首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The pattern of eukaryotic macroorganisms varies with altitude is well-documented; by contrast, very little is known of how a bacterial pattern in soils varies with the elevation in a montane ecosystem. Mostly, previous studies on soil bacteria have either found a diversity decline, no trend, or a hump-back trend with increasing elevation. The aim of this study was to investigate the bacterial community composition and diversity patterns of Mount Nadu in Wolong Nature Reserve, Western Sichuan Plateau (3000–3945 masl).

Materials and methods

In total, 30 soil samples from the mountain at 10 sampling elevational zones (every 100 m from the baseband to the summit) were collected. High-throughput pyrosequencing approach was performed of soil bacterial 16S rRNA targeting V3?+?V4 region by MiSeq PE300 and taxonomically classified based on Silva database. Bacterial community composition and diversity patterns were detected, and bacterial data were correlated with environmental factors to determine which factors influenced bacterial community composition.

Results and discussion

We obtained an average of 30,172 sequences per soil and found that the relative abundance of Acidobacteria and Proteobacteria count more than 70 % of the whole bacteria. Cooperative network analysis also revealed that Acidobacteria and Proteobacteria were important hubs in the community. Bacterial diversity pattern was found to be a significant hollow trend along altitudinal gradients and diversity of the dominant phyla (e.g., Acidobacteria, Proteobacteria) followed the results of the whole bacterial diversity. Moreover, distance-based linear model identified that soil pH and TN significantly provided 7.40 and 6.01 % of the total variation.

Conclusions

The hollow trend of bacterial diversity has rarely been observed in nature. It indicated that no unifying bacterial diversity pattern can be expected along elevational gradients among the mountain system, and our result suggested the importance of environmental factors in structuring bacterial communities in this montane ecosystem.
  相似文献   

2.

Purpose

Although archaea play an important role in nutrients cycling, the archaeal community in a reservoir water-level fluctuation zone (WLFZ) remains unclear. An elucidation of archaeal community responding to the environmental variables is essential to understand the nutrients dynamics in WLFZ. This study focused on the response of the archaeal community structure and abundance to the periodic water flooding along an elevation gradient in the WLFZ of the Three Gorges Reservoir.

Materials and methods

Along the elevation gradient (152–175 m) of the study area, soil samples in the beginning and late stages of water flooding were collected to investigate the influence of water flooding on the archaeal community in soil, using quantitative PCR and Illumina high-throughput sequencing approaches.

Results and discussion

An increase of archaeal abundance from 3.8?×?108 to 3.8?×?109 copies (g d.w.s)?1 on average was observed after water flooding. The archaeal abundance was positively correlated with the contents of ammonium, organic matter, and moisture in soil and with the accumulated flooding time. Higher diversity was observed in dry samples (non-flooded soil samples) rather than wet samples (flooded soil samples). The Thaumarchaeota were predominant in most of the dry samples. Interestingly, high proportions of Candidatus Nitrososphaera were observed in the transition zone, while euryarchaeotal methanogens dominated the wet samples. The proportion of methanogens decreased dramatically in the dry samples at higher elevations, which was associated with the decrease of the moisture content and the probably increase of available oxygen in soil.

Conclusions

Archaeal abundance, diversity, and community composition shifted along an elevation gradient and were influenced by water flooding. The increased archaea abundance after water flooding and elevation related community composition and diversity indicated that water flooding was a key dynamic environmental variable in the WLFZ.
  相似文献   

3.

Purpose

There is growing evidence for a tight linkage between the structure and function of microbial communities and for the importance of this relationship in ecosystem responses to disturbances such as sea-level rise (SLR). While the role of plants in determining the capacity of salt marshes to keep pace with SLR through sediment accretion has received considerable attention, the role of microbes in offsetting these gains via decomposition is less understood.

Materials and methods

We conducted a controlled experiment to determine the structural and functional responses of microbes to SLR, using soil from the low intertidal zone of two New England salt marshes in Massachusetts and New Hampshire, USA. We used terminal restriction fragment length polymorphisms (t-RFLPs) generated from microbial 16S rDNA to evaluate community composition and diversity and focused on changes in respiration with SLR, measured as total respired carbon normalized by percent organic matter, as a surrogate for decomposition rate.

Results and discussion

We observed a 24% reduction in microbial respiration with a simulated rise in sea level of 40 cm. This functional change was accompanied by a structural shift in microbial community composition among samples from New Hampshire but not Massachusetts, assessed via principal coordinate analysis of t-RFLP data. We also found greater microbial diversity within our New Hampshire samples, suggesting that low diversity may constrain community compositional shifts.

Conclusions

Our results suggest that decreased microbial respiration could alleviate the negative effects of SLR on salt marsh surface elevation, at least in the short term, and that the diversity of the soil microbial community may positively influence functional responses such as respiration.
  相似文献   

4.

Purpose

Fungi are essential components of soil microbial communities and have a crucial role in biogeochemical processes. Alpine regions are sensitive to climate change, and the importance of changes in fungal community composition along altitudinal gradients in alpine regions is hotly debated.

Materials and methods

We used 454 pyrosequencing approaches to investigate the fungal communities at 1600, 2300, 2800, 3000, and 3900 m above sea level along an altitudinal gradient on Mount Gongga.

Results and discussion

The results showed that Agaricomycetes, Sordariomycetes, and Tremellomycetes are the dominant classes at all sampling sites. Operational taxonomic unit richness decreased with increasing altitude, and the fungal communities were clustered into three groups that corresponded to altitudes of, i.e., 1600, 2300, and above 2800 m. The evenness of fungi was not significantly correlated with altitude, whereas beta diversities were significantly correlated with altitude. The distance-based redundancy analysis and Mantel test indicated that the composition of fungal assemblages was mostly driven by altitude and temperature.

Conclusions

Our results indicated that ecological processes possibly related to altitude and temperature play an important role in structuring fungal biodiversity along the elevational gradient. Our results highlight that different microbes may respond differently to environmental gradients.
  相似文献   

5.

Purpose

The influence of human activities on the development and functioning of urban soils and their profile characteristics is still inadequately understood. Microbial communities can change due to anthropogenic disturbances and it is unclear how they exist along urban soil profiles. This study investigates the dynamic soil properties (DSPs) and the bacterial communities along the profiles of urban soils in New York City (NYC) with varying degree of human disturbances.

Materials and methods

Eleven pedons were investigated across NYC as well as one control soil in a nearby non-urban area. Six soils are formed in naturally deposited materials (ND) and five in human-altered and human-transported materials (HAHT). For each soil, the profile was described and each horizon was sampled to assess DSPs and the bacterial community composition and diversity.

Results and discussion

The development and the DSPs of NYC soils are influenced by the incorporation of HAHT materials and atmospheric deposits. The most abundant bacterial taxa observed in the NYC soils are also present in most natural and urban soils worldwide. The bacterial diversity was lower in some soils formed in ND materials, in which the contribution of low-abundance taxa was more restricted. Some differences in bacterial community composition separated the soils formed in ND materials and in dredged sediments from the soils formed in high artifact fill and serpentinite till. Changes in bacterial community composition between soil horizons were more noticeable in urban soils formed in ND materials than in those formed in HAHT materials which display less differentiated profiles and in the non-urban highly weathered soil.

Conclusions

The bacterial diversity is not linked to the degree of disturbance of the urban soils but the variations in community composition between pedons and along soil profiles could be the result of changes in soil development and properties related to human activities and should be consistently characterized in urban soils.
  相似文献   

6.

Purpose

Nanoparticles (NPs) have received increased attention in recent past due to their unique distinct properties. Metal-based NPs are widely used in chemical and allied sector. Most of the research is directed to study the efficiency of NPs in medicine and agriculture. The aim of this review is to explore the possible threats posed by toxicity of various NPs on plants and microbial diversity.

Materials and methods

First, major sources of NPs to the environment were analyzed. The effects of metal-based NPs on the microbiota and plants are presented in this review. The results obtained by the authors during last 12 years of research are used.

Results and discussion

The exposure of soil to nanoparticles causes a decrease in soil microbial biomass and enzymatic activity, which impacts microbial community composition including yeasts, bacteria, fungi, and biological diversity. The effects of NPs on plants result in various types of abnormalities. Nanoparticles can also pose risks to human health.

Conclusions

Increased applications of NPs pose a threat to beneficial microbial communities as well as crops and soils. Thus, it is important to explore whether NPs could compromise crop yield, soil properties, soil organisms, and functional activities of soil.
  相似文献   

7.

Purpose

Many biotic and abiotic factors influence the structural and functional diversity of microbial communities in the rhizosphere. This study aimed to understand the dynamics of fungal community in the soybean rhizosphere during soybean growth and directly compare the influence of abiotic and biotic factors in shaping the fungal communities across different growth periods.

Materials and methods

High-throughput sequencing based on internal transcribed spacer (ITS) region, quantitative PCR, and statistical analysis approaches were used to measure the fungal community structure, abundance, and dynamic changes of 63 rhizosphere soil samples which were taken from different fertilization regimes and rhizobium inoculation treatments during three soybean growth stages.

Results and discussion

Among the taxa examined, more than 16 fungal classes were detected from the 21 soil samples. Sordariomycetes was the most abundant class, followed by Dothideomycetes, Agaricomycetes, and Eurotiomycetes. Soybean growth stage was the most important factor determining the diversity patterns of the fungal communities. Fungal community diversity was closely related to the base-fertilizer application, and fungal community richness was associated with rhizobium inoculation. Beta diversity of the fungal community based on the Bray-Curtis distance was significantly related to plant growth stage. Network analysis showed that mutual cooperation among fungal taxa became more intimate during the plant growth.

Conclusions

Compared with edaphic properties, plant growth stage was the dominant factor in determining soil fungal community dynamics. Base-fertilizer and rhizobium inoculation affected the alpha diversity of the soil fungi.
  相似文献   

8.

Purpose

Soil microbes play important roles in plant nutrition and soil conservation, and the diversity and population of soil microbe are influenced by abiotic and biotic factors associated with different soil managements. However, the information concerning soil microbe diversity and population structure and its relation with soil fertility and enzyme activities are scarce in crop rotation under different soil management system.

Materials and methods

This paper reports the effects of three weeding managements (herbicide (2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl) acetomide, C14H20ClNO2), manual weeding, and no weeding (CK)), on soil microbial diversity, population structure, and its relationship with soil active organic matter (AOM) and pH, and the activity of soil enzymes like sucrase, catalase, and urease activities from long-term test area in red soil upland field in southeast China, which was set up since 2006. Soil samples at 0–20-cm depths were collected before (8 years) and after (8 + 1 years) weeding management in April 2014.

Results and discussion

Soil enzymes (sucrase, catalase, and urease activity) and soil microbial populations had no significant difference (P > 0.05) under the three weeding treatments. Based on richness of microbial population up to 0.10%, the phyla Proteobacteria and Actinobacteria highly dominated the three soil treatments, averagely accounting for 21.76 and 21.44%. Chloroflexi was the next phylum, about accounting for 6.84%. Firmicutes, Verrucomicrobia, and Planctomycetes phylum accounted for 4.98, 4.78, and 4.23%, respectively. The percentage of Gemmatimonadetes was 2.76%, and that of Bacteroidetes was about 1.45%. Armatimonade and Nitrospira were the lowest, with 0.69 and 0.26%, respectively. Among the 20 phyla, only 5 had significant correlation with some of the soil properties. Twenty-one in 46 classes had significant correlation with some of the soil properties. Armatimonadetes and Fusobacteria had positive correlation with moisture. Acidobacteria_Gp3, Deltaproteobacteria, Chthonomonadetes, Armatimonadetes_gp4, and Euryarchaeota also were positively correlated with moisture. Negative correlation between Armatimonadetes, Chloroflexi, Chthonomonadetes, and Armatimonadetes_gp5 and AOM exists, and Armatimonadetes, Chthonomonadetes, Clostridia, Armatimonadetes, and pH were negatively correlated. Fusobacteria was positively correlated with catalase. Acidobacteria_Gp10 and Armatimonadia were positively correlated with catalase. Chthonomonadetes, Clostridia, and Armatimonadetes_gp5 were correlated with urease. Gammaproteobacteria and Flavobacteria were correlated with sucrase.

Conclusions

For long-term herbicide experiment conducted on the Dongxiang upland site, no significant effect of herbicide on soil microbial community composition and enzyme activities was found. Further work is needed to relate microbial community structure and function in different herbicide systems or season sampling, even to detect herbicide effect on community structure during the growing season.
  相似文献   

9.

Purpose

Thaumarchaeota is an ecologically relevant archaeal phylum which may significantly contribute to global nitrogen cycling. Thaumarchaeotal abundance, composition, and activity can be changed by soil pH and pollutants such as toxic metals. This study aims to examine the responses of thaumarchaeotal community to soil pH variation and polycyclic aromatic hydrocarbon (PAH) pollution which may co-occur in agricultural soils.

Materials and methods

Field soil samples were collected from agricultural land impacted by both acidification and PAH contamination. Thaumarchaeotal abundance and composition were assessed using molecular approaches targeting 16S rRNA or amoA genes and were linked to environmental factors by correlation and canonical correspondence analysis (CCA). To evaluate the short-term responses of Thaumarchaeota to PAHs, additional soil microcosms amended with either three selected PAHs were established. Changes in thaumarchaeotal communities during the incubation were monitored.

Results and discussion

A significant correlation between thaumarchaeotal gene abundance and soil pH was observed within field samples, with the I.1a-associated group enriched when pH <5.0. CCA suggests that the community variation was primarily related to soil pH. In contrast, the effects of PAHs were minimal. In soil microcosms, high concentrations of PAHs persisted after the 4-week incubation. Independent of the PAHs added, thaumarchaeotal amoA abundance slightly increased and the compositions were stable at the end of the incubation. This might be associated with the pollutants bioavailability and potential microbe-PAH interactions in the soil.

Conclusions

Soil pH variation strongly shapes the agricultural soil thaumarchaeotal community, whereas PAH effects appear to be marginal even in the presence of high concentrations of pollutants. The complicated interaction between soil matrix, pollutants, and Thaumarchaeota requires further study.
  相似文献   

10.

Purpose

The objectives of this study were to investigate (i) how the changes in cultivation pattern of vegetable affect soil microbial communities and (ii) the relationships between soil physico-chemical properties and microbial community structure.

Materials and methods

Soil samples were collected from fields growing vegetable crops with various times of plastic-greenhouse cultivation (0, 1, 4, 7 and 15 years, respectively). Phospholipid fatty acid (PLFA) analysis was conducted to reveal the soil microbial community of the test soils.

Results and discussion

The open-field soil had the highest total PLFAs amount. Although the Shannon-Weaver index was also highest in the open-field soil, the difference was not significant. Plastic-greenhouse cultivation decreased PLFAs species diversity and richness. Cluster analysis and principal component analysis (PCA) of the PLFA profiles revealed distinct groupings at different times during plastic-greenhouse cultivation.

Conclusions

Ultimately, PLFA analyses showed that long-term plastic-greenhouse cultivation make the physiological status of soil microbial community worse and increased stress level of microorganisms. And soil microbial community was significantly affected by field water capacity and water-soluble organic carbon. The study highlights the potential risk of long-term plastic-greenhouse cultivation to soil microbial community.
  相似文献   

11.

Purpose

The variation in soil microbial community patterns is primarily influenced by ecological processes associated with spatial distance and environmental heterogeneities. However, the relative importance of these processes in determining the patterns of soil microbial biodiversity in different successional forests remains unclear.

Materials and methods

Based on the species data from denaturing gradient gel electrophoresis (DGGE) analysis, we described the composition and beta diversity of ammonia-oxidizing archaea (AOA) community, an important functional microbial group in regulating nitrogen cycle, in a middle-succeed stand (60 years of secondary succession) and an undisturbed native stand in a subtropical forest in southern China. The composition pattern was examined using a multi-response permutation procedure (MRPP), and the beta diversity was described using the Sørensen index. The relative influence of edaphic, vegetational, spatial, and topographical factors on AOA composition and beta diversity was assessed by variation partitioning and multiple regression on distance matrices (MRM), respectively.

Results and discussion

We did not find any stand-specific patterns in AOA community composition in the two stands; however, the influential variables were different between the two stands; 7.3 and 4.5 % of the total variation in AOA community composition could be explained by edaphic (i.e., available potassium and total phosphorus) and spatial variables, respectively, in the middle-succeed stand, while 3.7 and 2.8 % of the variation were explained by spatial variable and available phosphorus, respectively, in the native stand. Soil total phosphorus influenced the beta diversity of AOA community most in the middle-succeed stand, while genetic distance of tree species was found to be the most important factor in driving the beta diversity pattern in the native stand.

Conclusions

Soil nutrients influenced the beta diversity of AOA community in the middle-succeed stand more than that in the native stand, while vegetation is more important in the native stand. The substantial unexplained variations were possibly due to the effects of other unmeasured variables. Nevertheless, dispersal process is more important in controlling AOA community composition in the native stand, while processes associated with environmental heterogeneities are more important in the middle-succeed stand in this subtropical forest.
  相似文献   

12.

Purpose

Exoelectrogens are important microorganisms playing crucial roles in the biogeochemistry of elements in paddy soils. But it remains unclear how the soil properties and geographical distances affect the exoelectrogen communities of Chinese paddy soils. So the objectives of this study were to investigate the diversity and composition of these microbial communities which were enriched on the anodes of soil microbial fuel cells (SMFCs) and to elucidate the links between the microbial community compositions and their driving factors.

Materials and methods

We used Illumina HiSeq sequencing to determine the bacterial community structures which were enriched on the anodes of SMFCs. Variance partitioning analysis (VPA) was used to obtain the contribution of soil properties and geographical distance to the variations of bacterial communities.

Results and discussion

Active bacterial community on anodes of the closed circuit SMFCs differs significantly from the control open circuit SMFCs. Anodes of all the closed circuit SMFCs were characterized by the presence of high numbers of Nitrospira and Anaerolineae. Taxonomic similarities and phylogenetic similarities of bacterial communities from different paddy soil samples across North and South China were found to be significantly correlated with geographical distances. The relationship between the similarities and the geographic distance exhibited a distance-decay relationship. VPA showed that both geographical distances and soil properties affect the structure of bacterial communities detected on anodes.

Conclusions

Our study gives a foundation for understanding the distribution and diversity of exoelectrogens in paddy soils and elucidates the links between the distribution and the diversity of extracellular respiring bacteria and their driving factors. Furthermore, this study also identifies the crucial factors which should be used to evaluate the response of exoelectrogens to environmental perturbations in Chinese paddy soils.
  相似文献   

13.

Purpose

The study aimed at comparing organic matter decomposition in two semi-natural agrobiocenozes, namely fallows and meadows, with similar plant biomass but differing in plant community composition and diversity and in succession stage.

Materials and methods

The decomposition rate of a standard material (cellulose) was measured in soils from six fallows and six meadows spanning a few kilometres apart. The mathematical model was fitted to the data.

Results and discussion

The model showed a significantly longer lag-time in cellulose decomposition in the meadows. Despite the delayed start of decomposition in the meadows, the estimated decomposition rates were similar in both ecosystem types, once the decay started.

Conclusions

The faster start of decomposition in fallows seems to be promoted by higher contents of nitrates and phosphates in the fallow soils. The fallows, as younger ecosystems, may have faster C turnover than older grasslands due to remains of fertilisers on these ex-arable fields.
  相似文献   

14.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

15.

Purpose

Soil microbes control the bioelement cycles and energy transformation in forest ecosystems, and are sensitive to environmental change. As yet, the effects of altitude and season on soil microbes remain unknown. A 560 m vertical transitional zone was selected along an altitude gradient from 3023, 3298 and 3582 m, to determine the potential effects of seasonal freeze-thaw on soil microbial community.

Materials and methods

Soil samples were collected from the three elevations in the growing season (GS), onset of freezing period (FP), deeply frozen period (FPD), thawing period (TP), and later thawing period (TPL), respectively. Real-time qPCR and polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) were used to measure the abundance and structure of soil microbial community.

Results and discussion

The bacterial, archaeal, and fungal ribosomal DNA (rDNA) copy numbers decreased from GS to freezing stage (FP and FPD) and then increased in thawing stage (TP and TPL). Similarly, the diversity of microbial community varied with seasonal freeze-thaw processes. The diversity index (H) of the bacterial and archaeal communities decreased from GS to FP and then increased to TPL. The fungal community H index increased in the freezing process.

Conclusions

Our results suggested that abundance and structure of soil microbial community in the Tibetan coniferous forests varied by season and bacterial and archaeal communities respond more promptly to seasonal freeze-thaw processes relative to fungal community. This may have important implications for carbon and nutrient cycles in alpine forest ecosystems. Accordingly, future warming-induced changes in seasonal freeze-thaw patterns would affect soil nutrient cycles via altering soil microbial properties.
  相似文献   

16.

Purpose

Rice paddy soils undergo pedogenesis driven by periodic flooding and drainage cycles that lead to accumulation of organic matter and the stratification of nutrients and oxygen in the soil profile. Here, we examined the effects of continuous rice cultivation on microbial community structures, enzyme activities, and chemical properties for paddy soils along a chronosequence representing 0–700 years of rice cropping in China.

Materials and methods

Changes in the abundance and composition of bacterial and fungal communities were characterized at three depths (0–5, 5–10, and 10–20 cm) in relation to organic carbon, total nitrogen, dissolved organic carbon, microbial biomass carbon/nitrogen, and activities of acid phosphatase, invertase, and urease.

Results and discussion

Both soil organic carbon and total nitrogen increased over time at all three depths, while pH generally decreased. Microbial abundance (bacteria and fungi) and invertase and urease activity significantly increased with the duration of rice cultivation, especially in the surface layer. Fungal abundance and acid phosphatase activity declined with depth, whereas bacterial abundance was highest at the 5–10-cm soil depth. Profiles of the microbial community based on PCR-DGGE of 16S rRNA indicated that the composition of fungal communities was strongly influenced by soil depth, whereas soil bacterial community structures were similar throughout the profile.

Conclusions

Soil bioactivity (microbial abundance and soil enzymes) gradually increased with organic carbon and total nitrogen accumulation under prolonged rice cultivation. Microbial activity decreased with depth, and soil microbial communities were stratified with soil depth. The fungal community was more sensitive than the bacterial community to cultivation age and soil depth. However, the mechanism of fungal community succession with rice cultivation needs further research.
  相似文献   

17.

Purpose

The alpine meadow has received mounting attention due to its degradation resulting from overgrazing on the Tibetan Plateau. However, belowground biotic characteristics under varied grazing stresses in this ecosystem are poorly understood.

Materials and methods

Here, the responses of soil protozoan abundance, community composition, microbial biomass, and enzyme activity to five grazing patterns including (1) artificial grassland without grazing (AG), (2) winter grazing (WG), (3) grazing for 7 months within a fence (GF), (4) continuous grazing for a whole year (CG), and (5) natural heavy grazing (HG) were investigated for two continuous years. Soil protozoan community composition was investigated using the most possible number (MPN) method, and soil microbial biomass and enzyme activity were analyzed using chloroform fumigation extraction and substrate utilization methods, respectively. Multivariate statistical analysis, the analysis of variance (ANOVA), multiple comparisons, and correlation analysis were together performed.

Results and discussion

The WG treatment had the highest abundance of total protozoa (2342–2524 cell g?1). Compared with AG treatment, HG treatment significantly reduced the abundance of soil total, flagellate and ciliate protozoa, and protease activities in 2012 and 2013. Significantly, lower soil microbial biomass nitrogen (MBN) was also observed in the HG (6.60 and 14.6 mg N kg?1) than those in other four treatments (22.3–82.9 mg N kg?1) both in 2012 and 2013, whereas significantly higher microbial biomass carbon (MBC) was observed in HG than that in AG treatment in 2012. Moreover, significantly positive correlations were detected between the abundance of soil protozoa and soil moisture, pH, organic C, total N, and MBN. Our results indicated that soil protozoa showed a negative response to increasing grazing intensities and therefore, suggesting that aboveground grazing practices also exerted strong impact on belowground protozoa, not only on soil microbial characteristics.

Conclusions

Soil protozoan community composition was apparently different between the HG treatment and other four grazing patterns and was potentially impacted by altered soil properties and MBC and/or MBN. Our results suggested that moderate grazing may sustain better belowground biotic diversity and ecosystem functioning in this alpine meadow on the Tibetan Plateau.
  相似文献   

18.

Purpose

Biochar, the by-product of thermal decomposition of organic materials in an oxygen-limited environment, is increasingly being investigated due to its potential benefits for soil health, crop yield, carbon (C) sequestration, and greenhouse gas (GHG) mitigation.

Materials and methods

In this review, we discuss the potential role of biochar for improving crop yields and decreasing the emission of greenhouse gases, along with the potential risks involved with biochar application and strategies to avoid these risks.

Results and discussion

Biochar soil amendment improves crop productivity mainly by increasing nutrient use efficiency and water holding capacity. However, improvements to crop production are often recorded in highly degraded and nutrient-poor soils, while its application to fertile and healthy soils does not always increase crop yield. Since biochars are produced from a variety of feedstocks, certain contaminants can be present. Heavy metals in biochar may affect plant growth as well as rhizosphere microbial and faunal communities and functions. Biochar manufacturers should get certification that their products meet International Biochar Initiative (IBI) quality standards (basic utility properties, toxicant assessment, advanced analysis, and soil enhancement properties).

Conclusions

The long-term effects of biochar on soil functions and its fate in different soil types require immediate attention. Biochar may change the soil biological community composition and abundance and retain the pesticides applied. As a consequence, weed control in biochar-amended soils may be difficult as preemergence herbicides may become less effective.
  相似文献   

19.

Purpose

Rhizosphere bacteria play critical roles in soil nutrient cycling and plant growth during land reclamation. However, the impact of the type of capping material, used to provide functions such as preventing salt migration from saline groundwater to the cover soil, on rhizosphere bacterial community is unknown.

Materials and methods

We examined the influence of two capping materials: overburden (OB), a material excavated from below the top soil from oil sand mines, and tailings sand (TS), in comparison to the no capping layer (NC) control, on the composition, structure, and function of bacterial communities in the Pinus banksiana rhizosphere and bulk soil in the peat-mineral mix (PMM, the cover soil) in a 2-year column study simulating soil reconstruction in land reclamation in the oil sands. The bacterial community was determined through high-throughput sequencing the 16S ribosomal RNA (rRNA) gene amplicons, and the potential functional profiles were predicted from the 16S rRNA gene using PICRUSt.

Results and discussion

Difference in the relative abundance of operational taxonomic units (OTUs) between the rhizosphere and the bulk soil was lower in the NC and OB than in the TS treatment. Rhizosphere bacterial community structure in the cover soil was different among the NC, OB, and TS treatments. Difference in bacterial community structure between the rhizosphere and bulk soil was driven by soil pH and electric conductivity changes in the OB treatment and by water-soluble organic carbon in the TS treatment. The relative abundance of functional genes for nutrient metabolism in the rhizosphere increased in the TS treatment, but those for environmental adaption increased in the NC and OB treatments.

Conclusions

We conclude that the type of capping material used affects the structure, composition, and function of rhizosphere bacterial communities in cover soils used in land reclamation, and this has implications for ecosystem re-establishment in the disturbed landscape in the oil sands.
  相似文献   

20.

Purpose

The purposes of this study were to identify the influence of a severe drought period on the impact of a subsequent heat–drought disturbance on the microbial community of a Mediterranean agricultural soil and particularly to highlight the long-term effects on the microbial catabolic profiles.

Materials and methods

We performed an experiment in microcosms and applied the MicroResp? method on soil microbial communities.

Results and discussion

A 21-day combined heat–drought disturbance had less impact on soil microbial communities pre-exposed to a 73-day severe drought than on those that were not pre-exposed. These differences were observed not only for biomass and physiological traits (basal respiration, qCO2), but also for catabolic microbial structure evolution during the recovery time.

Conclusions

These observations suggest that the physiological stress imposed by the initial severe drought changed the microbial catabolic structure or physiological state and favoured a portion of the microbial community best adapted to cope with the final heat–drought disturbance. Consequently, the initial severe drought may have induced a community tolerance to the subsequent heat wave. In this study, we also note that resilience was, more than resistance, an indicator of pre-exposure to stress. In the context of assessing the effects of extreme climatic events on soil microbial processes, these results suggest that future studies should take into account the historic stress of habitats and resilience parameters.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号