首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Waterlogging results in high shoot concentrations of iron (Fe), aluminum (Al), and manganese (Mn) in wheat grown in acidic soil. The verification of this observation in several acidic soils, development of screening techniques, and identification of genotypes differing in tolerance made it possible to test whether tolerance of ion toxicities improves performance of wheat in waterlogged acid soils. Six wheat varieties selected for tolerance/intolerance of Al, Mn, and Fe were grown in three acidic soils (pHCaCl2 4.1–4.3) with or without waterlogging for 40 d. In terms of relative shoot dry weight, Al‐, Mn‐, and Fe‐tolerant genotypes tolerated waterlogging better, outperforming intolerant genotypes by 35%, 53%, and 32%, respectively, across the soils. The Al‐tolerant genotype had up to 1.8‐fold better root growth than the intolerant genotype under waterlogging. Waterlogging increased DTPA‐extractable soil Mn (71%) and Fe (89%), and increased shoot Fe (up to 7.6‐fold) and Al (up to 5.9‐fold) for different genotypes and soils. The Al‐tolerant genotype maintained lower tissue concentrations of Al as compared to intolerant genotypes during waterlogging. Waterlogging delayed crop development but distinctly less so in the tolerant than in the intolerant genotypes, thus jeopardizing the capacity of intolerant genotypes to produce yield in Mediterranean climates with dry finish of the season. Pyramiding multiple ion tolerances into current wheat varieties with desirable agronomic and quality characteristics to enhance their performance under waterlogged acid soils should be considered.  相似文献   

2.
Durum wheat, Triticum durum Desf., is reportedly more sensitive to aluminum (Al) toxicity in acid soils than hexaploid wheat, Triticum aestivum L. em. Thell. Aluminum‐tolerant genotypes would permit more widespread use of this species where it is desired, but not grown, because of acid soil constraints. Durum wheat germplasm has not been adequately screened for acid soil (Al) tolerance. Fifteen lines of durum wheat were grown for 28 days in greenhouse pots of acid, Al‐toxic Tatum subsoil at pH 4.5, and non‐toxic soil at pH 6.0. Aluminum‐tolerant Atlas 66 and sensitive Scout 66 hexaploid wheats were also included as standards. Based on relative shoot and root dry weight (wt. at pH 4.5/wt. at pH 6.0 X 100), durum entries differed significantly in tolerance to the acid soil. Relative shoot dry weight alone was an acceptable indicator of acid soil tolerance. Relative dry weights ranged from 55.1 to 15.5% for shoots and from 107 to 15.8% for roots. Durum lines PI 195726 (Ethiopia) and PI 193922 (Brazil) were significantly more tolerant than all other entries, even the Al‐tolerant, hexaploid Atlas 66 standard. Hence, these two lines have potential for direct use on acid soils or as breeding materials for use in developing greater Al tolerance in durum wheat. Unexpectedly, the range of acid soil tolerance available in durum wheat appears comparable to that in the hexaploid species. Hence, additional screening of durum wheat germplasm for acid soil (Al) tolerance appears warranted. Durum lines showing least tolerance to the acid soil included PI 322716 (Mexico), PI 264991 (Greece), PI 478306 (Washington State, USA), and PI 345040 (Yugoslavia). The Al‐sensitive Scout 66 standard was as sensitive as the most sensitive durum lines. Concentrations of Al and phosphorus were significantly higher in shoots of acid soil sensitive than in those of tolerant lines, and these values exceeded those reported to cause Al and phosphorus (P) toxicities in wheat and barley.  相似文献   

3.
Abstract

Manganese (Mn) tolerance response in two aluminum (Al)‐tolerant triticale (× Triticosecale Wittmack) varieties was characterized by measurements of growth and dry matter production of seedlings in nutrient solution culture containing 100 mg L‐1 Mn. Root weight index (RWI) and total weight index (TWI) based on relative plant growth were two indicators of differentiating genotypic Mn tolerance; these two indices were used to make a comparative assessment of the degree of Mn tolerance in a group of eight Australian and South African genotypes which differ in apparent Al tolerance. The G4–95A was more Mn‐tolerant than its Al‐tolerant counterpart Tahara. A wide range of Mn tolerance was found in the eight genotypes, but few were tolerant of both Al and Mn stresses; measurements of RWI at 100 mg L‐1 Mn stress differentiated them into three response types (i.e., Mn‐tolerant, moderately Mn‐tolerant/Mn‐sensitive, and Mn‐sensitive) at the two critical values of 0.30 and 0.60. Covariation analysis indicated no association between Mn tolerance and Al tolerance; selective breeding for acidic stress tolerance should focus on both stress tolerances.  相似文献   

4.
Plant genotypes differ in their capacity to grow in soils with low manganese (Mn) availability. The physiological mechanisms underlying differential tolerance to Mn deficiency are poorly understood. To study the relationship between Mn content in soil, plant genotypes, and rhizosphere microorganisms in differential Mn efficiency, two wheat (Triticum aestivum L.) cultivars, RAC891 (tolerant to Mn deficiency) and Yanac (sensitive), were grown in a Mn‐deficient soil to which 5, 10, 20 or 40 mg Mn kg–1 were added. The shoot dry matter of both cultivars increased with increasing Mn addition to the soil. At all soil Mn fertilizer levels, the tolerant RAC891 had a greater shoot dry matter and a higher total shoot Mn uptake than the sensitive Yanac. The concentration of DTPA‐extractable Mn in the rhizosphere soil of RAC891 at Mn20 and Mn40 was slightly lower than in the rhizosphere of Yanac. The population density of culturable microorganisms in the rhizosphere soil was low (log 6.8–6.9 cfu (g soil)–1) in both cultivars and neither Mn oxidation nor reduction were observed in vitro. To assess the non‐culturable fraction of the soil microbial community, the ribosomal intergenetic spacer region of the bacterial DNA in the rhizosphere soil was amplified (RISA) and separated in agarose gels. The RISA banding patterns of the bacterial rhizosphere communities changed markedly with increasing soil Mn level, but there were no differences between the wheat cultivars. The bacterial community structure in the rhizosphere was significantly correlated with the concentration of DPTA‐extractable Mn in the rhizosphere, fertilizer Mn level, shoot dry matter, and total shoot Mn uptake. The results obtained by RISA indicate that differential tolerance to Mn deficiency in wheat may not be related to changes in the composition of the bacterial community in the rhizosphere.  相似文献   

5.
Manganese (Mn) deficiency limits wheat productivity on sandy loam, calcareous and alkaline soils cropped with rice. Variation of wheat genotypes to sustain production and Mn use from Mn deficient condition was investigated to screen efficient genotypes. Forty-seven diverse wheat genotypes were evaluated on Mn sufficient (0.195 µM) and Mn deficient (0 µM) nutrient solution to elucidate physiological basis of Mn deficiency tolerance and to develop manganese deficiency tolerance index (MDTI). Shoot dry weight and mean Mn accumulation was 136.7% and 76.5% enhanced when Mn nutrition was improved, respectively. Efficient genotypes under limited Mn had lower root length/shoot weight ratio but higher relative shoot growth rate with higher shoot demand on root which reflected higher Mn influx. Genotypes were classified as tolerant (>0.66), semi-tolerant (0.33–0.66) and sensitive (<0.33) on the basis of MDTI (0–1 scale). Manganese efficient genotypes are most desirable for sustainable production of wheat under low Mn.  相似文献   

6.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

7.
Literature suggests that nitrogen (N) metabolism is involved in differential acid soil (Al) tolerances among wheat (Triticwn aestivum L. en Thell) genotypes. Atlas 66 wheat is characterized by acid soil and aluminum (Al) tolerance, nitrate (NO3 ) preference, pH increase of the rhizosphere, high nitrate reductase activity, and high protein in the grain. Atlas 66 has been used as a high protein gene donor in the development of new high protein wheat lines at Lincoln, NE. The objective of our study was to determine the acid soil tolerances of such lines and to relate such tolerances to their abilities to accumulate grain protein when grown on near‐neutral, non‐toxic soils. Twenty‐five experimental lines, nine cultivars not previously classified as Al‐tolerant or ‐sensitive and three cultivars previously classified according to acid soil tolerance, were grown for 28 days in greenhouse pots of acid, Al‐toxic Tatum subsoil. Relative shoot dry weight (pH 4.35/pH 5.41%) varied from 83.2% for Atlas 66 to 19.3% for Siouxland. Atlas 66 was significantly more tolerant to the acid soil than all other entries except Edwall. Yecorro Roja and Cardinal were intermediate in tolerance. None of the high protein lines approached Atlas 66 in tolerance, but two lines (N87U106 and N87U123) were comparable to Cardinal (relative shoot yield = 54%) which is used on acid soils in Ohio. At pH 4.35, the most acid soil tolerant entries contained significantly lower Al and significantly higher potassium (K) concentrations in their shoots than did sensitive entries. Shoots of acid soil sensitive entries, Scout 66, Siouxland, Plainsman V, and Anza contained deficient or near deficient concentrations of K when grown at pH 4.35. Acid soil tolerance was not closely related to calcium (Ca), magnesium (Mg), phosphorus (P), manganese (Mn), or iron (Fe) concentrations at pH 4.35. Liming the soil to pH 5.41 tended to equalize Al and K concentrations in shoots of tolerant and sensitive entries. Results indicated that acid soil tolerance and grain protein concentrations were not strongly linked in the wheat populations studied. Hence, the probability of increasing acid soil tolerance by crossing Atlas 66 with Nebraskan wheat germplasm is low. However, the moderate level of acid soil tolerance in N87U106 and N87U123 (comparable to that of Cardinal) may be useful in further studies.  相似文献   

8.
Manganese (Mn) toxicity can be a growth limiting constraint for many plants grown on acid soil. Plant species/genotypes tolerant to Mn could help overcome detrimental Mn toxicity effects on plants grown on high Mn soils. Thirty‐seven sorghum [Sorghum bicolor (L.) Moench] genotypes from a broad germplasm base were grown in solution culture (pH 4.5) with 0, 3.0, and 6.0 mM of added Mn above the basic solution concentration (18 μM) to determine genotypic differences in tolerance to excess Mn. Dry matter (DM) was used to evaluate 24‐day‐old plants (10 days in Mn treatments) for Mn toxicity responses. Wide variability among genotypes for differential DM was noted at 3.0 and 6.0 mM Mn. Sorghum generally tolerated high levels of Mn. Genotypes showing relatively high tolerance to excess Mn in solution were NB 9040, Wheatland, IS 7180, IS 7755, and IS 7809. Those genotypes showing relatively low tolerance to high Mn were ICA‐Nataima, Martin, IS 7173c (SC 283), IS 7321, IS 9187, IS 9785, and IS 9828. IS 7173c, an aluminum (Al)‐tolerant standard genotype, was sensitive to high Mn. Wide variability was noted among tissue culture generated lines derived from a common parent. Laboratory screening for tolerance to Mn toxicity was effective with sorghum, but results need to be verified in the field.  相似文献   

9.
Ten‐day‐old seedlings of four cowpea (Vigna unguiculata Walp) genotypes were subjected to six levels of aluminum (Al) (0, 74, 148, 222, 296, and 370 μM/L) to test their tolerance to Al toxicity in a nutrient solution at pH 4.0±0.1. Seedlings were grown in the presence of Al under controlled environmental conditions in a growth chamber. The nutrient solutions were replenished once a week. After 20 days, treatments were terminated and the differences in their growth patterns were compared. Standard growth parameters, such as plant growth, dry matter production, relative growth reduction in roots (RGRS) and shoots (RGRS), and root and shoot tolerance indices (RTI and STI) have been used as markers of Al toxicity. The cowpea genotypes studied exhibited a wide range of responses in their tolerance to Al. Though the genotypes were subjected to six levels of Al, a good degree of separation in their responses was observed only at the 222 μM Al/L treatment level. Therefore, this concentration was chosen to treat and compare the performances of the genotypes. The genotype Co 3 showed an increase in growth, while Paiyur 1 and other genotypes showed severe inhibitions in the presence of Al. Furthermore, for RTI and STI, Co 3 also registered its tolerance to Al by showing increased ratios in the presence of Al. Whereas, Paiyur 1 recorded severe reductions. The RGRR and RGRS data also substantiates this finding. Based on the growth parameters, the four cowpea genotypes were ranked based on their tolerance to Al: Co 3 > Co 4 > KM > Paiyur 1. Co 3 was the most Al‐tolerant genotype which performed extremely well in the presence of Al, while Paiyur 1was the most Al‐susceptible genotype. Therefore, the Al‐tolerant genotype can be used for future breeding programmes to produce Al‐tolerant genotypes, subsequently, can be recommended for acidic infertile soils in the tropics.  相似文献   

10.
Nineteen soybean genotypes (ten from the former USSR, two from Brazil and seven from USA) were tested for aluminum (Al) tolerance by growing them for 21 days in greenhouse pots of acid, Al‐toxic, unlimed Tatum (Typic Hapludult) subsoil at pH 4.0 and in limed subsoil at pH 5.1. Aluminum tolerance ranking depended upon the plant traits used in the screening process. Based on absolute dry shoot weights at pH 4.0, Giessener, Brunatna, and St.‐59 (USSR), and Biloxi (USA) were most tolerant; least tolerant entries included Yantarnaya and Smena (USSR), and Davis (USA). Based on relative shoot dry weights (pH 4.0/pH 5.1 %), Giessener, Brunatna, and St.‐59 (USSR) were among the most tolerant, Bossier, Biloxi, Essex, and Perry were intermediate, and Salute 216 (USSR), Chief (USA), and Santa Rosa and IAC‐9 (Brazil) were more sensitive to the acid soil. Based on absolute root dry weights, Giessener, and St.‐59 (USSR), and Biloxi (USA) were among the most tolerant and Smena, Yantarnaya and Salute 216 (USSR), and Chief (USA) were most sensitive. Based on relative root dry weights (pH 4.0/ pH 5.1 %), Giessener was most tolerant and Smena and Salute 216 least tolerant.

Preliminary evidence indicated that soybean entries screened for Al tolerance on acid Tatum soil also differed in tolerance to naturally occurring levels of ambient ozone in greenhouses at Beltsville. The Russian entries VNIIS‐2, Giessener, and Brunatna appeared more sensitive than USA entries Perry, Biloxi, Davis, and Bossier (USA), and Santa Rosa (Brazil). Aluminum tolerance and ozone tolerance appeared to coincide in the Perry genotype. Studies on Al‐ozone‐soybean genotype relationships are being continued at Beltsville.  相似文献   

11.
Cotton genotypes [Gossypium hirsutum (L.)] C‐310–73,‐307 (307) and C‐Sgl, 70–517 (517), shown previously to differ in tolerance to an acid (pH 5.1), high manganese (Mn) Grenada soil from Arkansas, were grown in nutrient solutions containing variable concentrations of excess Mn to confirm and characterize their postulated differences in Mn tolerance. Based on crinkle leaf symptoms and leaf dry weights, the 307 genotype was significantly more tolerant than 517 to 4, 8, or 16 mg Mn/L at a maintained pH of 4.6 (Experiment 1) and also to 4 or 8 mg Mn/L at an initial pH of 5.0, not subsequently adjusted (Experiment 2). In Experiment 1, the relative leaf dry weight (wt. with no Mn/wt. with 8 mg Mn/L × 100) was 94% for genotype 307 and only 27% for 517. In Experiment 2, the corresponding relative leaf weights were 75% and 26% for 307 and 517, respectively. Plant analytical results indicated that the 307 genotype tolerates a higher concentration of Mn in its leaves than does 517. This failure to correlate Mn tolerance with Mn concentrations in plant shoots agrees with previous findings when these two genotypes were grown in acid Grenada soil. Iron (Fe) concentrations, Fe/Mn ratios, and magnesium (Mg) concentrations were higher in the Mn‐tolerant 307 than in the Mn‐sensitive 517, but concentrations of phosphorus (P), potassium (K), calcium (Ca), copper (Cu), and zinc (Zn) were not related to Mn tolerance. Because differential Mn tolerance in these two genotypes is associated with differential internal tolerance to excess Mn, rather than differential Mn uptake, studies are needed to determine the chemical forms of Mn in tolerant and sensitive plants whose leaves contain comparable concentrations of total Mn. Because both Mn and Fe (closely related elements in the Mn toxicity syndrome) have spin resonances, electron paramagnetic resonance (EPR) offers promise in attacking the problem of differential Mn tolerance in plants.  相似文献   

12.
Tolerance to zinc (Zn) deficiency was examined for three wheat (Triticum aestivum L.) and three barley (Hordeum vulgare L.) varieties grown in chelator‐buffered nutrient solution. Four indices were chosen to characterize tolerance to Zn deficiency: (1) relative shoot weight at low compared to high Zn supply (“Zn efficiency index”), (2) relative shoot to root ratio at low compared to high Zn supply, (3) total shoot uptake of Zn under deficient conditions, and (4) shoot dry weight under deficient conditions. Barley and wheat exhibited different tolerance to Zn deficiency, with barley being consistently more tolerant than wheat as assessed by all four indices. The tolerance to Zn deficiency in the barley varieties was in the order Thule=Tyra>Kinnan, and that of wheat in the order Bastian=Avle>Vinjett. The less tolerant varieties of both species accumulated more P in the shoots than the more tolerant varieties. For all varieties, the concentrations of Mn, Fe, Cu, and P in shoot tissue were negatively correlated with Zn supply. This antagonism was more pronounced for Mn and P than for Cu and Fe. Accumulation of Cu in barley roots was extremely high under Zn‐deficient conditions, an effect not so clearly indicated in wheat.  相似文献   

13.
Aluminum toxicity is a major growth limiting factor for plants in many acid soils of the world. Correcting the problem by conventional liming is not always economically feasible, particularly in subsoils. Aluminum tolerant plants provide an alternative and long‐term supplemental solution to the problem. The genetic approach requires the identification of Al tolerance sources that can be transferred to cultivars already having desirable traits. Thirty‐five cultivars and experimental lines of wheat (Triticum aestivum L. em. Thell) were screened for Al tolerance on acid Tatum soil (clayey, mixed thermic, typic Hapludult) receiving either 0 or 3500 mg CaCO3/kg (pH 4.1 vs. pH 7.1). Entries showed a wide range of tolerance to the acid soil. On unlimed soil at pH 4.3, absolute shoot dry weights differed by 5‐fold, absolute root dry weights by 6.5‐fold, relative shoot weights (wt. at pH 4.3/wt. at pH 7.1 %) by 4.7‐fold and relative root dry weights by 7‐fold. Superior acid soil (Al) tolerance of ‘BH‐1146’ from Brazil and extreme sensitivities of cultivars ‘Redcoat’ (Indiana, USA) and ‘Sonora 63’ (Mexico) were confirmed. Seven experimental (CNT) lines from Brazil showed a range of acid soil tolerance but were generally more tolerant than germplasm from Mexico and the USA. One line, ‘CNT‐1’, was equal to BH‐1146 in tolerance and may be useful in transferring Al tolerance to existing or new cultivars. Five durum cultivars (Triticum, durum, Desf.) were extremely sensitive to the acid Tatum subsoil at pH 4.3 compared with pH 7.1.  相似文献   

14.
Two pot experiments were conducted, one to evaluate the levels of tolerance of fifteen cowpea [Vigna unguiculata (L.) Walp] lines to aluminum (Al) application, and the second to determine the effect of phosphorus (P) addition on the performance of Al‐tolerant lines (IT 91K‐93–10, IT 93K‐2046–1, and IT 90K‐2 77–2) and Al‐sensitive lines (IT 86D‐719, IT 90K‐284–2, and IT 89KD‐349) in an Alfisol with Al amendment. Fourteen of the fifteen lines tested showed decreased root biomass (between 19 to 81% reduction) with Al addition, but this effect was significant for eight of them. Fewer lines showed decreased shoot biomass and grain yield with Al application. Despite little change in nodule number following Al application, there was a significant decrease in nodule weight (between 24 and 53% reduction) for nearly all lines. Phosphorus fertilization increased shoot and root biomass, grain yield, nodule number, and weight, and nitrogen (N) and P content of nearly all lines. Al‐tolerant lines showed higher response in shoot and root biomass and nodulation to P fertilization than Al‐sensitive lines, with the highest response from IT 90K‐277–2. Increase in shoot dry weight as a result of P fertilization was from 64 to 107% for Al‐tolerant lines and from 44 to 48% for the Al‐sensitive lines, and increase in root dry weight was from 46 to 86% for the Al‐tolerant lines and from 7 to 42% for the Al‐sensitive lines. Results of these trials indicated that lines IT 91K‐93–10, IT 93K‐2046–1, and IT 90K‐277–2 have potential for good performance in soil with Al toxicity problems, and that cowpea lines with inherent genetic tolerance to Al will give higher response to P fertilization when grown in soil with Al toxicity problems.  相似文献   

15.
Abstract

A greenhouse experiment was carried out to study severity of the zinc (Zn) deficiency symptoms on leaves, shoot dry weight and shoot content and concentration of Zn in 164 winter type bread wheat genotypes (Triticunt aestivum L.) grown in a Zn‐deficient calcareous soil with (+Zn=10 mg Zn kg?1 soil) and without (‐Zn) Zn supply for 45 days. Tolerance of the genotypes to Zn deficiency was ranked based on the relative shoot growth (Zn efficiency ratio), calculated as the ratio of the shoot dry weight produced under Zn deficiency to that produced under adequate Zn supply. There was a substantial difference in genotypic tolerance to Zn deficiency. Among the 164 genotypes, 108 genotypes had severe visible symptoms of Zn deficiency (whitish‐brown necrotic patches) on leaves, while in 25 genotypes Zn deficiency symptoms were slight or absent, and the remaining genotypes (e.g., 31 genotypes) showed mild deficiency symptoms. Generally, the genotypes with higher tolerance to Zn deficiency originated from Balkan countries and Turkey, while genotypes originating from the breeding programs in the Great Plains of the United States were mostly sensitive to Zn deficiency. Among the 164 wheat genotypes, Zn efficiency ratio varied from 0.33 to 0.77. The differences in tolerance to Zn deficiency were totally independent of shoot Zn concentrations, but showed a close relationship to the total amount (content) of Zn per shoot. The absolute shoot growth of the genotypes under Zn deficiency corresponded very well with the differences in tolerance to Zn deficiency. Under adequate Zn supply, the 10 most Zn‐ inefficient genotypes and the 10 most Zn‐efficient genotypes were very similar in their shoot dry weight. However, under Zn deficiency, shoot dry weight of the Zn‐efficient genotypes was, on average, 1.6‐fold higher compared to the Zn‐inefficient genotypes. The results of this study show large, exploitable genotypic variation for tolerance to Zn deficiency in bread wheat. Based on this data, total amount of Zn per shoot, absolute shoot growth under Zn deficiency, and relative shoot growth can be used as reliable plant parameters for assessing genotypic variation in tolerance to Zn deficiency in bread wheat.  相似文献   

16.
Manganese (Mn) toxicity is an important constraint to the production of common bean (Phaseolus vulgaris L.) in tropical and subtropical soils. Amelioration of Mn toxicity by soil modification is difficult in Andosols, and liming of acid soils is often not feasible for small farmers. Substantial genetic variation for Mn tolerance exists in bean germplasm, but is difficult to assess in field trials due to interactions with several environmental factors. The objectives of this study were to identify sources of genetic tolerance to Mn toxicity and to compare their performance using three growing conditions. Contrasting genotypes were evaluated for Mn tolerance by 1) biomass accumulation under Mn stress in solution culture, 2) biomass accumulation under Mn stress in silica sand culture, and 3) seed yield of plants grown in Mn‐amended soil. Genotypes varied substantially in Mn tolerance: A‐283, BAT‐795, Dore de Kirundu, IPA‐7419, Carioca, G‐12896a, and NEP BAYO 22 were susceptible, while Argentino, BAT‐271, Calima, EMP‐84, H6 Mulatinho, and Pintado were more tolerant when tested in solution culture. Genotypic tolerance observed in solution culture correlated well with tolerance observed in silica sand. Some genotypes that performed very well in solution culture and in silica sand did suffer severe yield reduction in Mn‐amended mineral soil. Manganese toxicity reduced shoot branching resulting in fewer seeds per plant in soil grown plants. We conclude that screening of genotypes in solution culture is useful to identify sources of tolerance to Mn toxicity, but performance of those genotypes in soil might be confounded by other edaphic stresses.  相似文献   

17.
This study was conducted to determine relationships between Al toxicity and mineral uptake of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.), and rye (Secale cereale L.). Two culti‐vars of each species were grown in 1/5‐strength Steinberg solution with 0, 3, 6, or 12 ppm Al added. The solutions were adjusted to pH 4.8 at transplanting and were not adjusted thereafter. The plants were grown in a growth chamber for 19 days before harvesting to determine nutrient solution pH, dry weights, and Al, Ca, Mg, K, and P levels in plants. Increasing Al concentration reduced the final pH of solutions. The addition of 12 ppm Al severely reduced the growth and increased Al concentration of plant tops. The Al levels in roots generally increased with increments of added Al up to 6 ppm. Increasing Al decreased the uptake of Ca, Mg, and P by plant tops more than that of K. Regression analyses indicated that Al toxicity was associated with increasing K/Ca + Mg equivalent ratios and decreasing P concentration in plant tops. Differences between species were: higher Al concentration in rye than wheat with 6 and 12 ppm Al, higher translocation of Ca from roots to tops in wheat than in rye and Mg in triticale and wheat than rye; K/Ca + Mg equivalent ratios associated with 50% reduction in top growth followed the order: triticales > tolerant wheat > sensitive wheat > rye. Differences in mineral uptake associated with Al toxicity in wheat were more indicative of differential Al sensitivity in wheat than in triticale and rye which have higher internal Al tolerance.  相似文献   

18.
Aluminum (Al) negatively interferes with the uptake or transport of different nutrients. The aim of our work was to compare the Al tolerance and micronutrient accumulation: iron (Fe), zinc (Zn) and manganese (Mn), in cereal species (winter wheat, spring wheat, winter rye, oats and barley) contrasting in Fe efficiency. Our previous screening in a calcareous soil showed that oats and barley were more Fe-efficient than spring wheat, winter wheat or winter rye. In Al stress conditions, both oats and barley exhibited more effectiveness in Fe acquisition and translocation from root to shoot in comparison to winter wheat, spring wheat and winter rye. Also, oats and barley responded to Al toxicity by less Al-retarded shoot biomass than other cereal species. A combination of tolerance mechanisms appears to have great importance for Al tolerance including mechanisms underlying Fe efficiency in cereal seedlings.  相似文献   

19.
Salinity has a two‐phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build‐up in transpiring leaves. To elucidate salt‐resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt‐resistant and salt‐sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM–NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM–NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC‐1 produced the maximum and 7‐Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = –0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt‐resistant and salt‐sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up‐regulated, down‐regulated, disappeared, and new‐appeared) was only 1%–8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity.  相似文献   

20.
Abstract

This paper reports the reaction of 24 Australian wheats and 16 overseas cultivars to high aluminium (Al) in solution culture. These results are compared with those from a rapid haematoxylin stain test. The relationship between the haematoxylin stain test results and performance in the field was also determined.

The dry matter yields in solution culture confirmed tolerances previously reported for the non‐Australian cultivars, with only two exceptions. The Australian varieties vary in tolerance but none were as tolerant as those from Brazil. The tolerances of the Australian varieties were not related to the breeding origins of the varieties. Exposure to Al in solution differentially reduced the concentration of calcium (Ca), magnesium (Mg), and phosphorus (P) in both shoots and roots. The more Al‐tolerant varieties were less affected.

The results obtained in solution culture and in the haematoxylin stain test generally agreed, but more differences between varieties were noted in solution culture results. The haematoxylin stain test was then used to classify cultivars and advanced lines in the breeding programme, and the results were compared with yield performance on acid (8 sites) and non‐acid soils (20 sites). The lines in haematoxylin class 4 had a 20% yield advantage over the acid sites.

We concluded that tolerance was useful in the field, that the haematoxylin stain test is useful as a rapid preliminary assessment of Al tolerance, and that the prospect of breeding cultivars with improved tolerance was rewarding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号