首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A long‐term fertilization experiment with monoculture corn (Zea mays L.) was established in 1980 on a clay‐loam soil (Black Soil in Chinese Soil Classification and Typic Halpudoll in USDA Soil Taxonomy) at Gongzhuling, Jilin Province, China. The experiment aimed to study the sustainability of grain‐corn production on this soil type with eight different nitrogen (N)‐, phosphorus (P)‐, and potassium (K)–mineral fertilizer combinations and three levels (0, 30, and 60 Mg ha–1 y–1) of farmyard manure (FYM). On average, FYM additions produced higher grain yields (7.78 and 8.03 Mg ha–1) compared to the FYM0 (no farmyard application) treatments (5.67 Mg ha–1). The application of N fertilizer (solely or in various combinations with P and K) in the FYM0 treatment resulted in substantial grain‐yield increases compared to the FYM0 control treatment (3.56 Mg ha–1). However, the use of NP or NK did not yield in any significant additional effect on the corn yield compared to the use of N alone. The treatments involving P, K, and PK fertilizers resulted in an average 24% increase in yield over the FYM0 control. Over all FYM treatments, the effect of fertilization on corn yield was NPK > NP = NK = N > PK = P > K = control. Farmyard‐manure additions for 25 y increased soil organic‐matter (SOM) content by 3.8 g kg–1 (13.6%) in the FYM1 treatments and by 7.8 g kg–1 (27.8%) in the FYM2 treatments, compared to a 3.2 g kg–1 decrease (11.4%) in the FYM0 treatments. Overall, the results suggest that mineral fertilizers can maintain high yields, but a combination of mineral fertilizers plus farmyard manure are needed to enhance soil organic‐matter levels in this soil type.  相似文献   

2.
In a field experiment, the effect of combination of different organic manures on the productivity of crops and soil quality were evaluated in deep vertisols of central India. Combinations of cattle dung manure (CDM), poultry manure (PM), and vermicompost (VC) vis‐à‐vis mineral fertilizers were tested in four cropping systems involving soybean (Glycine max L.), durum wheat (Triticum durum Desf.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), and isabgol (Plantago ovata Forsk). The organic manures were applied based on the N‐equivalent basis and nutrient requirement of individual crop. The grain yields of durum wheat and isabgol were higher in the treatment that received a combination of CDM + VC + PM whereas in mustard, CDM + PM and in chickpea, CDM + VC recorded the higher yields. The yield levels in these organic‐manure combinations were similar to the yields obtained with mineral fertilizers. Among the cropping systems, soybean–durum wheat and among the nutrient sources, the combination of CDM + VC + PM recorded the highest total productivity. At the end of the 3‐year cropping cycle, application of organic manures improved the soil‐quality parameters viz., soil organic carbon (SOC), soil available nutrients (N, P, and K), soil enzymes (dehydrogenase and alkaline phosphatase), and microbial biomass C in the top 0–15 cm soil. Bulk density and mean weight diameter of the soil were not affected by the treatments. Among the cropping systems, soybean–durum wheat recorded the highest SOC and accumulated higher soil available N, P, and K. In conclusion, the study clearly demonstrated that the manures applied in different combinations improved the soil quality and produced the grain yields which are at par with mineral fertilizers.  相似文献   

3.
A long-term experiment was used to evaluate the effect of integrated nutrient management on the distribution of soil organic N fractions and their contribution to N nutrition of a rice–wheat system. Continuous application of mineral fertilizers, alone or in combination with organic manures for 7 years, led to a marked increase in total N, hydrolysable N (amino acid-N, amino sugar-N, ammonia-N, hydrolysable unknown-N) and non-hydrolysable N compared with their original status in soil. However, continuous rice–wheat cropping without any fertilization resulted in depletion of total N, hydrolysable N and non-hydrolysable N by 21.3, 23.5 and 15.1% over their initial status in surface soil. The effect of press mud (PM) treatment was more pronounced in increasing total and hydrolysable N compared with farmyard manure (FYM) or green manure (GM) treatment. Incorporation of PM, FYM and GM along with mineral fertilizers increased the total N content by 32.8, 18.3 and 5.1% and that of hydrolysable N by 25.7, 19.6 and 9.5%, respectively, over mineral fertilizer treatment. Among the most important fractions, amino sugar-N, amino acid-N and ammonia-N were found to be most the important fractions contributing to grain yield and nitrogen uptake of rice and wheat crops.  相似文献   

4.
A field experiment was conducted for 3 crop years (July‐June) at the Indian Agricultural Research Institute, New Delhi to study the effects of Sesbania and cowpea green manuring (GM) and incorporation of mungbean residues after harvesting grain, Leucaena loppings, FYM and wheat straw incorporation before planting rice and application of 0,40,80 and 120 kg N ha?1 to rice on the soil organic carbon (SOC), alkaline permanganate oxidizable N (APO‐N), 0.5 M sodium bicarbonate extractable P (SBC‐P) and 1N ammonium acetate exchangeable K (AAE‐K) in surface 0–15 cm soil after the harvest of rice and wheat grown in sequence. Green manuring and addition of organic residues prevented the decline in SOC. On the other hand addition of N fertilizer tended to decrease SOC after rice harvest. On the contrary application of green manures, organic residues, FYM and fertilizer N increased APO‐N, which indicates the benefit of these treatments to a more labile soil organic N pool. Also application of green manures, organic residues, FYM and fertilizer N increased SBC‐P. Not much change was observed in AAE‐K by the treatments applied.  相似文献   

5.
Abstract. To determine the effects of low-input agriculture on soil properties, we compared several forms of arable land management in a rotation experiment lasting 8 years on a Cambisol in Lithuania. Conventional arable cropping with applications of inorganic fertilizers increased the potassium (K) status of the soil, but resulted in losses of nitrogen (N) from the soil by mineralization and leaching. With ley–arable integrated cropping, a similar fertilizer regime based on farmyard manure (FYM) augmented with inorganic fertilizers increased the phosphorus (P), K, organic matter and N in the soil, as well as increasing N loss by leaching. These two high-input regimes were compared to three systems with less or no input. A reference treatment with no input, which produced small crop yields, maintained its nutrient status and organic matter. An organic regime receiving FYM and green manure lost only P, but maintained its K and N status, while a second organic regime in which the FYM was replaced by composted sewage maintained its fertility. The microbial activity varied somewhat from treatment to treatment, with the largest numbers of almost all groups of microorganisms in the reference treatment. All treatments led to decreases in fulvic acid, and the soil managed conventionally lost humic acid, too. The content of humic acid increased in the treatments where FYM was applied and in the reference soil, and the fraction bound to calcium increased in the integrated and the first organic treatments. The soil structures under the integrated cropping and second organic regime were the most stable. Of the low-input systems, the second organic regime seemed the most sustainable.  相似文献   

6.
Widespread yield stagnation and productivity declines in the rice–rice cropping system have been reported and many of the associated issues are related to soil quality. A long‐term experimental study was initiated in 1969 to assess the impact of continuous cultivation of rice as a single crop grown in wet as well as dry seasons using varying levels of chemical fertilizer and manure applications on soil quality indicators (physical, chemical and biological), a sustainable yield index (SYI) and a soil quality index (SQI). The treatments comprised chemical fertilizers and farmyard manure (FYM) either alone or in combination viz. control, N, NP, NK, NPK, FYM, N+FYM, NP+FYM, NK+FYM and NPK+FYM, laid out in a randomized complete block design with three replications. Soil samples were collected after the wet season rice harvest in 2010 and were analysed for physical, chemical and biological indicators of soil quality. A SYI based on long‐term yield data and SQI using principal component analysis (PCA) and nonlinear scoring functions were calculated. Application of NPK fertilizers in combination with FYM significantly increased the average grain yield of rice in both wet and dry seasons and enhanced the sustainability of the system compared to the control and plots in receipt of fertilizers. The SYI for the control was higher in the wet season than in the dry one, whereas the reverse was true for NPK+FYM treatment. The value of the dimensionless SQI varied from 1.46 in the control plot to 3.78 in the NPK+FYM one. A greater SYI and SQI in the NPK+FYM treatment demonstrated the importance of using a chemical fertilizer in combination with FYM. For the six soil quality indicators selected as a minimum data set (MDS), the contribution of DTPA‐Zn, available‐N and soil organic carbon to the SQI was substantial ranging from 59.4 to 85.7 per cent in NPK+FYM and control plots, respectively. Thus, these soil parameters could be used to monitor soil quality in a subhumid tropical rice–rice system.  相似文献   

7.
Long-term effects of continuous use of chemical fertilizers and manure on soil fertility and productivity of a maize–wheat system were investigated in the ongoing long-term fertilizer experiment, during rabi (2007–2008) and kharif (2008) seasons at the research farm of Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University–Hill Agricultural Research and Extension Centre, Dhaulakuan. After 16 cropping cycles, bulk density decreased in plots where farmyard manure (FYM) was applied, whereas pH decreased in all the treatments. The organic carbon content of the soil increased in all the treatments except 100% nitrogen (N). Cation exchange capacity (CEC) increased in all the treatments over the initial status of the soil. Available N showed buildup over the initial status in most of the treatments. Available phosphorus (P) declined from initial status in treatments where only N was applied alone or with FYM. There was reduction in available potassium (K) status in all the treatments except 100% NPK. Continuous addition of FYM with balanced application of inorganic fertilizers improved content of exchangeable calcium (Ca) and magnesium (Mg) over initial status compared to imbalanced application of fertilizers. Continuous use of imbalanced inorganic fertilizers resulted in lesser crop yields and nutrient uptake compared to that with the application of balanced dose of inorganic fertilizers with FYM.  相似文献   

8.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

9.
Yield decline or stagnation and its relationship with soil organic matter fractions in soybean (Glycine max L.)–wheat (Triticum aestivum L.) cropping system under long-term fertilizer use are not well understood. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in an Alfisol (Typic Haplustalf) at a long-term experiment at Birsa Agricultural University, Ranchi, India. For 30 years, the following fertilizer treatments were compared with undisturbed fallow plots (without crop and fertilizer management): unfertilized (control), 100% recommended rate of N, NP, NPK, NPK+ farmyard manure (FYM) and NPK + lime. Yield declined with time for soybean in control (30 kg ha−1 yr−1) and NP (21 kg ha−1 yr−1) treatments and for wheat in control (46 kg ha−1 yr−1) and N (25 kg ha−1 yr−1) treatments. However, yield increased with time for NPK + FYM and NPK + lime treatments in wheat. At a depth of 0–15 cm, small macroaggregates (0.25–2 mm) dominated soil (43–61%) followed by microaggregates (0.053–0.25 mm) with 13–28%. Soil microbial biomass carbon (SMBC), nitrogen (SMBN) and acid hydrolysable carbohydrates (HCH) were greater in NPK + FYM and NPK + lime as compared to other treatments. With three decades of cultivation, C and N mineralization were greater in microaggregates than in small macroaggregates and relatively resistant mineral associated organic matter (silt + clay fraction). Particulate organic carbon (POC) and nitrogen (PON) decreased significantly in control, N and NP application over fallow. Results suggest that continuous use of NPK + FYM or NPK + lime would sustain yield in a soybean–wheat system without deteriorating soil quality.  相似文献   

10.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

11.
The large dryland area of the Loess Plateau (China) is subject of developing strategies for a sustainable crop production, e.g., by modifications of nutrient management affecting soil quality and crop productivity. A 19 y long‐term experiment was employed to evaluate the effects of fertilization regimes on soil organic C (SOC) dynamics, soil physical properties, and wheat yield. The SOC content in the top 20 cm soil layer remained unchanged over time under the unfertilized plot (CK), whereas it significantly increased under both inorganic N, P, and K fertilizers (NPK) and combined manure (M) with NPK (MNPK) treatments. After 18 y, the SOC in the MNPK and NPK treatments remained significantly higher than in the control in the top 20 cm and top 10 cm soil layers, respectively. The MNPK‐treated soil retained significant more water than CK at tension ranges from 0 to 0.25 kPa and from 8 to 33 kPa for the 0–5 cm layer. The MNPK‐treated soil also retained markedly more water than the NPK‐treated and CK soils at tensions from 0 to 0.75 kPa and more water than CK from 100 to 300 kPa for the 10–15 cm layer. There were no significant differences of saturated hydraulic conductivity between three treatments both at 0–5 and 10–15 cm depths. In contrast, the unsaturated hydraulic conductivity in the MNPK plot was lower than in the CK plot at depths of 0–5 cm and 10–15 cm. On average, wheat yields were similar under MNPK and NPK treatments and significantly higher than under the CK treatment. Thus, considering soil‐quality conservation and sustainable crop productivity, reasonably combined application of NPK and organic manure is a better nutrient‐management option in this rainfed wheat–fallow cropping system.  相似文献   

12.
Soil carbon to nitrogen (C:N) ratio is one of the important properties of terrestrial ecosystems. Here, we report a study of soil C:N ratio dynamics in wheat‐corn double cropping systems based on four long‐term experimental sites in China: three in the temperate zone and one in the sub‐tropical zone. We evaluate effects of long‐term fertilizer input on soil organic carbon (SOC) and total nitrogen (TN) by comparing three treatments: no added fertilizer (the control), added nitrogen‐phosphorus‐potassium chemical fertilizers (NPK), and chemical fertilizers combined with manure (NPKM). Our study shows that SOC and TN had different responses to the treatments. There was an increasing trend in SOC, even without fertilizer. However, applying inorganic fertilizers only (NPK) did not maintain TN contents at some sites. The NPKM treatment resulted in a large increase in both SOC (35–147%) and TN (33 to 10%) contents, relative to the initial values. The soil C:N ratio showed a significant increase over time at the sub‐tropical site but little change at the three temperate sites. Our analysis showed similar C:N ratios (37–38) in gross input of organic materials under the NPK treatments. However, the estimated C:N ratio during decomposition was much smaller at the sub‐tropical site (23.7) than at the three temperate sites (44.0–48.2) under the NPK treatments, which may explain the increased soil C:N ratio at the sub‐tropical site. Thus, we conclude that variations in soil C:N ratio are not caused by organic matter inputs but by decomposition in the wheat‐corn double cropping systems.  相似文献   

13.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

14.
To explore long-term impact of organic and inorganic fertilizers on soil health and grain quality, we monitored the enzyme activities and chemical properties of soil; and chemical composition of grain from eight treatments at an experimental field site established in 1996. There were eight treatments applied to both wheat and maize seasons: a control; four inorganic fertilizers, that is, nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorous and potassium (PK) and nitrogen, phosphorus and potassium (NPK); farm yard manure alone (FYM) and addition of FYM at two different doses (100 and 50% of recommendation) to NPK that is, NPK + FYM and ½ NPK + FYM. After 11 years of the experiment the NPK + FYM and ½ NPK + FYM treatments had the highest yields, about 5 Mg maize ha−1 and 2 Mg wheat ha−1 with about 2 and 0.5 Mg ha−1, respectively more than the NPK treatments. The dehydrogeanse activity of soils increased significantly in FYM and ½ NPK + FYM. Except urease all other enzymatic activities were increased in those treatments, which received manure. Urease activity was higher in mineral-N applied plots. Grain protein content of both maize and wheat was highest in mineral fertilized plots. Test weight also increased significantly on application of mineral fertilizer. Plots treated with half dose of recommended mineral fertilizer along with FYM were higher in urease, phosphomono and diesterase activities than that of NPK + FYM treated plots. Long-term application of inorganic nutrients along with FYM improved grain mineral composition and yield. Inhibition of few enzymatic activities were also observed upon application of inorganic nutrients either alone or in combination.  相似文献   

15.
Despite a high energy requirement, the mouldboard plough remains the dominant tillage tool in northwest Europe. The aim of this work was to evaluate the relative influences of soil texture (clay content), soil organic carbon (SOC) and long‐term management on soil‐specific draught (S), where S is the force per cross‐sectional area of worked soil. Measurements were made during autumn 2000 on the then 157‐year‐old Broadbalk wheat experiment at Rothamsted, UK, where clay contents vary from 19 to 39% and the different cropping history, mineral and organic fertilizer treatments lead to SOC values of 0.7–3.2%. Minimum SOC values increased with increasing clay and were associated with zero or low mineral N inputs, while higher SOC values (>2%) were associated with long‐term applications of farmyard manure (FYM), despite these being on the lighter (<24% clay) soils. S values ranged between 52 and 142 kPa, with higher values co‐located in areas with high clay contents. Contour maps were generated to illustrate the spatial variability of S and show similarity to those for clay. Where FYM had been added, S was 66 kPa compared with 74 kPa where only mineral or no fertilizer was applied on soils of the same texture. Increasing applications of mineral N resulted in relatively small increases in SOC but up to 12% reduction in S.  相似文献   

16.
Cotton–wheat is the second most important cropping system after rice–wheat in India and Pakistan, and is practiced on about 4.02 mha. By 2010, more than 6 million Indian farmers had adopted transgenic Bt cotton on 9.4 mha—almost 90% of the country’s total cotton area. There is a paucity of information on the effects of intercropping and integrated nitrogen (N)–management practices in transgenic Bt cotton on productivity, nutrient availability, and soil biological properties in the succeeding wheat crop in a cotton–wheat system. A study was made to evaluate and quantify the residual effect of two-tiered intercropping of cotton and groundnut with substitution of 25–50% recommended dose of nitrogen (RDN) of cotton by farmyard manure (FYM) on productivity and soil fertility in a cotton–wheat system at New Delhi during 2006–2008. Wheat following groundnut-intercropped cotton receiving 50% RDN substitution through FYM had significantly 5% greater grain yield than that after sole cotton. Residual soil fertility in terms of organic carbon (C), potassium permanganate (KMnO4)-N, and dehydrogenase activity (14%) showed an improvement under cotton + groundnut–wheat system with substitution of 50% RDN of cotton by FYM. Apparent N balance as well as actual change in KMnO4-N at wheat harvest was negative in most of the treatments, with greater loss (–58.1) noticed under pure stand of the cotton–wheat system with 100% RDN of cotton through urea. The study suggested that inclusion of legume and organic manure in transgenic Bt-cotton–wheat system is a sustainable practice for combating escalating prices of N fertilizers with environmental issues and instability of transgenic hybrids in south Asian countries.  相似文献   

17.
Agricultural management practices are known to influence soil organic C. While changes in total organic C (TOC) are relatively less discernible over short to medium-term, some extractable pools of TOC are considered early indicators of changes in TOC. Therefore, to devise nutrient management practices that can lead to C sequestration, it is important to study their effect on soil organic C pools that may respond rapidly to management. We studied the impact of balanced (NPK) and imbalanced (N, NP, NK and PK) application of fertilizer nutrients without and with farmyard manure (FYM) on total and labile pools of organic C viz. water soluble (WEOC), potassium permanganate oxidizable (KMnO4-C), microbial biomass (MBC) and fractions of decreasing oxidizability after 5-cycles of rice-wheat cropping. Integrated use of NPK and FYM significantly increased TOC and extractable C pools in both surface (0–7.5 cm) and sub-surface (7.5–15 cm) soil. Majority of TOC (72%) was stabilized in less labile and recalcitrant fractions; the magnitude being higher under balanced (NPK+FYM) than imbalanced nutrient management (N+FYM). The results showed that balanced fertilizer application conjointly with FYM besides enlarging TOC pool favorably impacts soil organic matter composition under rice-wheat system.  相似文献   

18.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

19.
We investigated whether the long‐term application of compost from agricultural waste improved soil physical structure, fertility and soil organic matter (SOM) storage. In 2006, we began a long‐term field experiment based on a rice–wheat rotation cropping system, having a control without fertilizer (NF) and three treatments: chemical fertilizers (CF), pig manure compost (PMC) and a prilled mixture of PMC and inorganic fertilizers (OICF). Following the harvest of wheat in 2010, the mean‐weight diameter (MWD) of water‐stable aggregates and the concentration of C and N in bulk soil (0–20 cm; <2 mm fraction) were significantly greater (P < 0.05) in PMC and NF plots than in CF or OICF plots. Pig manure compost significantly increased the proportion of >5‐mm aggregates, whereas CF significantly increased the proportion of 0.45‐ to 1‐mm aggregates. The C and N contents of all density fractions were greater in PMC than in other treatments with levels decreasing in the following order: free particulate organic matter (fPOM) >occluded particulate organic matter (oPOM) > mineral‐combined SOM (mineral–SOM). Solid‐state 13C CPMAS NMR spectra showed that alkyl C/O‐alkyl C ratios and aromatic component levels of SOM were smaller in PMC and OICF plots than in CF plots, suggesting that SOM in PMC and OICF plots was less degraded than that in CF plots. Nevertheless, yields of wheat in PMC and NF plots were smaller than those in CF and OICF plots, indicating that conditions for producing large grain yields did not maintain soil fertility.  相似文献   

20.
The aim of this investigation was to prepare and evaluate organic manures (vermicompost, compost and FYM) and mineral fertilizers on crop productivity and changes in soil organic carbon (SOC) and fertility under a four-year-old maize-wheat cropping system. The results demonstrated that yields and nutrient uptake by crops increased significantly in plots receiving manures and mineral fertilizers either alone or in combination than unfertilized control. Application of manures and fertilizers also enhanced SOC, mineral N, Olsen-P and ammonium acetate-extractable K (NH4OAc-K) after both the crops. Surface soil maintained greater build-up in SOC, mineral N, Olsen-P and NH4OAc-K than sub-surface soil. Plots amended with manures at 5 t ha?1 and 50% recommended dose of fertilizer (RDF) had pronounced impact on improving SOC and fertility after both the crops indicating that integrated use of manures and mineral fertilizers could be followed to improve and maintain soil fertility, increase crop productivity under intensive cropping system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号