首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
McDonald  & Riha 《Weed Research》1999,39(5):371-381
The practical application of single-season economic thresholds for post-emergence weed control decisions has been frustrated by the impact of growing season, climate and edaphic factors on crop:weed interactions. Competition in a mixed plant community is a dynamic process that is contingent upon species-specific growth characteristics and their expression based on environmental conditions. To address these issues, a modified version of the ALMANAC competition model was parameterized and run to simulate maize: Abutilon theophrasti competition with 30 years (1966–95) of historical climate data for a site in New York State. Simulations indicate that, when weeds do not emerge before maize, maize will only suffer substantial yield reductions from A. theophrasti competition in two out of every 10 years at this site. It is also evident that economic thresholds based solely on the level of weed infestation are inherently flawed. Long-term simulation results suggest that estimates of early season water stress could be used as an independent tool for rationalizing post-emergence control decisions. Shifting the focus from quantifying the infestation intensity of the weed population to assessing the competitive status of the maize crop indirectly with climate information may alleviate many of the problems commonly associated with threshold management strategies.  相似文献   

2.
Combining empirical research with simulation modelling may improve our understanding of the dynamics of crop:weed competition and for testing hypotheses on the importance of specific traits for enhancing crop performance in mixtures. Two field experiments were conducted to quantify and compare estimates of traits important for radiation interception and utilization in four maize hybrids and Abutilon theophrasti grown in monoculture. Early leaf area growth rate did not vary among maize hybrids within a year, but varied among years. The response of CO2 assimilation rate to absorbed radiation and leaf nitrogen content did not differ among hybrids. Abutilon theophrasti and two old maize hybrids partitioned more new biomass to stem relative to reproductive organs than newer hybrids. Old hybrids had greater specific leaf area during the period of most rapid growth, grew taller, and leaf area was distributed higher in their canopy. Extinction coefficients for diffuse radiation did not differ among hybrids or between years. Results suggest that these four maize hybrids may differ in their ability to intercept incident radiation, which may influence their ability to compete for light.  相似文献   

3.
Modelling crop:weed interactions in wheat with ALMANAC   总被引:1,自引:0,他引:1  
ALMANAC is a dynamic model for plant growth, water balance and soil nitrogen dynamics that can simulate on a daily basis two or more competing species. The simulation of competition for light is based on Beer's law, allowing a different extinction coefficient ( k ) for each species. Light is partitioned between species based on k -values, leaf area index and plant heights. Total hiomass is simulated with radiation use efficiency and grain yield with a harvest index approach, sensitive to water stress. The model simulates competition for water and nutrients based on each species current rooting zone and demand by each species. The effect of crop management on the competition issue can he simulated. The model was evaluated in Dijon (France) using 4 years of experimental data on wheat:oat mixtures, differing in oat ( Avena sativa L.) densities, the period of oat emergence, the date of weed suppression by herbicides and the wheat ( Triticun aestivum L.) genotype. Additional data on oilseed rape ( Brassica nupus L.) and vetch ( Vilcia sauiva L.) competition in spring wheat were also used. The wheat grain yield was reasonably simulated with a root mean square error (RMSE) of 0.10-0.35 t ha-1. Corresponding values for oats were 0.10-0.55 t ha-1. The competitiveness of oats, oilseed rape and vetch was correctly simulated. The model appears as a reasonable tool for estimating damage thresholds in integrated weed control programmes.  相似文献   

4.
Variations in climate are widely recognized as central factors governing the competitive balance in mixed‐species plant communities. In agricultural systems, highly variable patterns of crop yield reduction as a function of weed density have been documented across sites and among years at the same site for several crop–weed combinations. This variation is typically attributed to contrasting environmental conditions. Despite broad acknowledgement of their importance, experimental and temporal limitations have constrained the investigation and systematic understanding of environmental controls on the dynamics of competition. For several well‐studied crop–weed associations, aggregating historical data from similar competition experiments provides an opportunity to explore interference relationships over an array of conditions. In this study, 19 site‐years of maize –Abutilon theophrasti (velvetleaf) data were compiled and the weather characterized (i.e. average ambient temperature and moisture regime) for discrete portions of each growing season. These features were then related to patterns of maize yield loss from A. theophrasti interference at high weed densities. Results of this analysis suggest that temperatures following establishment, together with the presence or absence of water stress during the maize crop's exponential growth phase, account for over 60% of the observed variation in relative yield loss.  相似文献   

5.
To improve understanding of over-winter weed seed predation in arable fields, we used data from winter exclosure trials to determine the amount of predation and the influence of crop habitats on predation of Abutilon theophrasti and Setaria faberi seed in 2-year (maize/soyabean) and 4-year (maize/soyabean/small grain+lucerne/lucerne) crop rotation systems between 2005 and 2008. Crop habitat influenced seed predation, and had similar impacts on the two weed species. Mean A. theophrasti predation ranged from 31% in the 2-year soyabean habitat to 99% in the 4-year lucerne habitat. Mean S. faberi predation ranged from 31% in the 2-year soyabean habitat to 97% in the 4-year lucerne habitat. Results suggest that a combination or interaction of cover and substrate may have affected crop habitat preference by seed predators. Future research should further examine the influence of physical habitat on seed predation to determine characteristics of cropping systems that encourage predation, particularly during over-winter periods, so as to routinely incorporate seed predators into long-term weed management strategies.  相似文献   

6.
T Hyvönen  S Ramula 《Weed Research》2014,54(3):245-255
Climate change is predicted to affect range expansion of harmful C4 weeds into the boreal region, given that they are able to successfully colonise both C3 and C4 crops. We studied the impact of a 3°C elevation in temperature on the establishment and maintenance of populations of two annual C4 weeds (Amaranthus retroflexus and Echinochloa crus‐galli) with and without a competing C3 (barley) or C4 (maize) crop. Data obtained from field and glasshouse experiments were modelled using a periodic matrix population model. Competition of a weed with a crop appeared to be a more important factor for limiting the maintenance of weed populations than elevation in temperature, as neither of the weed species was able to maintain populations in competition with crops. Even an increase in the frequency of warm years did not result in viable weed populations establishing. However, A. retroflexus was able to form persistent populations in competition with maize when released from competition every fifth year. Simulations parameterised from glasshouse data predicted that both weed species would persist without competition in the current climate, whereas simulations parameterised from field data suggested only A. retroflexus to be able to persist. These results demonstrate that competition affects the range expansion of arable weed species more than elevation in temperature, necessitating the inclusion of crop–weed interactions in models of range shifts as a consequence of climate change.  相似文献   

7.
More than 200 species of weeds are infesting main crop fields in China, among which approximately 30 species are major weeds causing great crop yield losses. About 35.8 million hectares of crop fields are heavily infested by weeds and the annual reduction of crop yields is 12.3–16.5% (weighted average). Along with rural economic development, approximately 50% of the main crop fields undergo herbicide application. Chemical weed control has changed cultural practices to save weeding labor in rice, wheat, maize, soybeans and cotton. At the same time, continuous use of the same herbicides has caused weed shift problems and weed resistance to herbicides. Consequently, integrated weed management in main crops is being developed.  相似文献   

8.
9.
Cavero  Zaragoza  Suso  & Pardo 《Weed Research》1999,39(3):225-240
Crop growth of maize ( Zea mays L.) and Datura stramonium L. in monoculture and competition was studied over 4 years in a flood irrigated field in Zaragoza (Spain). Plant density was 8.33 m–2 for maize and 16.66 m–2 (1994 and 1995) and 8.33 m–2 (1996 and 1997) for D. stramonium . Maize yield was decreased by 14–63% when competing with the weed. Yield reduction increased as the time between crop and weed emergence decreased. The development of leaf area per plant during the exponential growth phase was faster in maize primarily because the leaf area of maize seedlings at emergence time was greater than that of the weed. The faster growth of maize in leaf area and height reduced the photosynthetically active radiation received by the weed. Datura stramonium had a lower radiation use efficiency (RUE) than maize. Competition from the weed slightly decreased the maximum leaf area index (LAI) of the crop, and leaf senescence of maize was accelerated. The weed competed with the crop late in the season reducing crop growth rate, grain number per ear and grain weight. Competitive ability of D. stramonium for light was mainly due to its growth habit, with the leaves concentrated in the upper part of the canopy (more than 75% of LAI in the upper 25% of its height), its higher light extinction coefficient (0.89) and its indeterminate growth habit. The N plant content of maize was not influenced by the presence of the weed. The weed had a higher N plant content than the crop throughout the season and took up more N in monoculture.  相似文献   

10.
Summary. Aqueous extracts of the ground seeds of thirteen weed species were assayed for their ability to inhibit the germination on filler paper of eight crop species. All of the extracts delayed germination of at least some of the crop species. Germination of some crop species was delayed when the crop seeds were surrounded by weed seeds on filter paper, The seeds of Abutilon theophrasti were inhibitory to tomato ( Lycopersicum esculentum ) germinated in sterile and non-sterile soil in the laboratory. The inhibition of germination was apparent under conditions which excluded light, water and minerals as factors in the competition. Chemical studies indicated that the inhibition by Abutilon seeds was due to free amino acids emanating from the seeds.
Inhibition chimique de la germination de plantes cultivées par des semences de mauvaises herbes et nature de l'inhibition par Abutilon theophrasti  相似文献   

11.
Echinochloa colona and Trianthema portulacastrum are weeds of maize that cause significant yield losses in the Indo‐Gangetic Plains. Field experiments were conducted in 2009 and 2010 to determine the influence of row spacing (15, 25 and 35 cm) and emergence time of E. colona and T. portulacastrum (0, 15, 25, 35, 45 and 55 days after maize emergence; DAME) on weed growth and productivity of maize. A season‐long weed‐free treatment and a weedy control were also used to estimate maize yield and weed seed production. Crop row spacing as well as weed emergence time had a significant influence on plant height, shoot biomass and seed production of both weed species and grain yield of maize in both years. Delay in emergence of weeds resulted in less plant height, shoot biomass and seed production. However, increase in productivity of maize was observed by delay in weed emergence. Likewise, growth of both weed species was less in narrow row spacing (15 cm) of maize, as compared with wider rows (25 and 35 cm). Maximum seed production of both weeds was observed in weedy control plots, where there was no competition with maize crop and weeds were in rows 35 cm apart. Nevertheless, maximum plant height, shoot biomass and seed production of both weed species were observed in 35 cm rows, when weeds emerged simultaneously with maize. Both weed species produced only 3–5 seeds per plant, when they were emerged at 55 DAME in crop rows spaced at 15 cm. Infestation of both weeds at every stage of crop led to significant crop yield loss in maize. Our results suggested that narrow row spacing and delay in weed emergence led to reduced weed growth and seed production and enhanced maize grain yield and therefore could be significant constituents of integrated weed management strategies in maize.  相似文献   

12.
Experiments comparing conventional and organic systems often report similar yields despite substantially higher weed abundance in the organic systems. A potential explanation for this observation is that weed–crop competition relationships differ between the two types of systems. We analysed weed and crop yield data from the Rodale Institute Farming Systems Trial (FST), which provides a unique 27-year dataset of a conventional (CNV) and two organic [manure (MNR) and legume (LEG)] soyabean ( Glycine max (L.) Merr.) and maize ( Zea mays L.) cropping systems. Average soyabean yields were similar between the MNR and CNV systems and only slightly reduced in the LEG system, whereas average maize yields did not differ among systems despite the two organic systems having more than four and six times greater weed biomass in soyabean and maize respectively. Plot-level weed biomass–crop yield relationships indicated that weed–crop competition differed between the two organic and CNV systems in maize, and was strongest in the CNV system, intermediate in the LEG system and weakest in the MNR system. These results suggest that organic cropping systems may be able to tolerate a greater abundance of weeds compared to conventional systems and that fertility management within organic systems may influence weed–crop competition.  相似文献   

13.
G. J. WELLS 《Weed Research》1979,19(3):185-191
Experiments investigating the effect of weed density on the yjeld of a wheat crop at three levels of applied nitrogen were conducted in north-western Victoria. Australia, during 1970. There were five sites, each infested with a pure stand of one of the following annual broad-leaved weed species: Lithospermum arvense, Brassica tournifortii. Lamium amplt'xicaule, Amsinckia hispida and Fumaria parviflora. At the three-leaf stage of crop growth, the weed populations were systematically thinned with a specially developed spray boon) (which is described) to give a range of weed densities in competition) with the crop. The relalionship between dry matter production and population density for all but one weed species was curvilinear, but the degree of curvature was small and competition in the wheat crop was linear for four of the five weed species. There were large differences in the competitive ability of individual weed species and these have been described by regression equations. Applied nitrogen increased wheat yields at all sites but weed competition was not affected. The use of these grain yield-weed density relationships in predicting crop losses from weed competition is discussed.  相似文献   

14.
Selection of crop genotypes that are more competitive with weeds for light interception may improve crop yield stability in the presence of weeds. The effects of interference on ecophysiological characteristics of Abutilon theophrasti Medic. and three morphologically diverse grain sorghum hybrids was evaluated to determine the relative tolerance and suppressive ability of the three hybrids and specific traits that may contribute to those differences. A tall hybrid was more tolerant to A. theophrasti interference than two medium stature hybrids. Early leaf area growth of two medium-stature sorghum hybrids was reduced by A. theophrasti interference, whereas early growth of a tall hybrid was unaffected. The height of A. theophrasti was greater than two moderate-stature hybrids but lower than the tall hybrid. Greatest leaf area density (LD) of the tall sorghum hybrid was above that of A. theophrasti , whereas greatest LD of medium-stature hybrids was below that of the weed. In monoculture, the partitioning of new biomass to various plant organs was similar among sorghum hybrids, whereas the tall sorghum hybrid partitioned less biomass to leaves and more to stems than medium hybrids in mixture. The results indicate that the three hybrids differ in their susceptibility to A. theophrasti competition. Crop traits that may contribute to greater crop competitiveness include greater maximum height and its growth rate and greater height of maximum leaf area distribution.  相似文献   

15.
Spatial biology of weed populations is the study of weed patches and their relevant patch-level processes. In this context, a patch was defined as an area in which individuals are aggregated into discrete subdivided populations. Four Abutilon theophrasti seedling patches in two continuous maize production fields were surveyed using a contiguous grid of quadrats between 1995 and 1997. Surveyed area was dependent on patch size and ranged from 96 m2 to 1134 m2. Within each area, all seedlings were counted in each 1 m × 0.75 m quadrat in June, just before post-emergence weed control, and in mid-July after all weed control practices were completed. The spatial pattern observed in the seedling distribution maps was single or multiple focal points of high seedling density that decreased with distance from the focal point. Two-directional correlograms corroborated this visual observation, such that A. theophrasti seedling density in neighbouring quadrats was spatially autocorrelated, and correlation strength decreased with distance separating quadrats. Autocorrelation coefficients decreased at a greater rate across crop rows than parallel to crop rows. Visually, patch shape was elliptical and oriented in the direction of field traffic. Factors affecting patch-level processes of spatial aggregation, stability and edge dynamics were considered.  相似文献   

16.
A LUNDKVIST 《Weed Research》2009,49(4):409-416
To assess the effects of timing and frequency of weed harrowing on weed abundance and crop yield, different pre- and post-emergence weed harrowing sequences were applied to spring cereals and peas in field experiments performed during 2003 and 2004 in Sweden. Post-emergence harrowing was performed at crop growth stages 2–3 and 5–6 true leaves respectively. The best weed control was obtained by a combination of pre- and post-emergence harrowing, but these treatments also caused yield losses of 12–14% in spring cereals, while no yield losses were observed in peas. Pre-emergence weed harrowing treatments alone or combined with weed harrowing shortly after crop emergence proved to be most effective against the early emerging annual weed species Sinapis arvensis and Galeopsis spp. Post-emergence harrowing alone in peas had no effect on S. arvensis . The late emerging annual weed species Chenopodium album and Polygonum lapathifolium were most effectively controlled when pre-emergence weed harrowing was combined with one or two weed harrowing treatments after crop emergence.  相似文献   

17.
Imperata cylindrica is a noxious weed that infests annual and perennial crops in most tropical regions. High crop densities may offer opportunities to reduce I. cylindrica competition in small‐scale farming systems. The competitive ability of maize relative to I. cylindrica was evaluated in an addition series experiment in the forest savannah transition zone in 2006 and 2007 at Ibadan, Nigeria. Maize and I. cylindrica were planted in eight monoculture densities (4, 8, 12, 16, 20, 32, 48 and 64 plants m?2) and in a 1:1 mixture at eight total densities (2:2, 4:4, 6:6, 8:8, 10:10, 16:16, 24:24 and 32:32 maize: I. cylindrica plants m?2) as in monoculture. Non‐linear regression models were used to relate crop and weed shoot biomass to their densities and total grain yield to maize density. In maize, intraspecific competition was more than interspecific competition; in I. cylindrica, interspecific competition was higher than intraspecific. As expected, total grain yield was lower in the mixture than in maize monoculture at all total densities. Average maize grain yield in maize monoculture differed from that in mixtures by 0.77 t ha?1 in 2006 and 0.57 t ha?1 in 2007. Niche differentiation indices were <1 in 2006 and >1 in 2007, indicating that both species competed for similar resources in 2006, but not in 2007. The greater competitive ability of maize over I. cylindrica may be associated with rapid growth and canopy development observed in the field.  相似文献   

18.
A new simple empirical model for early prediction of crop losses by weed competition was introduced. This model relates yield loss to relative leaf area of the weeds shortly after crop emergence using the relative damage coefficient q as the single model parameter. The model is derived from the hyperbolic yield density relationship and therefore accounts for the effects of weed density. It is shown that the model also accounts for the effect of different relative times of weed emergence. A strong advantage of the approach is that it can be used when weeds emerge in separate flushes. The regression model described experimental data on sugar-beet – lambsquarters (Beta vulgaris L. –Chenopodium album L.) and maize-barnyard grass (Zea mays L. –Echinochloa crus-galli L.) competition precisely. The model describes a single relationship between crop yield loss and relative leaf area of the weeds over a wide range of weed densities and relative times of weed emergence. Possibilities for scientific and practical application of the model are discussed.  相似文献   

19.
In a long-term cropping systems trial comparing organically and conventionally managed systems, organic maize production sustained crop yields equal to conventional methods despite higher weed levels. In 2005 and 2006, an experiment nested within the trial was conducted to gain insight into this apparent crop tolerance to weed competition. Density of mixed weed species was experimentally manipulated to achieve a broad range of weed infestation levels. Under standard management conditions, all cropping systems produced equivalent maize yields, even though weedy plant biomass in the organic treatments was between fourfold and sevenfold greater than in the conventionally managed maize. Increased yield capacity, evidenced when plots were maintained weed-free, and enhanced crop competitiveness, were the main pillars of this apparent crop tolerance to weed competition in the organic systems. Increased soil resource availability and a faster relative crop growth rate in the organic systems probably contributed to these factors, which play an important role in buffering crop fitness during years of less than ideal weed control. Simultaneously, the experiment illustrated the poor efficacy of mechanical weed management in the organic systems, which is the main reason organic maize did not out-yield conventional maize under standard management conditions.  相似文献   

20.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号