首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct selection for ovulation rate, uterine capacity, litter size and embryo survival and selection for indexes of ovulation rate with each of the remaining traits were simulated for a swine population. The relationships among these traits were determined from a simulation model that assumed that litter size was always less than or equal to both ovulation rate and uterine capacity. Heritabilities of ovulation rate and uterine capacity were assumed to be .25 and .20, respectively, and uncorrelated genetically and phenotypically. No additional genetic variation was assumed. Responses to weak selection pressure were simulated by recurrent updating of phenotypic variances and covariances combined with the heritabilities of ovulation rate and uterine capacity. Two indexes of ovulation rate and uterine capacity each resulted in 37% greater increase in litter size than direct selection for litter size. Indexes of ovulation rate and either litter size or embryo survival increased litter size by 21% more than direct selection for litter size. Selection for ovulation rate, uterine capacity or embryo survival was 6, 35 and 79%, respectively, less effective than direct selection for litter size. Responses to intense selection pressure were determined by direct simulation of genotypes and phenotypes of individuals. The two indexes of ovulation rate and uterine capacity exceeded direct selection for litter size by 39 and 27%. The indexes of ovulation rate and either litter size or embryo survival exceeded direct selection for litter size by 19 and 13%, respectively. Intense selection for ovulation rate or uterine capacity decreased selection response by 26 and 67%, respectively, relative to direct selection for litter size. Intense selection for embryo survival decreased litter size slightly.  相似文献   

2.
A simulation model of litter size in swine based on ovulation rate, uterine capacity and potential embryo viability was compared to three genetic models to clarify its genetic characteristics. The simulation model is equivalent to independent culling based on fixed levels of potentially viable embryos and uterine capacity. Litter size also can be described by a combination of additive, additive x additive, mean environment x additive, random environment and additive x random environment effects. A third genetic model that can describe the simulation model is the associative effects model, in which litter size is the result of grouping two genotypes. The fixed independent culling levels model predicts that genetic parameters will change as the component means change. This genetic model also predicts that selection on an index of ovulation rate and uterine capacity would improve selection response for litter size. This genetic model predicts asymmetry of correlated responses in ovulation rate and uterine capacity when selecting for high and low litter size. The nonadditive genetic model predicts covariances among relatives that are different from their additive relationships; however, simulated results did not detect any differences. The nonadditive genetic model also predicts that heterosis for litter size will differ among crosses based on the mean environment and on additive x additive genetic interaction. The associative effects model predicts that selection for litter size will always lead to a positive response in litter size.  相似文献   

3.
A 10-generation divergent selection experiment for uterine capacity (UC) measured as litter size in unilaterally ovariectomized females was carried out in rabbits. A total of 2,996 observations on uterine capacity of does (up to four parities) was recorded. Laparoscopy was performed at d 12 of their second gestation, and ovulation rate (OR) and number of implanted embryos (IE) were recorded in 735 does. Prenatal survival (PS) was assessed as UC/OR, embryo survival (ES) as IE/OR, and fetal survival (FS) as UC/IE. Genetic parameters and genetic trends were inferred using Bayesian methods. Marginal posterior distributions of all unknowns were estimated by Gibbs sampling. Heritabilities of UC, OR, IE, ES, FS, and PS were 0.11, 0.32, 0.22, 0.04, 0.14, and 0.09, respectively. Genetic and phenotypic correlations between FS and ES were low, suggesting different biological mechanisms for the two periods of survival. After 10 generations of selection, the divergence was approximately 1.5 rabbits, or approximately 1% per generation. Approximately one-half of this response was obtained in the first two generations of selection, which may suggest the presence of a major gene segregating in the base population.  相似文献   

4.
Nine generations of selection for high ovulation rate were followed by two generations of random selection and then eight generations of selection for increased litter size at birth, decreased age at puberty, or continued random selection in the high ovulation rate line. A control line was maintained with random selection. Line means were regressed on generation number and on cumulative selection differentials to estimate responses to selection and realized heritabilities. Genetic parameters also were estimated by mixed-model procedures, and genetic trends were estimated with an animal model. Response to selection for ovulation rate was about 3.7 eggs. Response in litter size to selection for ovulation rate was .089 +/- .058 pigs per generation. Average differences between the high ovulation rate and control lines over generations 10 to 20 were 2.86 corpora lutea and .74 pigs (P less than .05). The regression estimate of total response to selection for litter size was 1.06 pigs per litter (P less than .01), and the realized heritability was .15 +/- .05. When the animal model was used, the estimate of response was .48 pigs per litter. Total response in litter size to selection for ovulation rate and then litter size was estimated to be 1.8 and 1.4 pigs by the two methods. Total response to selection for decreased age at puberty was estimated to be -15.7 d (P less than .01) when data were analyzed by regression (realized heritability of .25 +/- .05) and -17.1 d using the animal model. No changes in litter size occurred in the line selected for decreased age at puberty. Analyses by regression methods and mixed-model procedures gave similar estimates of responses and very similar estimates of heritabilities.  相似文献   

5.
The response per generation to 10 generations of mass selection for ovulation were 0.49 ova, ?1.6% in embryo survival and 0.06 piglets per litter at birth. Line differences (select-control) in generation 9 and 10 gilts and sows ranged from 3.4 to 5 ova. Control line gilts and sows had 5.4 to 10.6% higher embryo survival to days 30 and 70 of gestation than did select line females. One generation of random selection followed by four generations of litter size selection, selection for decreased age at puberty or relaxed ovulation rate selection in the high ovulation rate line has resulted in lines that differed from the control line in litter size at birth by 0.78 ± 0.22, 0.37 ± 0.39 and 0.84 ± 0.52 pigs per litter at first, second and third parity, respectively. These results were used to derive a selection index to increase litter size by selection for its components (ovulation rate, OR, and embryo survival, ES). A technique of selection based on laparotomy to increase the number of females tested with a given set of farrowing places is presented. Rate of response in LS from use of the selection index, I = 10.6 OR + 72.6 ES, in a population of 40 farrowing females and 15 males per generation, is expected to increase litter size 2.5 times faster than selection on LS due to higher selection intensity and optimum emphasis on the component traits.  相似文献   

6.
Studies on a base population of mice were used to establish an index of components of litter size and a physiological model for measuring uterine capacity to be used subsequently in a selection experiment evaluating alternative methods for practicing selection to increase litter size. Heritability estimates of litter size, ovulation rate and ova success (fraction of ova resulting in fully formed pups) were .18, .33 and .15, respectively. No significant genetic or phenotypic correlation was found between overall ovulation rate and ova success. Phenotypic means and genetic variances were higher for characteristics measured on the right than on the left side of the reproductive tract. Linear and quadratic selection indexes, derived for a quadratic definition of breeding value, were compared. The linear index was predicted to be .99 as efficient as the quadratic one. Due to simplicity, the linear index (I = 1.21 x ovulation rate + 9.05 x ova success), scaled to have variance the same as litter size, was chosen for use. Ovulation rate in unilaterally ovariectomized females was .95 of that in females with both ovaries. No hypertrophy of the ipsilateral uterine horn in unilaterally ovariectomized females was found before implantation of embryos. Thus, unilateral ovariectomy appears to provide a physiological state to measure uterine capacity (as litter size) in the mouse.  相似文献   

7.
Selection was conducted on an index of components of litter size (I = 1.21 x ovulation rate + 9.05 x ova success; ovulation rate measured by number of corpora lutea and ova success measured as number of pups born + number of corpora lutea), on uterine capacity (measured as number of pups born to unilaterally ovariectomized dams) and on litter size concurrent with an unselected control for 13 generations. Selection criteria (IX = index, UT = uterine capacity, LS = litter size and LC = control) were applied in each of three replicates. In an evaluation after five generations, IX and LS each exceeded LC by about .5 pups, with no response in UT. After 13 generations, mean ovulation rate, ova success and litter size (measured as number of fetuses at 17 d gestation in intact females) were, for IX, 14.25, .84, 11.95; for LS, 14.15, .82, 11.64; for UT, 12.61, .86, 10.77; and for LC, 12.27, .82, 9.98. The regression of number born (litter size in IX, LS and LC; uterine capacity with only a functional left uterine horn in UT) on cumulative selection differential across 13 generations was .12 +/- .01, .09 +/- .02 and .08 +/- .02 for IX, LS and UT, respectively. The regression of breeding value for litter size on each selection criterion, estimated as response in the generation-13 evaluation divided by cumulative selection differential, was .11 +/- .02, .08 +/- .01 and .05 +/- .03 for IX, LS and UT, respectively. Regression of response in number born on generation number was .17 +/- .01, .15 +/- .04 and .10 +/- .02 for IX, LS and UT, respectively. Selection in IX was promising relative to LS, and selection in UT changed number born.  相似文献   

8.
An experiment of selection for ovulation rate was carried out. Animals were derived from a synthetic line first selected 12 generations for litter size, then 10 generations for uterine capacity. Selection was relaxed for 6 generations. Selection was based on the phenotypic value of ovulation rate with a selection pressure on does of 30%. Males were selected from litters of does with the highest ovulation rate. Males were selected within sire families in order to reduce inbreeding. Ovulation rate was measured in the second gestation by a laparoscopy, 12 days after mating. Each generation had about 80 females and 20 males. Results of three generations of selection were analyzed using Bayesian methods. Marginal posterior distributions of all unknowns were estimated by Gibbs sampling. Heritabilities of ovulation rate (OR), number of implanted embryos (IE), litter size (LS), embryo survival (ES), fetal survival (FS), and prenatal survival (PS) were 0.44, 0.32, 0.11, 0.26, 0.35, and 0.14, respectively. Genetic correlation between OR and LS was 0.56, indicating that selection for ovulation rate can augment litter size. Response to selection for OR was 1.80 ova. Correlated responses in IE and LS were 1.44 and 0.49, respectively. Selection for ovulation rate may be an alternative to improve litter size.  相似文献   

9.
A mathematical model of litter size in swine was developed from ovulation rate, potential embryonic viability and uterine capacity. The model assumed that ovulation rate was reduced to potentially viable embryos by factors innate to the ovum and embryo. Potentially viable embryos then could be further reduced to uterine capacity, the maximum number of fetuses that a female can carry to term. Consequently, litter size can be no greater than either ovulation rate or uterine capacity. Means and variances of ovulation rate and potential embryonic viability used in the model were based on experimental results. The mean and variance of uterine capacity were varied until the simulated mean and variance of litter size were equal to experimental results. Simulated results of relationships among ovulation rate, embryo survival and litter size were similar to observed experimental relationships. Heritabilities of simulated litter size and embryo survival were similar to literature values when the heritability of ovulation rate was set at .25 and the heritability of uterine capacity was set at either .15 or .20. Litter size was simulated for 25 combinations of average ovulation rate and uterine capacity to develop equations relating mean ovulation rate and uterine capacity to litter size, embryo survival and correlations among them. Results suggest that changing either ovulation rate or uterine capacity independently will not result in large changes in litter size. Consequently, the model suggests that a single gene, hormonal manipulation or nutritional change will not result in large increases in litter size and that combinations of factors will be needed to increase litter size.  相似文献   

10.
A divergent selection experiment for the environmental variability of litter size (Ve) over seven generations was carried out in rabbits at the University Miguel Hernández of Elche. The Ve was estimated as the phenotypic variance within the female, after correcting for year‐season and parity‐lactation status. The aim of this study was to analyse the correlated responses to selection in litter size components. The ovulation rate (OR) and number of implanted embryos (IE) in females were measured by laparoscopy at 12 day of the second gestation. At the end of the second gestation, the total number of kits born was measured (TB). Embryonic (ES), foetal (FS) and prenatal (PS) survival were computed as IE/OR, TB/IE and TB/OR, respectively. A total of 405 laparoscopies were performed. Data were analysed using Bayesian methodology. The correlated response to selection for litter size environmental variability in terms of the litter size components was estimated as either genetic trends, estimated by computing the average estimated breeding values for each generation and each line, or the phenotypic differences between lines. The OR was similar in both lines. However, after seven generations of selection, the homogenous line showed more IE (1.09 embryos for genetic means and 1.23 embryos for phenotypic means) and higher ES than the heterogeneous one (0.07 for genetic means and 0.08 for phenotypic means). The probability of the phenotypic differences between lines being higher than zero (p) was 1.00 and .99, respectively. A higher uterine overcrowding of embryos in the homogeneous line did not penalize FS; as a result, this line continued to show a greater TB (1.01 kits for genetic means and 1.30 kits for phenotypic means, p = .99, in the seventh generation). In conclusion, a decrease in litter size variability showed a favourable effect on ES and led to a higher litter size at birth.  相似文献   

11.
Our objective was to evaluate the correlated responses to selection for litter size and its components after 10 generations of divergent selection for uterine capacity (UC). A total of 294 intact females from the 11th and 12th generations of divergent selection for high and low UC and from a cryopreserved control population was used (139, 112, and 43 females, respectively). Uterine capacity was assessed as litter size in unilaterally ovariectomized females. Traits recorded on females for up to five parities were litter size (LS) and number born alive (NBA). Laparoscopy was performed in all females at d 12 of their second parity, and the ovulation rate (OR) and number of implanted embryos (IE) were recorded in these females. Embryo survival (ES = IE/OR), fetal survival (FS = LS/IE), and prenatal survival (PS = LS/OR) were computed. Correlated responses in LS and in its components were inferred using Bayesian methods. Correlated responses in LS were asymmetric. The divergence between high and low lines was 2.35 kits, mainly because of a higher correlated response in the low line (1.88 kits). The lower LS in the low line was associated with a lower PS (control - low = 0.14), because of decreases in ES and FS.  相似文献   

12.
This work evaluated the response to 10 generations of divergent selection for uterine capacity (UC) in rabbits to determine whether this response was symmetric by contrasting both lines against a cryopreserved control population. Animals came from the 13th generation of an experiment of divergent selection for UC and from a cryopreserved control population. The two UC lines were divergently selected for 10 generations, and selection was relaxed from the 11th generation until the 13th generation. Uterine capacity was estimated as litter size (LS) in unilaterally ovariectomized (ULO) does. To create the control population, embryos from the base generation were vitrified and stored in liquid N2 for 10 generations. Data from 461 pregnancies produced by 134 ULO does were used: 62 does from the high UC line, 55 females from the low UC line, and 17 females from the control line. The following traits were analyzed: ovulation rate (OR); number of implanted embryos (IE); (UC), estimated as total number of rabbits born; number born alive (NBA); prenatal survival (PS), estimated as UC/OR; embryo survival (ES), estimated as IE/OR; and fetal survival (FS), estimated as UC/IE. Ovulation rate, IE, PS, ES, and FS were measured by laparoscopy only in the second parity. Uterine capacity and NBA were measured over four parities. Responses in UC and its components were estimated as differences between the selected lines and the control line using a Bayesian approach. Selection for UC led to differences of 1.01 kits between the high and low lines, but this response was asymmetric. No differences were found between the high and control lines (high - control = -0.08), whereas the low and control lines differed by 1.08 kits, with a probability of the difference being greater than zero of 0.98. Difference between the high and low lines and between the control and low lines was one-half of the difference reported for correlated response in LS in previous studies. No differences in OR were detected among lines. The control and low lines differed by 1.06 IE, with a probability of the difference being higher than zero of 0.84. Prenatal survival for the low line was less than that of the control line. In summary, selection for UC was asymmetric, which was mainly due to a correlated response in PS. Response in UC was one-half of the difference reported for correlated response in LS in previous studies.  相似文献   

13.
The variance and covariance components estimated from an experimental flock of Rambouillet sheep were used to predict response in litter size to direct and indirect selection. Indirect traits considered were ovulation rate and scrotal circumference. Ovulation rate was the most useful indirect selection criterion for genetic improvement of litter size. Expected response in litter size to indirect selection on ovulation rate was 93% as large as the expected response to direct selection on litter size. Selection based on an index of litter size and ovulation rate was estimated to produce 123% as much response in litter size as selection on litter size alone, and selection on an index of litter size, ovulation rate, and scrotal circumference resulted in 133% as much response in litter size as direct selection on litter size.  相似文献   

14.
The aim of this work was to evaluate the response to 10 generations of selection for ovulation rate. Selection was based on the phenotypic value of ovulation rate, estimated at d 12 of the second gestation by laparoscopy. Selection pressure was approximately 30%. Line size was approximately 20 males and 80 females per generation. Traits recorded were ovulation rate at the second gestation, estimated by laparoscopy as the number of corpora lutea in both ovaries; ovulation rate at the last gestation, estimated postmortem; ovulation rate, analyzed as a single trait including ovulation rate at the second gestation and ovulation rate at the last gestation; right and left ovulation rates; ovulatory difference, estimated as the difference between the right and left ovulation rates; litter size, estimated as the total number of kits born and the number of kits born alive, both recorded at each parity. Totals of 1,477 and 3,031 records from 900 females were used to analyze ovulation rate and litter size, respectively, whereas 1,471 records were used to analyze ovulatory difference, right ovulation rate, and left ovulation rate. Data were analyzed using Bayesian methodology. Heritabilities of ovulation rate, litter size, number of kits born alive, right ovulation rate, left ovulation rate, and ovulatory difference were 0.16, 0.09, 0.08, 0.09, 0.04 and 0.03, respectively. Phenotypic correlations of ovulation rate with litter size, number of kits born alive, and ovulatory difference were 0.09, 0.01, and 0.14, respectively. Genetic correlations of ovulation rate with litter size and with number of kits born alive were estimated with low accuracy, and there was not much evidence for the sign of the correlation. The genetic correlation between ovulation rate and ovulatory difference was positive (P = 0.91). In 10 generations of selection, ovulation rate increased in 1.32 oocytes, with most of the response taking place in the right ovary (1.06 oocytes), but there was no correlated response on litter size (-0.15 kits). In summary, the direct response to selection for ovulation rate was relevant, but it did not modify litter size because of an increase in prenatal mortality.  相似文献   

15.
The aim of this work was to evaluate the response in 10 generations of selection for ovulation rate in rabbits using a cryopreserved control population. Selection was based on the phenotypic value of ovulation rate estimated at d 12 of second gestation by laparoscopy. To produce the control population, embryos from 50 donor females and 18 males, belonging to the base generation of the line selected for ovulation rate, were recovered. A total of 467 embryos (72-h embryos) were vitrified and stored in liquid N(2) for 10 generations. The size of both populations was approximately 10 males and 50 females. The number of records used to analyze the different traits ranged from 99 to 340. Data were analyzed using Bayesian methodology. A difference between the selected and the control populations of 2.1 ova (highest posterior density interval (HPD(95%))[1.3, 2.9]) was observed in ovulation rate (OR), but it was not accompanied by a correlated response in litter size (LS; -0.3; HPD(95%) [-1.1, 0.5]). The number of implanted embryos (IE) increased with selection in 1.0 embryo (HPD(95%) [-0.6, 2.0]), but this increase was not relevant. Prenatal survival, embryonic survival, and fetal survival (FS) were calculated as LS/OR, IE/OR, and LS/IE, respectively. Prenatal survival was reduced with selection (-0.12; HPD(95%) [-0.20, -0.04]), basically because of a decrease in FS (-0.12; HPD(95%) [-0.19, -0.06]). Embryonic survival could have slightly decreased (-0.05; HPD(95%) [-0.12, 0.02]). In summary, comparison with a control population showed that ovulation rate in rabbits increased with selection without any correlated response in litter size, basically because of a decrease in fetal survival.  相似文献   

16.
Records on age at puberty from 1,555 gilts and total number of pigs born in litters of 1,187 gilts from the Nebraska gene pool population were used to evaluate the effects of uterine environment on subsequent reproductive performance. Independent variables were line, year, line x year, proportion of males in the birth litter (sex ratio), number born in the birth litter (fraternity size) and sex ratio x fraternity size. Sex ratio, fraternity size and their interaction influenced age at puberty (P less than .01) but not number born (P greater than .2). Partial regression coefficients indicated that age at puberty tended to decrease as sex ratio increased, particularly in small litters. Although the regression coefficients were relatively large, sex ratio, fraternity size and their interaction accounted for only 1.3% of the variation in age at puberty within line x year subclass. These results offer little encouragement for the use of sex ratio as a phenotypic selection criterion for improvement of reproductive performance in gilts. Results suggest that female swine are similar to rodents in response to uterine environmental effects.  相似文献   

17.
Swine uterine capacity affects litter size, and it could be used as a selection parameter of reproductive performance. Although there are some controversial results, evidences show that the catheter penetration length is positively correlated with litter size, and it could be used as a tool for predicting selection methods. The aim of this study was to determine whether there is any association between the prenatal survival rate and placental size at 70 days of gestation, the vaginal length [catheter penetration length during artificial insemination (AI)] and the uterine capacity in a homogeneous group of gilts. Sixty-six commercial-line gilts in pre-pubertal phase had their oestrus induced by hormonal treatment [600 UI of Equine Chorionic Gonadtrophin (eCG) i.m. and after a 72-h period 5 mg of luteinizing hormone (LH) i.m.], but only 40 gilts showed cyclicity after induction. The AI catheter penetration length was tested on these 40 gilts at the moment of AI using a calibrated AI catheter. Four gilts returned to oestrus and the other 36 were killed at around day 69 of pregnancy. The uterine length and weight showed a significant and positive correlation with the prenatal survival rate (p <0.05). The catheter penetration length was unable to predict the conceptus survival rate on 70 days of gestation; however, the uterine size influenced the survival rate positively. The mean placental area was positively correlated with the mean placental weight (p <0.0001), and both with the mean foetal weight (p <0.0001 and p <0.001, respectively). The analysis of the results obtained showed that neither did the catheter penetration length measurement during AI, nor the prenatal survival rate on day 70 of pregnancy predict the uterine capacity, but the uterine and placental size had a significant influence on the prenatal survival and foetus weight, respectively.  相似文献   

18.
Correlated responses in reproductive and carcass traits were studied in 181 litters and 218 pigs from a line of Landrace pigs selected six generations for increased weight at 70 d of age and a contemporaneous, randomly selected control line. The reproductive and maternal traits studied included litter sizes born, born alive, and alive at 21 d and litter weight at birth and at 21 d. Carcass traits studied were carcass length, longissimus muscle area, average backfat thickness, 10th-rib backfat thickness, specific gravity, weights of closely trimmed ham, loin, and shoulder, belly weight, subjective scoring of the longissimus muscle for color and marbling, estimated percentage of muscle, and lean gain per day. Total weighted cumulative selection differential for 70-d weight was 30.2 kg. The realized heritability for 70-d weight was .13 +/- .06, and the change in 70-d weight was .65 +/- .29 kg per generation. The regression coefficient of litter size at 21 d on generation was .24 +/- .10 (P less than .10) pigs per generation. None of the other regression coefficients for the reproductive traits differed from zero. Carcass length, specific gravity, and ham weight decreased (P less than .10) -.075 +/- .036 cm, -.00054 +/- .00027, and -.102 +/- .048 kg, respectively, per generation. Color score and lean gain per day increased .046 +/- .021 points and .0032 +/- .0013 kg/d, respectively, each generation in response to the selection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The purpose of this study is to use demographic and litter size data on four Spanish maternal lines of rabbits (A, V, H and LP), as a case study, in order to: (i) estimate the effective population size of the lines, as a measure of the rate of increase of inbreeding, and (ii) study whether the inbreeding effect on litter size traits depends on the pattern of its accumulation over time. The lines are being selected for litter size at weaning and are kept closed at the same selection nucleus under the same selection and management programme. The study considered 47 794 l and a pedigree of 14 622 animals. Some practices in mating and selection management allow an increase of the inbreeding coefficient lower than 0.01 per generation in these lines of around 25 males and 125 females. Their effective population size (Ne) was around 57.3, showing that the effect of selection, increasing the inbreeding, was counterbalanced by the management practices, intended to reduce the rate of inbreeding increase. The inbreeding of each individual was broken down into three components: old, intermediate and new inbreeding. The coefficients of regression of the old, intermediate and new inbreeding on total born (TB), number born alive (NBA) and number weaned (NW) per litter showed a decreasing trend from positive to negative values. Regression coefficients significantly different from zero were those for the old inbreeding on TB (6.79 ± 2.37) and NBA (5.92 ± 2.37). The contrast between the coefficients of regression between the old and new inbreeding were significant for the three litter size traits: 7.57 ± 1.72 for TB; 6.66 ± 1.73 for NBA and 5.13 ± 1.67 for NW. These results have been interpreted as the combined action of purging unfavourable genes and artificial selection favoured by the inbreeding throughout the generations of selection.  相似文献   

20.
Our objectives were to estimate responses and genetic parameters for ovulation rate, number of fully formed pigs at birth, and other production traits following two-stage selection for increased ovulation rate and number of fully formed pigs. Eight generations of selection were practiced in each of two lines. One selection line was derived from a line that previously selected eight generations for an index to increase ovulation rate and embryonic survival (the IOL pigs). The other selection line was derived from the unselected control line of the index selection experiment (the COL pigs). The control line (C) was continued with random selection. Due to previous selection, Line IOL had greater ovulation rate (4.24 +/- 0.38 and 4.14 +/- 0.29 ova) and litter size (1.97 +/- 0.39 and 1.06 +/- 0.38 pigs) at Generation 0 of two-stage selection than did Lines COL and C. In Stage 1, all gilts from 50% of the largest litters were retained. Approximately 50% of them were selected for ovulation rate in Stage 2. Gilts selected for ovulation rate were mated to boars selected from the upper one-third of the litters for litter size. At Generations 7 and 8, differences in mean EBV for ovulation rate and litter size between Lines IOL and C were 6.20 +/- 0.29 ova and 4.66 +/- 0.38 pigs; differences between Lines COL and C were 2.26 +/- 0.29 ova and 2.79 +/- 0.39 pigs; and differences between Lines IOL and COL were 3.94 +/- 0.26 ova and 1.86 +/- 0.39 pigs. Regressions of line mean EBV on generation number were 0.27 +/- 0.07 ova and 0.35 +/- 0.06 pigs in Line IOL; 0.30 +/- 0.06 ova and 0.29 +/- 0.05 pigs in Line COL; and 0.01 +/- 0.07 ova and 0.02 +/- 0.05 pigs in Line C. Correlated responses were decreased age at puberty and increased number of pigs born alive, number of mummified pigs, prenatal loss, and individual and litter birth weight. Two-stage selection for ovulation rate and number of pigs per litter is a promising procedure to improve litter size in swine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号