mutations and mechanisms have been claimed in a number of organisms. Transformation of sensitive protoplasts of M fijiensis with a DNA fragment of a resistant M fijiensis isolate containing the mutation yielded fully resistant transformants, demonstrating that the G143A substitution may be the most powerful transversion in the cyt b gene conferring resistance. The G143A substitution is claimed not to affect the activity of the enzyme, suggesting that resistant individuals may not suffer from a significant fitness penalty, as was demonstrated in B graminis f sp tritici. It is not known whether this observation applies also for other pathogen species expressing the G143A substitution. Since fungal cells contain a large number of mitochondria, early mitotic events in the evolution of resistance to QoIs have to be considered, such as mutation frequency (claimed to be higher in mitochondrial than nuclear DNA), intracellular proliferation of mitochondria in the heteroplasmatic cell stage, and cell to cell donation of mutated mitochondria. Since the cyt b gene is located in the mitochondrial genome, inheritance of resistance in filamentous fungi is expected to be non-Mendelian and, therefore, in most species uniparental. In the isogamous fungus B graminis f sp tritici, crosses of sensitive and resistant parents yielded cleistothecia containing either sensitive or resistant ascospores and the segregation pattern for resistance in the F1 progeny population was 1:1. In the anisogamous fungus V inaequalis, donation of resistance was maternal and the segregation ratio 1:0. In random mating populations, the sex ratio (mating type distribution) is generally assumed to be 1:1. Therefore, the overall proportion of sensitive and resistant individuals in unselected populations is expected to be 1:1. Evolution of resistance to QoIs will depend mainly on early mitotic events; the selection process for resistant mutants in populations exposed to QoI treatments may follow mechanisms similar to those described for resistance controlled by single nuclear genes in other fungicide classes. It will remain important to understand how the mitochondrial nature of QoI resistance and factors such as mutation, recombination, selection and migration might influence the evolution of QoI resistance in different plant pathogens.  相似文献   

2.
《EPPO Bulletin》1991,21(2):292-293
Methods are presented for monitoring fungicide sensitivity in a range of fungal pathogens ( Botrytis cinerea, Cercospora beticola, Cercosporidium personatum, Erysiphe graminis, Leptosphaeria nodorum, Monilinia fructicola, Mycosphaerella fijiensis, Penicillium digitatum and P. italicum, Pseudocercosporeila herpotrichoides, Puccinia recondita, Pyrenophora teres, Rhynchosporium secalis, Uncinula necator, Venturia inaequalis ). Three groups of fungicides are covered—sterol demethylation inhibitors (DMI), benzimidazoles and dicarboximides. The methods, developed by the sub-committees of FRAC, are intended for practical use in the implementation of resistance-avoiding strategies. Methods for phenylamide fungicides are in preparation and will be published later.  相似文献   

3.
Strobilurin-resistant isolates of Blumeria ( Erysiphe ) graminis f.sp. tritici , the cause of wheat powdery mildew, were more than 10-fold less sensitive to azoxystrobin than sensitive isolates. In all resistant isolates, a mutation resulting in the replacement of a glycine by an alanine residue at codon 143 (G143A) in the mitochondrial cytochrome b gene was found. Allele-specific primers were designed to detect this point mutation in infected wheat leaves. Using quantitative fluorescent allele-specific real-time polymerase chain reaction (PCR) measurements, strobilurin-resistant A143 alleles could be detected amongst strobilurin-sensitive G143 alleles at a frequency of at least 1 in 10 000, depending on the amount of target and nontarget DNA. Most isolates tested were dominant homoplasmic for either the A143 or G143 allele, although mixed populations of alleles could be detected in some isolates. In some of these isolates, strobilurin resistance was not always stable when they were maintained for many generations in the absence of selection. The allele-specific real-time PCR assay was also used to follow the dynamics of A143 alleles in field populations of B . graminis f.sp. tritici before and after application of fungicides. As expected, the A143 allele frequency only increased under selection pressure from a strobilurin fungicide. After three sprays of azoxystrobin, a pronounced selection for the strobilurin-resistant allele, with an increase in average frequency from 2·2 to 58%, was measured. The use of quantitative real-time PCR diagnostics for early detection of fungicide resistance genes at low frequency, coupled with risk evaluation, will be invaluable for further resistance risk assessment and validation of antiresistance strategies.  相似文献   

4.
ABSTRACT To elucidate the specificity of prehaustorial resistance to inappropriate rust fungi, we studied two populations of recombinant inbred lines of barley that segregated for partial resistance (PR) to Puccinia hordei and for the resistance to the inappropriate rust species P. recondita f. sp. tritici and P. hordei-murini. PR to P. hordei is prehaustorial and nonhypersensitive, and its level can be assessed accurately by measuring the latent period of the fungus. The resistance to the inappropriate rust species is a combination of prehaustorial (nonhypersensitive) and posthaustorial (hypersensitive) mechanisms. The amount of nonhypersensitive, early abortion of P. recondita f. sp. tritici and P. hordei-murini sporelings reflects the degree of prehaustorial defense to the two inappropriate rust species. All lines showing a long latent period of P. hordei also had a relatively high level of early abortion of the growth of P. recondita f. sp. tritici and P. hordei-murini. This indicates that genes for PR to P. hordei are also effective against these two inappropriate rust species. The reverse was not necessarily true; some lines showing a high level of early abortion of P. recondita f. sp. tritici and P. hordei-murini had a low level of PR to P. hordei. Moreover, lines with a similar level of prehaustorial resistance to P. recondita f. sp. tritici could differ considerably in their prehaustorial resistance to P. hordei-murini. This indicates that genes for prehaustorial resistance may exhibit rust species specificity.  相似文献   

5.
Resistance to QoI fungicides (strobilurins, famoxadone and fenamidone) in populations of Plasmopara viticola (Berk & Curt) Berlese & de Toni developed soon after their introduction in France and Italy. Current resistance management strategies include limitation of the number of applications, use of mixtures and alternation of fungicides with different modes of action. The selection pressure resulting from QoI fungicides applied alone or in mixtures with non-QoI fungicides was investigated in whole plant experiments under controlled conditions. QoI-resistant populations of P. viticola gradually reverted to full sensitivity following consecutive transfers to untreated plants, suggesting that resistant phenotypes were less competitive than sensitive ones. When cycled on QoI-treated plants, reduction in sensitivity was greater for the QoI fungicide which had greater intrinsic activity on P. viticola. Sensitivity decreased at each subsequent cycle, resulting in almost full resistance after four generations. Mixture experiments indicated that selection pressure was affected most by the dose of the QoI fungicide and the nature of the partner fungicide. Folpet delayed selection pressure most effectively when it was associated with famoxadone or azoxystrobin. Mancozeb was least effective at reducing the rate of selection compared with the QoI alone, and fosetyl-aluminium was intermediate. Higher rates of selection were recorded when the dose of the QoI fungicide, solo or in a mixture, was increased from 1 to 4 microg ml(-1). Increasing the dose of the non-QoI partner fungicide in the mixture from 10 to 30 microg ml(-1) resulted in reduced selection pressure. These results suggest that the choice of the fungicide partner and its dosage in the mixture can significantly affect the success of QoI resistance management strategies under practical conditions.  相似文献   

6.
Botrytis cinerea field isolates collected in Japan were screened for resistance to Qo inhibitor fungicides (QoIs). Of the 198 isolates screened, six grew well on a medium containing azoxystrobin, a QoI, when salicylhydroxamic acid, an alternative oxidase inhibitor, was present. The resistance mutation in the cytochrome b gene ( cytb ) was characterized. All QoI-resistant isolates had the same mutation (GGT to G C T) in cytb that led to the substitution of glycine by alanine at position 143 of cytochrome b , which is known to confer QoI resistance in plant pathogens. To detect this mutation, a hybridization probe assay based on real-time PCR amplification and melting curve analysis was developed. Using DNA samples prepared from aubergines coinfected with QoI-resistant and QoI-sensitive B. cinerea isolates, two similar peak profiles with their corresponding melting temperatures were obtained. This result suggests that QoI-resistant and QoI-sensitive isolates may compete equally in terms of pathogenicity, and the assay may be used to assess the population ratio of mutant and wild-type isolates. However, the hybridization probe did not anneal to PCR products derived from the DNA samples of some QoI-sensitive isolates. Structural analysis of cytb revealed that B. cinerea field isolates could be classified into two groups: one with three introns and the other with an additional intron (Bcbi-143/144 intron) inserted between the 143rd and 144th codons. All 88 isolates possessing the Bcbi-143/144 intron were azoxystrobin-sensitive, suggesting that the QoI-resistant mutation at codon 143 in cytb prevents self-splicing of the Bcbi-143/144 intron, as proposed in some other plant pathogens.  相似文献   

7.
QoI fungicides, inhibitors of mitochondrial respiration at the Qo site of cytochrome b in the mitochondrial bc(1) enzyme complex, are commonly applied in vineyards against Plasmopara viticola (Berk. & MA Curtis) Berl. & De Toni. Numerous treatments per year with QoI fungicides can lead to the selection of resistant strains in the pathogen population owing to the very specific and efficient mode of action. In order to evaluate the resistance risk and its development, two different methods, biological and molecular, were applied to measure the sensitivity of oospores differentiated in vineyards, both treated and untreated with azoxystrobin, from 2000 to 2004. Assays using oospores have the advantage of analysing the sensitivity of bulked samples randomly collected in vineyards, describing accurately the status of resistance at the end of the grapevine growing season. Both methods correlated well in describing the resistance situation in vineyards. QoI resistance was not observed in one vineyard never treated with QoI fungicides. In the vineyard where azoxystrobin had been used in mixture with folpet, the selection of QoI-resistant strains was lower, compared with using solely QoI. In vineyards where QoI treatments have been stopped, a decrease in resistance was generally observed.  相似文献   

8.
Application of cells of two isolates of fluorescent pseudomonads from soil to wheat seedlings prior to inoculation with Mycosphaerella graminicola (anamorph, Septoria tritici) or Puccinia recondita f.sp. tritici markedly reduced symptom expression. These Pseudomonas isolates, LEC 1 and LEC 2. also reduced in vitro growth of Geotrichum candidum. Rhizoctonia solani. Sclerotium rolfsii and S. tritici. Growth of the melanin-producing isolate ISR398 of S. tritici was inhibited on silica gel thin-layer chromatograms by compound(s) extracted with diethyl ether from King's Medium B colonized by Pseudomonas isolate LEC 1. The growth of the antagonistic pseudomonads on defined medium was not affected by the following commercial fungicides: benomyl, captafol, chlorothalonil, fenarimol, mancozeb, maneb, metalaxyl, prochloraz, propiconazole, triadimefon, and the herbicides 2,4-D and diclofop-methyl at the recommended concentrations  相似文献   

9.
BACKGROUND: Genetic resistance to QoI fungicides may account for recent failures to control Venturia inaequalis (Cooke) Winter in French orchards. Two PCR-based assays were developed to detect the G143A point mutation in the fungal mitochondrial cytochrome b gene. The mutation is known to confer a high level of resistance to QoI fungicides. Occurrence of the G143A mutation in French field isolates collected from 2004 to 2007 was monitored. RESULTS: The QoI-resistant cytochrome b allele was specifically detected either following the cleavage of the amplified marker by a restriction endonuclease (CAPS assay) or its amplification using an allele-specific PCR primer. Using either method, the G143A mutation was found in 42% of the 291 field samples originating from French orchards in which apple scab proved difficult to be controlled. Monitoring of the G143A mutation in orchards located in 15 French administrative regions indicated that the mutation was detected at least once in nine of the regions, and its presence ranged from 33% to 64% of the orchards analysed in 2004 and in 2007 respectively. CONCLUSION: The PCR-based methods developed in this study efficiently reveal the presence of the G143A mutation in French V. inaequalis field populations.  相似文献   

10.
The passive spore removal from colonies due to mechanical stress was compared in the brown (Puccinia recondita f.sp. tritici) and yellow (P. striiformis) rusts of wheat. Mechanical stress was applied using either a miniaturized wind tunnel or a centrifuge. In wind-tunnel experiments, a wind of minimum velocity of 1.3 and 1.8 m s-1 for P. recondita f.sp. tritici and P. striiformis, respectively, applied for at least 10 seconds, was necessary to remove spores. The interaction between wind velocity and cumulated duration was significant for both rusts. At low wind velocity, a longer duration was required to remove the spores than at high wind velocity, and vice versa. In centrifugation experiments, the maximum spore removal occurred for angular velocities of 103 and 2 103 rotations min-1, for P. recondita f.sp. tritici and P. striiformis, respectively, applied for 5 min. Calculation of the aerodynamic and centrifugal forces showed that the forces necessary to remove spores are greater for P. striiformis than for P. recondita f.sp. tritici. This difference can be related to the size of the dispersal unit, which is larger in P. striiformis than in P. recondita f.sp. tritici due to spore clustering. These observations are consistent with the differences in the mean spore dispersal distance, which is usually smaller in P. striiformis than in P. recondita f.sp. tritici.  相似文献   

11.
BACKGROUND: Quinone outside inhibitor (QoI) resistance as a consequence of point mutations in the cytochrome b (cyt b) gene has been reported in numerous plant pathogenic fungi. To examine the potential for QoI resistance development in those Monilinia species causing brown rot of stone and pome fruits [Monilinia fructicola (G Winter) Honey, M. laxa (Aderhold & Ruhland) Honey and M. fructigena (Aderhold & Ruhland) Honey], an examination was made of the sequence and exon/intron structure of their cyt b genes for the presence of any point mutations and/or introns commonly associated with resistance to QoIs in fungal plant pathogens. RESULTS: None of the point mutations typically linked to QoI resistance was present in any of the Monilinia isolates examined. Furthermore, the cyt b genes from M. fructicola and M. laxa, but not M. fructigena, possessed a group‐I‐like intron directly after codon 143. Based on the results obtained, a simple PCR assay using a single primer pair was developed, allowing discrimination between the three Monilinia species without the need for culturing. CONCLUSIONS: Results suggest that resistance to QoI fungicides based on the G143A mutation is not likely to occur in M. fructicola or M. laxa. Conversely, M. fructigena may be at higher risk for developing QoI resistance owing to the absence of a G143‐associated intron. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
This study characterized a fragment of the cytochrome b gene from Ascochyta rabiei isolates collected in North Dakota, USA, that varied in sensitivity to quinone‐outside inhibitor (QoI) fungicides. The sequenced genomic DNA fragment contained a group I intron immediately after codon 131. The size of the cytochrome b gene was estimated to be over 4·6 kb. Multiple alignment analysis of cDNA and protein sequences revealed a mutation that changed the codon for amino acid 143 from GGT to GCT, introducing an amino acid substitution from glycine to alanine (G143A), which is frequently associated with QoI resistance. Based on this mutation, a diagnostic PCR assay was developed using an approach called mismatch amplification mutation assay. This method was successfully validated by testing a total of 70 A. rabiei isolates, of which 38 isolates were found to be QoI‐resistant. This fast and accurate PCR assay provides a very useful and simple screening method for QoI resistance in A. rabiei isolates.  相似文献   

13.
BACKGROUND: Previous studies have shown that resistance of Botrytis cinerea to QoI fungicides has been attributed to the G143A mutation in the cytochrome b (cytb) gene, while, in a part of the fungal population, an intron has been detected at codon 143 of the gene, preventing QoI resistance. During 2005–2009, 304 grey mould isolates were collected from strawberry, tomato, grape, kiwifruit, cucumber and apple in Greece and screened for resistance to pyraclostrobin and for the presence of the cytb intron, using a novel real‐time TaqMan PCR assay developed in the present study. RESULTS: QoI‐resistant phenotypes existed only within the population collected from strawberries. All resistant isolates possessed the G143A mutation. Differences were observed in the genotypic structure of cytb. Individuals possessing the intron were found at high incidence in apple fruit and greenhouse‐grown tomato and cucumber populations, whereas in the strawberry population the intron frequency was lower. Cultivation of QoI‐resistant and QoI‐sensitive isolates for ten culture cycles on artificial nutrient medium in the presence or absence of fungicide selection showed that QoI resistance was stable. CONCLUSIONS: The results of the study suggest that a high risk for selection of QoI‐resistant strains exists in crops heavily treated with QoIs, in spite of the widespread occurrence of the cytb intron in B. cinerea populations. The developed real‐time TaqMan PCR constitutes a powerful tool to streamline detection of the mutation by reducing pre‐ and post‐amplification manipulations, and can be used for rapid screening and quantification of QoI resistance. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Glyphosate is a widely used broad-spectrum herbicide. Recent studies in glyphosate-resistant (GR) crops have shown that, in addition to its herbicidal activity, glyphosate exhibits activity against fungi, thereby providing disease control benefits. In GR wheat, glyphosate has shown both preventive and curative activities against Puccinia striiformis f. sp. tritici (Erikss) CO Johnston and Puccinia triticina Erikss, which cause stripe and leaf rusts respectively. RESULTS: Laboratory studies confirmed earlier observations that glyphosate has activity against Phakopsora pachyrhizi Syd & P Syd which causes Asian soybean rust (ASR) in GR soybeans. The results showed that glyphosate at rates between 0.84 and 1.68 kg ha(-1) delayed the onset of ASR in GR soybeans. However, field trials conducted in Argentina and Brazil under natural infestations showed variable ASR control from application of glyphosate in GR soybeans. Further field studies are ongoing to define the activity of glyphosate against ASR. CONCLUSIONS: These results demonstrate the disease control activities of glyphosate against rust diseases in GR wheat and GR soybeans.  相似文献   

15.
ABSTRACT Sequence-tagged microsatellite profiling was used to develop 110 microsatellites for Puccinia graminis f. sp. tritici (causal agent of wheat stem rust). Low microsatellite polymorphism was exhibited among 10 pathogenically diverse P. graminis f. sp. tritici isolates collected from Australian cereal growing regions over a period of at least 70 years, with two polymorphic loci detected, each revealing two alleles. Limited cross-species amplification was observed for the wheat rust pathogens, P. triticina (leaf rust) and P. striiformis f. sp. tritici (stripe rust). However, very high transferability was revealed with P. graminis f. sp. avenae (causal agent of oat stem rust) isolates. A genetic diversity study of 47 P. graminis f. sp. avenae isolates collected from an Australia-wide survey in 1999, and a historical group of 16 isolates collected from Australian cereal growing regions from 1971 to 1996, revealed six polymorphic microsatellite loci with a total of 15 alleles. Genetic analysis revealed the presence of several clonal lineages and subpopulations in the pathogen population, and wide dispersal of identical races and genotypes throughout Australian cereal-growing regions. These findings demonstrated the dynamic population structure of this pathogen in Australia and concur with the patterns of diversity observed in pathogenicity studies.  相似文献   

16.
S. IREN 《EPPO Bulletin》1981,11(2):47-52
Cereal crop production is one of the most important projects in the agricultural improvement programme for Turkey. Overall, wheat represents 61 % of the cereal crop. While wheat production was almost 4 million tons in 1950, this reached a limit of 10 million tons in 1970. A number of diseases continue to afflict the crop from time to time, causing heavy losses. The most important of these are: bunt ( Tilletia foetida and T. caries ), loose smut ( Ustilago nuda ), rusts ( Puccinia strilformis, P. graminis f. sp. tritici, P. recondita f. sp. tritici ), leaf blotch ( Septoria tritici ), root and foot rots ( Fusarium spp., Drechslera sorokiniana, Pseudocercosporella herpotrichoides, Alternarla alternate, Sclerotium spp. and Rhizoctonia spp.). The diseases appear all over the country. Average losses due to rusts in epidemics are estimated at about 30–35 % in the whole country. Annual losses from covered smut are about 15–20 %, and from loose smut from 0.1 % to almost 20 % depending on the weather conditions of the year, on variety and on locality. Root rots have gained importance in some places, especially in Thrace in the last few years. In addition to the above diseases, several others occur occasionally but are of minor importance: powdery mildew ( Erysiphe graminis f. sp. tritici ), dwarf smut ( Tilletia contraversa ), flag smut ( Urocystis tritici ), take-all ( Gaeumannomyces graminis ) and a wheat mosaic virus (recently observed in a province of Central Anatolia).  相似文献   

17.
Resistance to QoI fungicides in Pyrenophora teres (Dreschsler) and P. tritici-repentis (Died.) Dreschsler was detected in 2003 in France and in Sweden and Denmark respectively. Molecular analysis revealed the presence of the F129L mutation in resistant isolates of both pathogens. In 2004, the frequency of the F129L mutation in populations of both pathogens further increased. The G143A mutation was also detected in a few isolates of P. tritici-repentis from Denmark and Germany. In 2005, the F129L mutation in P. teres increased in frequency and geographical distribution in France and the UK but remained below 2% in Germany, Switzerland, Belgium and Ireland. In P. tritici-repentis, both mutations were found in a significant proportion of the isolates from Sweden, Denmark and Germany. The G143A mutation conferred a significantly higher level of resistance (higher EC50 values) to Qo inhibitors (QoIs) than did the F129L mutation. In greenhouse trials, resistant isolates with G143A were not well controlled on plants sprayed with recommended field rates, whereas satisfactory control of isolates with F129L was achieved. For the F129L mutation, three different single nucleotide polymorphisms (SNPs), TTA, TTG and CTC, can code for L (leucine) in P. teres, whereas only the CTC codon was detected in P. tritici-repentis isolates. In two out of 250 isolates of P. tritici-repentis from 2005, a mutation at position 137 (G137R) was detected at very low frequency. This mutation conferred similar resistance levels to F129L. The structure of the cytochrome b gene of P. tritici-repentis is significantly different from that of P. teres: an intron directly after amino acid position 143 was detected in P. teres which is not present in P. tritici-repentis. This gene structure suggests that resistance based on the G143A mutation may not occur in P. teres because it is lethal. No G143A isolates were found in any P. teres populations. Although different mutations may evolve in P. tritici-repentis, the G143A mutation will have the strongest impact on field performance of QoI fungicides.  相似文献   

18.
 小麦白粉病(Wheat Powdery Mildew)是我国小麦生产上常发性病害之一[1]。小麦白粉病的防治主要采用抗病品种和化学药剂,辅之以栽培措施的综合防治技术。由于目前生产上抗病品种相对缺乏,药剂防治成为我国小麦白粉病防治的主要措施之一[2]。自20世纪80年代以来三唑类杀菌剂一直是我国防治小麦白粉病的主要药剂,由于长期、大范围、单一的使用导致小麦白粉病菌对三唑类杀菌剂的抗药性大大提高。监测结果表明,2009年我国小麦白粉病菌群体对三唑酮的平均抗性水平已经达到56.58倍,抗性频率达到99.09%,其中高抗菌株占49.09%[3]。目前小麦白粉病菌对三唑酮的抗性形势十分严峻,寻找三唑类杀菌剂的替代药剂成为控制该病害的迫切需求。  相似文献   

19.
BACKGROUND: A single nucleotide polymorphism in the mitochondrial cytochrome b gene confers resistance to strobilurin (QoI) fungicides in phytopathogenic fungi. Recent studies have revealed worrying levels of resistance to strobilurins in Podosphaera fusca (Fr.) U Braun & N Shishkoff comb. nov. [ = Sphaerothecafusca (Fr.) S Blumer], the main causal agent of cucurbit powdery mildew in Spain. In the present study the underlying resistance mechanism to QoI fungicides in the Spanish populations of P. fusca was investigated. RESULTS: Analysis of the Q(o) domains of cytochrome b in a collection of isolates revealed that none of the typical mutations conferring resistance to QoI, including the G143A and F129L substitutions, was present in the QoI-resistant isolates. Moreover, although different amino acid polymorphisms were observed in the two regions spanning the Q(o) site, none of them consistently distinguished QoI-resistant from QoI-sensitive strains. Exposure to salicylhydroxamic acid (SHAM), a specific inhibitor of alternative oxidase, in the presence of trifloxystrobin did not have any effect on QoI resistance, ruling out alternative respiration as the mechanism of resistance. Sensitivity tests to a battery of respiration inhibitors revealed high levels of cross-resistance to all Qo-inhibitors tested but not to Qi-inhibitors, these features resembling those of a target-site-based resistance. CONCLUSIONS: The results indicate that the mechanism responsible for QoI resistance in P. fusca is not linked to typical mutations in cytochrome b gene and that the absence of the G143A substitution cannot be explained by an intron following codon 143. These are important observations, especially in relation to the possible molecular diagnosis of resistance.  相似文献   

20.
BACKGROUND: QoI fungicides or quinone outside inhibitors (also called strobilurins) have been widely used to control agriculturally important fungal pathogens since their introduction in 1996. Strobilurins block the respiration pathway by inhibiting the cytochrome bc1 complex in mitochondria. Several plant pathogenic fungi have developed field resistance. The first QoI resistance in Mycosphaerella graminicola (Fuckel) Schroter was detected retrospectively in UK in 2001 at a low frequency in QoI-treated plots. During the following seasons, resistance reached high frequencies across northern Europe. The aim of this study was to identify the main evolutionary forces driving the rapid emergence and spread of QoI resistance in M. graminicola populations.RESULTS: The G143A mutation causing QoI resistance was first detected during 2002 in all tested populations and in eight distinct mtDNA sequence haplotypes. By 2004, 24 different mtDNA haplotypes contained the G143A mutation. Phylogenetic analysis showed that strobilurin resistance was acquired independently through at least four recurrent mutations at the same site of cytochrome b. Estimates of directional migration rates showed that the majority of gene flow in Europe had occurred in a west-to-east direction.CONCLUSION: This study demonstrated that recurring mutations independently introduced the QoI resistance allele into different genetic and geographic backgrounds. The resistant haplotypes then increased in frequency owing to the strong fungicide selection and spread eastward through wind dispersal of ascospores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号