首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Purpose

Under a global warming scenario, understanding the response of soil organic carbon fractions and aggregate stability to temperature increases is important not only for better understanding and maintaining relevant ecosystem services like soil fertility and crop productivity, but also for understanding key environmental processes intimately related with the maintenance of other regulatory ecosystem services like global climate change mitigation through carbon sequestration. An increase in temperature would accelerate the mineralization of soil organic carbon. However, the properties of organic carbon remained in soil after mineralization is not well known.

Materials and methods

Mollisol was collected at 0–20-cm depth from maize (Zea mays L.) field in Northeast China. A 180-day incubation experiment was conducted at three different temperatures (10, 30, and 50 °C) under constant soil moisture (60 % water holding capacity). Soil samples were assayed for total organic carbon (TOC), water-soluble organic carbon (WSOC), easily oxidizable organic carbon (EOC), humic fractions carbon, aggregate-associated carbon, and water stability of aggregates. Elemental analysis and solid-state 13C nuclear magnetic resonance spectroscopy were used to characterize humic acid and humin fractions.

Results and discussion

The contents of soil TOC, EOC, humic fractions carbon, and aggregate-associated carbon decreased with the increase in temperature. The proportion of 2–0.25-mm macroaggregate and the mean weight diameter (MWD) of aggregates also decreased. The C, H, N, S, alkyl C, and O-alkyl C contents of humic acid and humin decreased, whereas the O, aromatic C, and carbonyl C contents increased. The H/C, aliphatic C/aromatic C, and O-alkyl C/aromatic C ratios in humic acid and humin fractions decreased.

Conclusions

The increase in temperature has a negative impact on soil organic carbon content, soil aggregation, and aggregate stability. Moreover, humic acid and humin molecules become less aliphatic and more decomposed with the increase in temperature.
  相似文献   

3.

Purpose

The subjects of this study were to investigate the remediating potential of the co-cultivation of Pleurotus eryngii and Coprinus comatus on soil that is co-contaminated with heavy metal (cadmium (Cd)) and organic pollutant (endosulfan), and the effects of the co-cultivated mushrooms on soil biochemical indicators, such as laccase enzyme activity and bacterial counts.

Materials and methods

A pot experiment was conducted to investigate the combined bioremediation effects on co-contaminated soil. After the mature fruiting bodies were harvested from each pot, the biomass of mushrooms was recorded. In addition, bacterial counts and laccase enzyme activity in soil were determined. The content of Cd in mushrooms and soil was detected by the flame atomic absorption spectrometry (FAAS), and the variations of Cd fractions in soil were determined following the modified BCR sequential extraction procedure. Besides, the residual endosulfan in soil was detected by gas chromatography-mass spectrometry (GC-MS).

Results and discussion

The results indicated that co-cultivation of P. eryngii and C. comatus exerted the best remediation effect on the co-contaminated soil. The biomass of mushroom in the co-cultivated group (T group) was 1.57–13.20 and 19.75–56.64% higher than the group individually cultivated with P. eryngii (P group) or C. comatus (C group), respectively. The concentrations of Cd in the fruiting bodies of mushrooms were 1.83–3.06, 1.04–2.28, and 0.67–2.60 mg/kg in T, P, and C groups, respectively. Besides, the removal rates of endosulfan in all treatments exceeded 87%. The best bioremediation effect in T group might be caused by the mutual promotion of these two kinds of mushrooms.

Conclusions

The biomass of mushroom, laccase activity, bacterial counts, and Cd content in mushrooms were significantly enhanced, and the dissipation effect of endosulfan was slightly higher in the co-cultivated group than in the individually cultivated groups. In this study, the effect of co-cultivated macro fungi P. eryngii and C. comatus on the remediation of Cd and endosulfan co-contaminated soil was firstly reported, and the results are important for a better understanding of the co-remediation for co-contaminated soil.
  相似文献   

4.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

5.

Purpose

Biochar has been suggested as a soil conditioner to improve soil fertility and crop productivity while simultaneously mitigate global climate change by storing carbon in the soil. This study investigated the effect of pine (Pinus radiata) biochar application on soil water availability, nitrogen (N) and carbon (C) pools and growth of C3 and C4 plants.

Materials and methods

In a glasshouse pot trial, a pine biochar (untreated) and nutrient-enriched pine biochar were applied to a market garden soil with C3 (Spinacia oleracea L.) and C4 (Amaranthus paniculatus L.) plants at rates of 0, 1.0, 2.0, and 4.0 % (w/w). Plant biomass, soil pH, moisture content, water holding capacity (WHC), hot water extractable organic C (HWEOC), and total N (HWETN), total C and N, and their isotope compositions (δ 13C and δ 15N) of soils and plants were measured at the end of the experimentation.

Results and discussion

The soil moisture content increased while plant biomass decreased with increasing untreated biochar application rates. The addition of nutrient-enriched biochar significantly improved plant biomass in comparison to the untreated biochar addition at most application rates. Biochar application also increased the levels of labile organic C and N pools as indicated by HWEOC and HWETN.

Conclusions

The results suggested that the addition of pine biochar significantly improved soil water availability but not plant growth. The application of nutrient-enriched pine biochar demonstrated that the growth of C3 and C4 plants was governed by biochar nutrient availability rather than its water holding capacity under the pot trial condition.
  相似文献   

6.

Purpose

Eucalyptus forest plantations are normally devoid of understory vegetation that is often assumed to be associated with Eucalyptus allelopathic effects. The objective of this study was to determine the influence of high soil compaction and low soil moisture content on inhibition of the germination of understory seeds in Eucalyptus forests and thus would result in the scarcity of understory vegetation.

Materials and methods

The soil water content above the depth of 1 m of six major understory vegetation types was analyzed to determine if there was a correlation between soil water content and understory vegetation. The effects of soil treatment (soil-loosening vs. no soil-loosening) and water supply amount (2500, 2000, 1500, 1000, 500, 250, or 0 ml of water per day) on the seed germination rate of Stylosanthes sp. were explored using an artificial climate chamber experiment. Influence of soil source (five Eucalyptus forest soils vs. two non-Eucalyptus forest soils) and water supply (0, 50, 150, 200, or 400 ml of water every day) on the germination rate of five types of seed were assessed using a three-factor analysis of variance (ANOVA).

Results and discussion

Soil-loosening and water supply significantly (P?<?0.05) increased seed germination rate with the contribution rates of 26.14 and 42.93 %, respectively. Analysis of variance for three-factor experiments revealed a significant (P?<?0.05) effect of water supply and vegetation seed type on the germination rate of plant seeds. No significant effect of soil type was observed on germination rate, indicating that germination rate was not affected by soils in Eucalyptus forest.

Conclusions

The conservation of soil characteristics, such as water content and compaction, during the development of a Eucalyptus forest plantation may be an effective strategy for encouraging the growth of understory vegetation. This study highlights the importance that in dry areas or areas prone to long-term drought, it would be preferable to retain native vegetation.
  相似文献   

7.

Purpose

Irrigation and fertilization can change soil environment, which thereby influence soil microbial metabolic activity (MMA). How to alleviate the adverse effects by taking judicious saline water irrigation and fertilization regimes is mainly concerned in this research.

Materials and methods

Here, we conducted a field orthogonal designed test under different saline water irrigation amount, water salinity, and nitrogen fertilizer application. The metabolic profiles of soil microbial communities were analyzed by using the Biolog method.

Results and discussion

The results demonstrated that irrigation amount and fertilizer application could significantly change MMA while irrigation water salinity had no significant effect on it. Medium irrigation amount (30 mm), least (50 kg ha?1) or medium (350 kg ha?1) N fertilizer application, and whatever irrigation water salinity could obtain the optimal MMA. Different utilization rates of carbohydrates, amino acids, carboxylic acids, and polymers by soil microbial communities caused the differences of the effects, and D-galactonic acid γ-lactone, L-arginine, L-asparagine, D-glucosaminic acid, Tween 80, L-threonine, and D-galacturonic acid were the indicator for distinguishing the effects.

Conclusions

The results presented here demonstrated that by regulating irrigation water amount and fertilizer application, the effects of irrigation salinity on MMA could be alleviated, which offered an efficient approach for guiding saline water irrigation.
  相似文献   

8.

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L?1) and elevated (700 μL L?1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.
  相似文献   

9.

Purpose

Chlorpyrifos can be effectively adsorbed by drinking water treatment residuals (WTR), ubiquitous and non-hazardous by-products of potable water production. The major metabolite 3,5,6-trichloro-2-pyridinol (TCP) was found to be much more mobile and toxic than its parent chlorpyrifos. To assess the feasibility of WTR amendment for attenuation of chlorpyrifos and TCP pollution, the sorption/desorption and degradation behavior of chlorpyrifos and TCP in WTR-amended agricultural soils was examined in the present study.

Materials and methods

Two representative agricultural soils were sampled from southern and northern China, respectively. The soils were amended with WTR at the rates of 0, 2, 5, and 10 % (w/w). Batch sorption/desorption test were applied to investigate the sorption/desorption characteristics of chlorpyrifos and TCP in WTR-amended soils. The influence of WTR amendment on chlorpyrifos degradation and TCP formation was evaluated using the incubation test, and its effect on the soil bacterial abundance was further studied through DNA extraction and PCR amplification.

Results and discussion

Results showed that WTR amendment (0–10 %, w/w) significantly enhanced the retention capacity of chlorpyrifos and TCP in both soils examined (P < 0.05). Fractionation analyses further demonstrated that the bioavailability of chlorpyrifos was considerably reduced by WTR amendment, resulting in a decreased chlorpyrifos degradation rate. The WTR amendment also significantly reduced the mobility of TCP formed in chlorpyrifos-contaminated soils (P < 0.001). The chlorpyrifos toxicity to soil bacteria community was largely mitigated following WTR amendment, resulting in increased total bacterial abundance.

Conclusions

Results obtained in the present study indicate a great deal of potential for the beneficial reuse of WTR as soil amendments for chlorpyrifos and TCP pollution control.
  相似文献   

10.

Purpose

Increasing data have shown that biochar amendment can improve soil fertility and crop production, but there is little knowledge about whether biochar amendment can improve water infiltration in saline soils. We hypothesized that biochar amendment could promote water infiltration in saline soil. The aims of this study were to evaluate the effects of biochar amendment on water infiltration and find the suitable amendment rate and particle size of biochar as a saline soil conditioner.

Materials and methods

We measured water infiltration parameters in a coastal saline soil (silty loam) amended with non-sieved biochar at different rates (0.5, 1, 2, 5, and 10%, w/w) or sieved biochar of different particle sizes (≤?0.25 mm, 0.25–1 mm, and 1–2 mm) at 1 and 10% (w/w).

Results and discussion

Compared with the control, amending non-sieved biochar at 10% significantly decreased water infiltration into the saline soil (P?<?0.05). In contrast, sieved biochar of ≤?0.25 mm significantly improved water infiltration capacity, irrespective of the amendment rate. Sieved biochar of 1–2 mm was less effective to improve soil porosity and when amended at 10%, it even reduced the water infiltration capacity. The Philip model (R2?=?0.983–0.999) had a better goodness-of-fit than the Green-Ampt model (R2?=?0.506–0.923) for simulation of cumulative infiltration.

Conclusions

Amending biochar sieved to a small particle size improved water infiltration capacity of the coastal saline soil compared with non-sieved biochar irrespective of the amendment rate. This study contributes toward improving the hydrological property of coastal saline soil and rationally applying biochar in the field.
  相似文献   

11.

Purpose

The present paper concerns the distribution and mobility of heavy metals (Cu, Pb, Zn and Fe) in the soils of some abandoned mine sites in Italy and their transfer to wild flora.

Materials and methods

Soils and plants were sampled from mixed sulphide mine dumps in different parts of Italy, and the concentrations of heavy metals were determined.

Results and discussion

The phytoremediation ability of Salix species (Salix eleagnos, Salix purpurea and Salix caprea), Taraxacum officinale and P?lantago major for heavy metals and, in particular, zinc was estimated. The results showed that soils affected by mining activities presented total Zn, Cu, Pb and Fe concentrations above the internationally recommended permissible limits. A highly significant correlation occurred between metal concentrations in soils.

Conclusions

The obtained results confirmed the environmental effects of mine waste; exploring wild flora ability to absorb metals, besides metal exploitation, proved a useful tool for planning possible remediation projects.
  相似文献   

12.

Purpose

The purpose of this study was to determine the first-order rate constants and half-lives of aerobic and anaerobic biomineralization of atrazine in soil samples from an agricultural farm site that had been previously used for mixing pesticide formulations and washing application equipment. Atrazine catabolic genes and atrazine-degrading bacteria in the soil samples were analyzed by molecular methods.

Materials and methods

Biomineralization of atrazine was measured in soil samples with a [U-ring-14C]-atrazine biometer technique in soil samples. Enrichment cultures growing with atrazine were derived from soil samples and they were analyzed for bacterial diversity by constructing 16S rDNA clone libraries and sequencing. Bacterial isolates were also obtained and they were screened for atrazine catabolic genes.

Results and discussion

The soils contained active atrazine-metabolizing microbial communities and both aerobic and anaerobic biomineralization of [U-ring-14C]-atrazine to 14CO2 was demonstrated. In contrast to aerobic incubations, anaerobic biometers displayed considerable differences in the kinetics of atrazine mineralization between duplicates. Sequence analysis of 16S rDNA clone libraries constructed from the enrichment cultures revealed a preponderance of Variovorax spp. (51 %) and Schlesneria (16 %). Analysis of 16S rRNA gene sequences from pure cultures (n?=?12) isolated from enrichment cultures yielded almost exclusively Arthrobacter spp. (83 %; 10/12 isolates). PCR screening of pure culture isolates for atrazine catabolic genes detected atzB, atzC, trzD, trzN, and possibly atzA. The presence of a complete metabolic pathway was not demonstrated by the amplification of catabolic genes among these isolates.

Conclusions

The soils contained active atrazine-metabolizing microbial communities. The anaerobic biometer data showed variable response of atrazine biomineralization to external electron acceptor conditions. Partial pathways are inevitable in soil microbial communities, with metabolites linking into other catabolic and assimilative pathways of carbon and nitrogen. There was no evidence for the complete set of functional genes of the known pathways of atrazine biomineralization among the isolates.
  相似文献   

13.

Purpose

Many efforts of restoring vegetation have ignored the feedbacks between biotic and abiotic factors that have developed in water-limited ecosystem. Dried soil layers (DSLs) have formed extensively on the Chinese Loess Plateau (CLP). The objective of this study was to identify the primary factors controlling spatial pattern of DSLs on the CLP.

Materials and methods

Two DSL indices (DSL thickness (DSLT) and soil water content in a DSL (DSL-SWC)) were estimated by measuring SWC to a depth of 5 m at 86 sites along a south-north transect on the CLP in 2013. The correlation between the spatial pattern of DSLs and environmental factors was determined with redundancy analysis (RDA).

Results and discussion

DSLs had formed at most of the sites (66 of the 86 sites) along the transect. The sites without DSLs were primarily in an irrigated agricultural zone. DSLT was >400 cm and generally increased from south to north, and DSL-SWC was 2.54% (v/v) in the semi-arid zone of the transect. The connected features of DSLs between connected neighboring sampling units exhibited a much wider extent. A total of nine environmental variables were the primary contributors to the spatial pattern of the DSLs, explaining approximately 47.3% of the variability. Local conditions were responsible for the higher proportion of explained variability than climatic factors. In addition, field capacity was the most important factor in all environmental factors, which may have influenced water-holding capacity.

Conclusions

This study concludes that spatial continuity and local conditions determine the spatial pattern of DSLs at a regional scale. Understanding the characteristic of DSLs is useful for efficiency of vegetation restoration and soil water management.
  相似文献   

14.

Purpose

The low conductivity of sediments for mass and electron transport is the most severe limiting factor in sediment microbial fuel cells (SMFCs), so that sediment ameliorations yielded more remarkable effects than electrode improvements. The objective of this research was to enhance the electricity generation of SMFCs with amendments of biochar to freshwater sediments for conductivity enhancement.

Materials and methods

Laboratory-scale SMFCs were constructed and biochars were produced from coconut shells at different temperatures. Variations in the power output, electrode potential, internal resistance, total organic carbon (TOC) content, and microbial communities were measured.

Results and discussion

Amending with biochar reduced the charge transfer resistances of SMFCs and enriched the Firmicutes (mainly Fusibacter sp.) in the sediment, which improved the SMFC power generation by two- to tenfold and enhanced the TOC removal rate by 1.7- to fourfold relative to those without the amendment.

Conclusions

The results suggested that biochar amendment is a promising strategy to enhance SMFC power production, and the electrical conductivity of biochar should be considered important when interpreting the impact biochar has on the electrical performance of soil or freshwater sediment MFCs.
  相似文献   

15.

Purpose

Anthropogenic-induced greenhouse gas (GHG) emission rates derived from the soil are influenced by long-term nitrogen (N) deposition and N fertilization. However, our understanding of the interplay between increased N load and GHG emissions among soil aggregates is incomplete.

Materials and methods

Here, we conducted an incubation experiment to explore the effects of soil aggregate size and N addition on GHG emissions. The soil aggregate samples (0–10 cm) were collected from two 6-year N addition experiment sites with different vegetation types (mixed Korean pine forest vs. broad-leaved forest) in Northeast China. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) production were quantified from the soil samples in the laboratory using gas chromatography with 24-h intervals during the incubation (at 20 °C for 168 h with 80 % field water capacity).

Results and discussion

The results showed that the GHG emission/uptake rates were significantly higher in the micro-aggregates than in the macro-aggregates due to the higher concentration of soil bio-chemical properties (DOC, MBC, NO3 ?, NH4 +, SOC and TN) in smaller aggregates. For the N addition treatments, the emission/uptake rates of GHG decreased after N addition across aggregate sizes especially in mixed Korean pine forest where CO2 emission was decreased about 30 %. Similar patterns in GHG emission/uptake rates expressed by per soil organic matter basis were observed in response to N addition treatments, indicating that N addition might decrease the decomposability of SOM in mixed Korean pine forest. The global warming potential (GWP) which was mainly contributed by CO2 emission (>98 %) decreased in mixed Korean pine forest after N addition but no changes in broad-leaved forest.

Conclusions

These findings suggest that soil aggregate size is an important factor controlling GHG emissions through mediating the content of substrate resources in temperate forest ecosystems. The inhibitory effect of N addition on the GHG emission/uptake rates depends on the forest type.
  相似文献   

16.

Purpose

Soil water overconsumption is threatening the sustainability of regional vegetation rehabilitation in the Loess Plateau of China. In this study, two typical natural and artificial grasslands under different precipitation regimes were selected and the spatial variations in and the factors that impact the soil water content were investigated to provide support for vegetation restoration and sustainability management in the Loess Plateau.

Materials and methods

Soil samples were collected in May and September. Medicago sativa L. and Stipa bungeana Trin. were selected as representatives of natural and artificial grasslands, respectively. Soil measurements were conducted at the beginning and end of the rainy seasons at soil depths of 0 to 3 m in 0.2-m increments, and 147 undisturbed and 2205 disturbed soil samples were collected at 27 sampling sites with different precipitation gradients across the Loess Plateau. The plant height, the field capacity, the saturated hydraulic conductivity, the bulk density, and the slope gradient were considered as impact factors. Statistic methods included one-way ANOVA, correlation tests, significance tests, and redundancy analyses.

Results and discussion

Spatial variation trends indicated that the mean soil water content increased as the multi-year mean precipitation increased, and the soil water content was higher in the natural grassland of Stipa bungeana Trin. than in the artificial grassland of Medicago sativa L. in the same precipitation gradient zone. Vertical spatial variation trends indicated that the soil water content was higher in most surface layers than in the deep layer and lower at the end of the rainy season than at the beginning of the rainy season, when the mean annual precipitation was less than 510 mm. The soil water content of the Stipa bungeana Trin. grassland was significantly correlated with precipitation and plant height, whereas the soil water content of the Medicago sativa L. grassland only exhibited a significant correlation with precipitation. Thus, grasses with fine palatability, good adaptability, and low water consumption should be cultivated in the Loess Plateau.

Conclusions

The decreased soil water content is more obvious in the soil layers with active vegetation roots. In the areas with multi-year precipitation at 370–440 mm, natural grasslands are more suitable for restoration and these areas should be treated as key areas for vegetation restoration. With regard to the spatial distribution of vegetation restoration, the economic and ecological benefits must be balanced so that the ratio of artificial vegetation and natural restoration can be optimized to realize the continued sustainability of vegetation restorations.
  相似文献   

17.

Purpose

The nitrification inhibitor 3,4-dimethylpyrazol-phosphate (DMPP) and the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) can mitigate N losses through reducing nitrification and ammonia volatilization, respectively. However, the impact of repeated applications of these inhibitors on nitrogen cycling microorganisms is not well documented. This study aimed to investigate the changes in the abundance and community structure of the functional microorganisms involved in nitrification and denitrification in Australian pasture soils after repeated applications of DMPP and nBTPT.

Materials and methods

Soil was collected in autumn and spring, 2014 from two pasture sites where control, urea, urea ammonium nitrate, and urea-coated inhibitors had been repeatedly applied over 2 year. Soil samples were analyzed to determine the potential nitrification rates (PNRs), the abundances of amoA, narG, nirK and bacterial 16S rRNA genes, and the community structure of ammonia oxidizers.

Results and discussion

Two years of urea application resulted in a significantly lower soil pH at Terang and a significant decrease in total bacterial 16S rRNA gene abundance at Glenormiston and led to significantly higher PNRs and abundances of ammonia oxidizers compared to the control. Amendment with either DMPP or nBTPT significantly decreased PNRs and the abundance of amoA and narG genes. However, there was no fertilizer- or inhibitor-induced change in the community structure of ammonia oxidizers.

Conclusions

These results suggest that there were inhibitory effects of DMPP and nBTPT on the functional groups mediating nitrification and denitrification, while no significant impact on the community structure of ammonia oxidizers was observed. The application of nitrification or urease inhibitor appears to be an effective approach targeting specific microbial groups with minimal effects on soil pH and the total bacterial abundance.
  相似文献   

18.

Goal, Scope and Background

Distribution of hydrophobic organic contaminants in abiotic compartments is essential for describing their transfer and fate in aquatic ecosystems. Taihu Lake is the third largest freshwater lake in China. Water quality of Taihu Lake has deteriorated greatly during the last decades and has threatened the water supply. The aim of the present study was to investigate the partitioning of polycyclic aromatic hydrocarbons (PAHs) among overlying water, suspended particulate matter (SPM), sediments, and pore water in Meiliang Bay, Taihu Lake and to provide useful information for the ecological engineering in this area.

Materials and Methods

Overlying water and surface sediment were sampled from six sites in Meiliang Bay, Taihu Lake, China. Within 72 h of sampling, sediments were centrifuged to obtain the pore water. Overlying water samples were filtered to separate dissolved and SPM samples. After extraction, samples were purified following a clean-up procedure. PAH fraction was obtained by elution with a mixture of hexane: DCM (7:3, V/V) and analyzed by GC/MS.

Results

PAHs concentrations in overlying water varied from 37.5 ng/L to 183.5 ng/L. Concentrations of PAHs in pore water were higher than those in overlying water. The total concentrations of 16 priority PAHs in sediments ranged from 2091.8 ng/g-dw to 4094.4 ng/g-dw. PAHs concentrations on SPM were decreased with suspended solid concentrations (SSC). Total PAHs concentrations on SPM varied in the range of 3369.6 ng/g-dw to 7531.1 ng/g-dw. The partition coefficients between sediment and overlying water (log K oc) for PAHs with log K ow<5 were positively correlated with their octanol-water partition coefficients (log K ow) (n=39, r=0.79, p<0.0001). Partition coefficients between sediment and pore water (log K oc′) for all PAHs were also significantly correlated with their log K ow values (n=48, r=0.82, p<0.0001).

Discussion

In general, PAHs derived from combustion sources tend to bind strongly to soot particles in natural sediment. Consequentially, K oc values observed in the natural environment could be orders of magnitude higher than those predicted by linear correlation relationships under laboratory conditions. In the present study, the ratio of log K oc values to log K ow values falls consistently above 1, indicating that the sediment soot carbon in the bay was more attractive for PAHs than n-octanol. The log K oc′ was also higher than that predicted under laboratory conditions, suggesting that the measured pore water PAH concentrations were lower than those predicted. That is to say, not all the sediment PAHs can be available to partition rapidly into sediment pore waters. A variation in soot content is a possible reason. Furthermore, concentrations of PAHs on SPM were higher than those in sediments. The compositions of PAHs on SPM and in sediments were similar, indicating the importance of re-suspension process of sediments in the partitioning process of the shallow lake.

Conclusions

The results indicated the equilibrium partitioning model could be used to predict PAHs distribution in various phases of a shallow lake in the stagnation period, but re-suspension processes should be considered to modify the relationship between log K ocs and log K ows.

Recommendations and Perspectives

Concentration, particle size and composition of resuspended particles could affect the relationship between log K ocs and log K ows. Further work should be done under field conditions, especially where a steady thermodynamic equilibrium state could be assumed.
  相似文献   

19.

Purpose

Knowledge of archaeal communities is essential for understanding of the mechanism of carbon and nitrogen cycle in the mangrove sediment ecosystem. Presently, little is known about archaeal communities in the Dongzhaigang mangrove sediments. This study aimed to characterize the archaeal communities in sediments of different mangrove stands and to find out the correlations between archaeal communities and the environmental factors of sediments.

Materials and methods

Sediment samples were collected from the Dongzhaigang mangrove forest for analysis of soil properties and archaeal communities, by national standard methods and Illumina Miseq archaeal 16S ribosomal RNA (rRNA) gene sequencing, respectively.

Results and discussion

The archaeal community in the Dongzhaigang mangrove forest was constituted by some phyla from “TACK” and “DPANN” supergroups, and dominated by Euryarchaeota. Among sediments of the four mangroves in Dongzhaigang, principal coordinates analysis (PCoA) scatter plot showed a trend of difference in the archaeal community structure in the Bruguiera gymnoihiza and Kandelia candel stands from that in the Laguncularia racemosa and Sonneratia apetala stands. The abundance of the order Methanosarcinales was the highest in the sediments of K. candel mangroves, whereas the order of Methanobacteriales dominated in B. gymnoihiza sediments. The highest richness and diversity values of Archaea occurred in K. candel sediments, while the lowest in B. gymnoihiza. Pearson correlation showed the significant relationships between sediment properties and some dominant genera, with a positive and significant correlation between sediment properties and genus Methanobacterium, coinciding with the maximum values of sediment properties and abundance of Methanobacterium in the sediment of B. gymnoihiza. Such results indicated that the difference of archaeal community structure among mangrove sediments may be caused by the different sediment characteristics. Methanogenic communities in the Dongzhaigang mangrove forest sediments were, at the order level, constituted by Methanobacteriales, Methanomicrobiales, Methanosarcinales, and Methanomassiliicoccales.

Conclusions

The investigation indicated that the Dongzhaigang mangrove sediment ecosystems support diverse archaeal communities and methanogenic communities, and that there was a general trend of difference in the archaeal community structure in the B. gymnoihiza and K. candel mangrove sediments from that in the L. racemosa and S. apetala sediments. Such difference may be caused by the difference in sediment characteristics.
  相似文献   

20.

Purpose

Thaumarchaeota is an ecologically relevant archaeal phylum which may significantly contribute to global nitrogen cycling. Thaumarchaeotal abundance, composition, and activity can be changed by soil pH and pollutants such as toxic metals. This study aims to examine the responses of thaumarchaeotal community to soil pH variation and polycyclic aromatic hydrocarbon (PAH) pollution which may co-occur in agricultural soils.

Materials and methods

Field soil samples were collected from agricultural land impacted by both acidification and PAH contamination. Thaumarchaeotal abundance and composition were assessed using molecular approaches targeting 16S rRNA or amoA genes and were linked to environmental factors by correlation and canonical correspondence analysis (CCA). To evaluate the short-term responses of Thaumarchaeota to PAHs, additional soil microcosms amended with either three selected PAHs were established. Changes in thaumarchaeotal communities during the incubation were monitored.

Results and discussion

A significant correlation between thaumarchaeotal gene abundance and soil pH was observed within field samples, with the I.1a-associated group enriched when pH <5.0. CCA suggests that the community variation was primarily related to soil pH. In contrast, the effects of PAHs were minimal. In soil microcosms, high concentrations of PAHs persisted after the 4-week incubation. Independent of the PAHs added, thaumarchaeotal amoA abundance slightly increased and the compositions were stable at the end of the incubation. This might be associated with the pollutants bioavailability and potential microbe-PAH interactions in the soil.

Conclusions

Soil pH variation strongly shapes the agricultural soil thaumarchaeotal community, whereas PAH effects appear to be marginal even in the presence of high concentrations of pollutants. The complicated interaction between soil matrix, pollutants, and Thaumarchaeota requires further study.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号