首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internal protein dynamics are intimately connected to enzymatic catalysis. However, enzyme motions linked to substrate turnover remain largely unknown. We have studied dynamics of an enzyme during catalysis at atomic resolution using nuclear magnetic resonance relaxation methods. During catalytic action of the enzyme cyclophilin A, we detect conformational fluctuations of the active site that occur on a time scale of hundreds of microseconds. The rates of conformational dynamics of the enzyme strongly correlate with the microscopic rates of substrate turnover. The present results, together with available structural data, allow a prediction of the reaction trajectory.  相似文献   

2.
Monte Carlo and molecular dynamics methods have been used to study the shearing behavior of an atomic fluid between two plane-parallel solid surfaces having the face-centered cubic (100) structure. A distorted, face-centered cubic solid can form epitaxially between surfaces that are separated by distances of one to five atomic diameters. Under these conditions a critical stress must be overcome to initiate sliding of the surfaces over one another at fixed separation, temperature, and chemical potential. As sliding begins, a layer of solid exits the space between the surfaces and the remaining layers become fluid.  相似文献   

3.
Surface science     
During the past 15 years, surfaces have been increasingly studied on the atomic scale. As a result, their atomic structure and composition and the dynamics of gas-surface interactions are much better understood. Modern surface science is beginning to have an impact on many technologies. Techniques are readily available to study solid-vacuum and solid-gas interfaces. Studies of solid-liquid and solid-solid interfaces are difficult and appear to be challenging frontier areas of research. Surface science is at the heart of most research and development problems in energy conversion and storage.  相似文献   

4.
The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.  相似文献   

5.
Protein dynamics are essential for protein function, and yet it has been challenging to access the underlying atomic motions in solution on nanosecond-to-microsecond time scales. We present a structural ensemble of ubiquitin, refined against residual dipolar couplings (RDCs), comprising solution dynamics up to microseconds. The ensemble covers the complete structural heterogeneity observed in 46 ubiquitin crystal structures, most of which are complexes with other proteins. Conformational selection, rather than induced-fit motion, thus suffices to explain the molecular recognition dynamics of ubiquitin. Marked correlations are seen between the flexibility of the ensemble and contacts formed in ubiquitin complexes. A large part of the solution dynamics is concentrated in one concerted mode, which accounts for most of ubiquitin's molecular recognition heterogeneity and ensures a low entropic complex formation cost.  相似文献   

6.
Subcycle strong-field ionization (SFI) underlies many emerging spectroscopic probes of atomic or molecular attosecond electronic dynamics. Extending methods such as attosecond high harmonic generation spectroscopy to complex polyatomic molecules requires an understanding of multielectronic excitations, already hinted at by theoretical modeling of experiments on atoms, diatomics, and triatomics. Here, we present a direct method which, independent of theory, experimentally probes the participation of multiple electronic continua in the SFI dynamics of polyatomic molecules. We use saturated (n-butane) and unsaturated (1,3-butadiene) linear hydrocarbons to show how subcycle SFI of polyatomics can be directly resolved into its distinct electronic-continuum channels by above-threshold ionization photoelectron spectroscopy. Our approach makes use of photoelectron-photofragment coincidences, suiting broad classes of polyatomic molecules.  相似文献   

7.
We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.  相似文献   

8.
Engel T 《Science (New York, N.Y.)》1986,234(4774):327-333
Experiments in which low-energy atoms are scattered from surfaces represent an important new method for structural analysis of the topmost atomic layers of a surface. The method and its application in a number of areas in surface science, such as detecting surface defects and studying lattice dynamics, are discussed.  相似文献   

9.
石墨炉原子吸收法测定大米中的镉,常用的样品前处理方法有常压湿式消解法、干法灰化和微波消解法。试验采用石墨炉原子吸收法对上述3种消化方法处理的试样进行测定分析,以探讨3种消化方法的适用性。试验结果表明,微波消解法比其它方法具有操作更简便、消解速度快和结果准确度高的特点。  相似文献   

10.
11.
生活饮用水中铅的常规检验方法是用原子吸收法和原子荧光法进行测定,但因成本昂贵、操作要求高等原因不能实现现场快速测定。采用卟啉类化合物二溴羟基苯基卟啉为显色剂现场快速测定水质中的铅,效果良好。  相似文献   

12.
Josephson junction arrays with Bose-Einstein condensates   总被引:1,自引:0,他引:1  
We report on the direct observation of an oscillating atomic current in a one-dimensional array of Josephson junctions realized with an atomic Bose-Einstein condensate. The array is created by a laser standing wave, with the condensates trapped in the valleys of the periodic potential and weakly coupled by the interwell barriers. The coherence of multiple tunneling between adjacent wells is continuously probed by atomic interference. The square of the small-amplitude oscillation frequency is proportional to the microscopic tunneling rate of each condensate through the barriers and provides a direct measurement of the Josephson critical current as a function of the intermediate barrier heights. Our superfluid array may allow investigation of phenomena so far inaccessible to superconducting Josephson junctions and lays a bridge between the condensate dynamics and the physics of discrete nonlinear media.  相似文献   

13.
采用微波消解处理粟米草,运用火焰原子吸收光谱法测定粟米草中4种微量元素的含量。通过对仪器参数进行优化,经过样品消解剂筛选,建立了粟米草中微量元素的微波消解-原子吸收光谱测定方法。结果表明:粟米草中有益微量元素含量丰富,其中Cu、Mn、Fe、历含量分别为14.55、128.50、2650.00、68.63μg/g;加标回收率在92.50%-113.75%。实验建立的微波消解方式及原子吸收光谱条件简单、快速、灵敏、准确,亦可为其他中草药的微量元素测定提供参考,同时为进一步探讨粟米草微量元素与功效关系提供理论依据。  相似文献   

14.
Molecular dynamics was used to refine macromolecular structures by incorporating the difference between the observed crystallographic structure factor amplitude and that calculated from an assumed atomic model into the total energy of the system. The method has a radius of convergence that is larger than that of conventional restrained least-squares refinement. Test cases showed that the need for manual corrections during refinement of macromolecular crystal structures is reduced. In crambin, the dynamics calculation moved residues that were misplaced by more than 3 angstroms into the correct positions without human intervention.  相似文献   

15.
16.
Interferometers with atomic ensembles are an integral part of modern precision metrology. However, these interferometers are fundamentally restricted by the shot noise limit, which can only be overcome by creating quantum entanglement among the atoms. We used spin dynamics in Bose-Einstein condensates to create large ensembles of up to 10(4) pair-correlated atoms with an interferometric sensitivity -1.61(-1.1)(+0.98) decibels beyond the shot noise limit. Our proof-of-principle results point the way toward a new generation of atom interferometers.  相似文献   

17.
Emerging complex functional materials often have atomic order limited to the nanoscale. Examples include nanoparticles, species encapsulated in mesoporous hosts, and bulk crystals with intrinsic nanoscale order. The powerful methods that we have for solving the atomic structure of bulk crystals fail for such materials. Currently, no broadly applicable, quantitative, and robust methods exist to replace crystallography at the nanoscale. We provide an overview of various classes of nanostructured materials and review the methods that are currently used to study their structure. We suggest that successful solutions to these nanostructure problems will involve interactions among researchers from materials science, physics, chemistry, computer science, and applied mathematics, working within a "complex modeling" paradigm that combines theory and experiment in a self-consistent computational framework.  相似文献   

18.
对农产品中微量元素锗的分析方法进行了综述.其分析方法包括原子荧光光谱法、原子发射光谱法、原子吸收光谱法、原子质谱法、X射线光谱法、分光光度法、分子荧光法、化学发光法、催化极谱法、溶出伏安法和离子色谱法等.  相似文献   

19.
The movement of dislocations in a crystal is the key mechanism for plastic deformation in all materials. Studies of dislocations have focused on three-dimensional materials, and there is little experimental evidence regarding the dynamics of dislocations and their impact at the atomic level on the lattice structure of graphene. We studied the dynamics of dislocation pairs in graphene, recorded with single-atom sensitivity. We examined stepwise dislocation movement along the zig-zag lattice direction mediated either by a single bond rotation or through the loss of two carbon atoms. The strain fields were determined, showing how dislocations deform graphene by elongation and compression of C-C bonds, shear, and lattice rotations.  相似文献   

20.
Phenylalanine transfer RNA: molecular dynamics simulation   总被引:4,自引:0,他引:4  
Yeast phenylalanine transfer RNA was subjected to a 12-picosecond molecular dynamics simulation. The principal features of the x-ray crystallographic analysis are reproduced, and the amplitudes of atomic displacements appear to be determined by the degree of exposure of the atoms. An analysis of the hydrogen bonds shows a correlation between the average length of a bond and the fluctuation in that length and reveals a rocking motion of bases in Watson-Crick guanine X cytosine base pairs. The in-plane motions of the bases are generally of larger amplitude than the out-of-plane motions, and there are correlations in the motions of adjacent bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号