首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

Chlorpyrifos can be effectively adsorbed by drinking water treatment residuals (WTR), ubiquitous and non-hazardous by-products of potable water production. The major metabolite 3,5,6-trichloro-2-pyridinol (TCP) was found to be much more mobile and toxic than its parent chlorpyrifos. To assess the feasibility of WTR amendment for attenuation of chlorpyrifos and TCP pollution, the sorption/desorption and degradation behavior of chlorpyrifos and TCP in WTR-amended agricultural soils was examined in the present study.

Materials and methods

Two representative agricultural soils were sampled from southern and northern China, respectively. The soils were amended with WTR at the rates of 0, 2, 5, and 10 % (w/w). Batch sorption/desorption test were applied to investigate the sorption/desorption characteristics of chlorpyrifos and TCP in WTR-amended soils. The influence of WTR amendment on chlorpyrifos degradation and TCP formation was evaluated using the incubation test, and its effect on the soil bacterial abundance was further studied through DNA extraction and PCR amplification.

Results and discussion

Results showed that WTR amendment (0–10 %, w/w) significantly enhanced the retention capacity of chlorpyrifos and TCP in both soils examined (P < 0.05). Fractionation analyses further demonstrated that the bioavailability of chlorpyrifos was considerably reduced by WTR amendment, resulting in a decreased chlorpyrifos degradation rate. The WTR amendment also significantly reduced the mobility of TCP formed in chlorpyrifos-contaminated soils (P < 0.001). The chlorpyrifos toxicity to soil bacteria community was largely mitigated following WTR amendment, resulting in increased total bacterial abundance.

Conclusions

Results obtained in the present study indicate a great deal of potential for the beneficial reuse of WTR as soil amendments for chlorpyrifos and TCP pollution control.
  相似文献   

2.

Purpose

Irrigation and fertilization can change soil environment, which thereby influence soil microbial metabolic activity (MMA). How to alleviate the adverse effects by taking judicious saline water irrigation and fertilization regimes is mainly concerned in this research.

Materials and methods

Here, we conducted a field orthogonal designed test under different saline water irrigation amount, water salinity, and nitrogen fertilizer application. The metabolic profiles of soil microbial communities were analyzed by using the Biolog method.

Results and discussion

The results demonstrated that irrigation amount and fertilizer application could significantly change MMA while irrigation water salinity had no significant effect on it. Medium irrigation amount (30 mm), least (50 kg ha?1) or medium (350 kg ha?1) N fertilizer application, and whatever irrigation water salinity could obtain the optimal MMA. Different utilization rates of carbohydrates, amino acids, carboxylic acids, and polymers by soil microbial communities caused the differences of the effects, and D-galactonic acid γ-lactone, L-arginine, L-asparagine, D-glucosaminic acid, Tween 80, L-threonine, and D-galacturonic acid were the indicator for distinguishing the effects.

Conclusions

The results presented here demonstrated that by regulating irrigation water amount and fertilizer application, the effects of irrigation salinity on MMA could be alleviated, which offered an efficient approach for guiding saline water irrigation.
  相似文献   

3.

Purpose

Two contrasting soils receiving long-term application of commercial sewage sludge fertilizers in China were investigated to determine the concentrations of selected nutrients, heavy metals (HMs) and polybrominated diphenyl ethers (PBDEs) present to evaluate the impact of sewage sludge fertilizer on soil fertility and environmental risk.

Materials and methods

Soil samples were collected from Tangshan City, Hebei province and Ningbo City, Zhejiang province and divided into two portions, one of which was air-dried and sieved through 2-, 0.25- and 0.149-mm nylon mesh for determination of nutrients and heavy metals. The other portion was frozen at ?20°C, freeze-dried and sieved through 2-mm nylon mesh for PBDE analysis. The concentrations of nutrients, heavy metals and PBDEs were determined in all samples.

Results and discussion

Concentrations of nutrients and heavy metals in soils amended with low rates of sewage sludge fertilizer (SSF) and conventional fertilizer were compared. After long-term excessive amendment with SSF from Ningbo City (SSF-N), the concentrations of soil total N, P, aqua regia-extractable HMs and DTPA extractable HMs were higher than the control, especially in the arable layer. Moreover, the concentration of aqua regia-extractable Zn (457 mg kg?1) exceeded the recommended China Environmental Quality Standard for soils (GB15618-1995). All 8 target PBDE congeners were found in fertilizer SSF-N and soil with excessive amendment with SSF-N for 12 years, but the concentrations of 8 different PBDEs in SSF-N-amended soil were not significantly different from control soil.

Conclusions

Both economic and environmental benefits can be obtained by careful application of sewage sludge fertilizer to recycle plant nutrients. Repeated and excessive application rates of sewage sludge fertilizer may pose environmental risk, especially in respect of soil heavy metal and PBDE contamination, and high concentrations of phosphorus may also be environmentally detrimental.
  相似文献   

4.

Purpose

Increasing data have shown that biochar amendment can improve soil fertility and crop production, but there is little knowledge about whether biochar amendment can improve water infiltration in saline soils. We hypothesized that biochar amendment could promote water infiltration in saline soil. The aims of this study were to evaluate the effects of biochar amendment on water infiltration and find the suitable amendment rate and particle size of biochar as a saline soil conditioner.

Materials and methods

We measured water infiltration parameters in a coastal saline soil (silty loam) amended with non-sieved biochar at different rates (0.5, 1, 2, 5, and 10%, w/w) or sieved biochar of different particle sizes (≤?0.25 mm, 0.25–1 mm, and 1–2 mm) at 1 and 10% (w/w).

Results and discussion

Compared with the control, amending non-sieved biochar at 10% significantly decreased water infiltration into the saline soil (P?<?0.05). In contrast, sieved biochar of ≤?0.25 mm significantly improved water infiltration capacity, irrespective of the amendment rate. Sieved biochar of 1–2 mm was less effective to improve soil porosity and when amended at 10%, it even reduced the water infiltration capacity. The Philip model (R2?=?0.983–0.999) had a better goodness-of-fit than the Green-Ampt model (R2?=?0.506–0.923) for simulation of cumulative infiltration.

Conclusions

Amending biochar sieved to a small particle size improved water infiltration capacity of the coastal saline soil compared with non-sieved biochar irrespective of the amendment rate. This study contributes toward improving the hydrological property of coastal saline soil and rationally applying biochar in the field.
  相似文献   

5.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

6.

Purpose

Fruiting vegetables are generally considered to be safer than other vegetables for planting on cadmium (Cd)-contaminated farms. However, the risk of transferring Cd that has accumulated in the stems and leaves of fruiting vegetables is a major issue encountered with the usage of such non-edible parts. The objective of this study was to resolve the contribution of arbuscular mycorrhizal (AM) fungi to the production of low-Cd fruiting vegetables (focusing on the non-edible parts) on Cd-contaminated fields.

Materials and methods

An 8-week pot experiment was conducted to investigate the acquisition and translocation of Cd by cucumber (Cucumis sativus L.) plants on an unsterilized Cd-contaminated (1.6 mg kg?1) soil in response to inoculation with the AM fungus, Funneliformis caledonium (Fc) or Glomus versiforme (Gv). Mycorrhizal colonization rates of cucumber roots were assessed. Dry biomass and Cd and phosphorus (P) concentrations in the cucumber shoots and roots were all measured. Soil pH, EC, total Cd, phytoavailable (DTPA-extractable) Cd, available P, and acid phosphatase activity were also tested.

Results and discussion

Both Fc and Gv significantly increased (P?<?0.05) root mycorrhizal colonization rates and P acquisition efficiencies, and thus the total P acquisition and biomass of cucumber plants, whereas only Fc significantly increased (P?<?0.05) soil acid phosphatase activity and the available P concentration. Both Fc and Gv significantly increased (P?<?0.05) root to shoot P translocation factors, inducing significantly higher (P?<?0.05) shoot P concentrations and shoot/root biomass ratios. In contrast, both Fc and Gv significantly decreased (P?<?0.05) root and shoot Cd concentrations, resulting in significantly increased (P?<?0.05) P/Cd concentration ratios, whereas only Gv significantly decreased (P?<?0.05) the root Cd acquisition efficiency and increased (P?<?0.05) the root to shoot Cd translocation factor. Additionally, AM fungi also tended to decrease soil total and phytoavailable Cd concentrations by elevating plant total Cd acquisition and soil pH, respectively.

Conclusions

Inoculation with AM fungi increased the P acquisition and biomass of cucumber plants, but decreased plant Cd concentrations by reducing the root Cd acquisition efficiency, and resulted in a tendency toward decreases in soil phytoavailable and total Cd concentrations via increases in soil pH and total Cd acquisition by cucumber plants, respectively. These results demonstrate the potential application of AM fungi for the production of fruiting vegetables with non-edible parts that contain low Cd levels on Cd-contaminated soils.
  相似文献   

7.

Purpose

The low conductivity of sediments for mass and electron transport is the most severe limiting factor in sediment microbial fuel cells (SMFCs), so that sediment ameliorations yielded more remarkable effects than electrode improvements. The objective of this research was to enhance the electricity generation of SMFCs with amendments of biochar to freshwater sediments for conductivity enhancement.

Materials and methods

Laboratory-scale SMFCs were constructed and biochars were produced from coconut shells at different temperatures. Variations in the power output, electrode potential, internal resistance, total organic carbon (TOC) content, and microbial communities were measured.

Results and discussion

Amending with biochar reduced the charge transfer resistances of SMFCs and enriched the Firmicutes (mainly Fusibacter sp.) in the sediment, which improved the SMFC power generation by two- to tenfold and enhanced the TOC removal rate by 1.7- to fourfold relative to those without the amendment.

Conclusions

The results suggested that biochar amendment is a promising strategy to enhance SMFC power production, and the electrical conductivity of biochar should be considered important when interpreting the impact biochar has on the electrical performance of soil or freshwater sediment MFCs.
  相似文献   

8.

Purpose

The purpose of this study was to determine the first-order rate constants and half-lives of aerobic and anaerobic biomineralization of atrazine in soil samples from an agricultural farm site that had been previously used for mixing pesticide formulations and washing application equipment. Atrazine catabolic genes and atrazine-degrading bacteria in the soil samples were analyzed by molecular methods.

Materials and methods

Biomineralization of atrazine was measured in soil samples with a [U-ring-14C]-atrazine biometer technique in soil samples. Enrichment cultures growing with atrazine were derived from soil samples and they were analyzed for bacterial diversity by constructing 16S rDNA clone libraries and sequencing. Bacterial isolates were also obtained and they were screened for atrazine catabolic genes.

Results and discussion

The soils contained active atrazine-metabolizing microbial communities and both aerobic and anaerobic biomineralization of [U-ring-14C]-atrazine to 14CO2 was demonstrated. In contrast to aerobic incubations, anaerobic biometers displayed considerable differences in the kinetics of atrazine mineralization between duplicates. Sequence analysis of 16S rDNA clone libraries constructed from the enrichment cultures revealed a preponderance of Variovorax spp. (51 %) and Schlesneria (16 %). Analysis of 16S rRNA gene sequences from pure cultures (n?=?12) isolated from enrichment cultures yielded almost exclusively Arthrobacter spp. (83 %; 10/12 isolates). PCR screening of pure culture isolates for atrazine catabolic genes detected atzB, atzC, trzD, trzN, and possibly atzA. The presence of a complete metabolic pathway was not demonstrated by the amplification of catabolic genes among these isolates.

Conclusions

The soils contained active atrazine-metabolizing microbial communities. The anaerobic biometer data showed variable response of atrazine biomineralization to external electron acceptor conditions. Partial pathways are inevitable in soil microbial communities, with metabolites linking into other catabolic and assimilative pathways of carbon and nitrogen. There was no evidence for the complete set of functional genes of the known pathways of atrazine biomineralization among the isolates.
  相似文献   

9.

Purpose

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important native tree species in China. Consecutive cropping traditionally occurs in Chinese fir plantations (CFPs), but this practice has resulted in productivity declines in subsequent rotations. This study was designed to better understand the change of soil properties in the continuous cropping CFPs.

Materials and methods

We investigated soil pH, soil organic matter (SOM), and nutrient contents in different soil layers and in rhizosphere soil (RS) and non-rhizosphere soil (NRS) under CFPs of different ages and in different rotations.

Results and discussion

In the upper (0–20 cm) soil layer, soil pH decreased, while SOM increased, beneath mature CFPs with consecutive rotations. Total nitrogen (TN), available potassium, and available phosphorus contents in the upper soil layers did not differ significantly with consecutive rotations. Soil pH in RS was significantly lower than in NRS under mature plantations of the third rotation. Soil organic matter, TN, and available nitrogen did not differ between RS and NRS. Available phosphorus in RS was consistently lower than in NRS, and was highly deficient in the third rotation.

Conclusions

We conclude that no severe soil nutrient degradation occurred in the continuous cropping CFPs examined in this study, with soil acidification and phosphorus deficiency being two primary problems observed.
  相似文献   

10.

Purpose

Cobalt (Co) is a toxic metal to the environment and human’s health. The purpose of the study is to achieve an investigation into the efficacy of calcium carbonate and cow dung for Co immobilization in fluvo-aquic soil, as well as their effects on the antioxidant system in plants.

Materials and methods

Calcium carbonate and cow dung were incorporated with the Co-polluted fluvo-aquic soil where pakchois (Brassica chinensis L.) were grown. Co concentration, superoxide dismutase (SOD) activity, catalase (CAT) activity, and malondialdehyde (MDA) concentration in the shoots of the mature plants were inspected.

Results and discussion

As calcium carbonate concentration rose (0 to 12 g kg?1), Co concentration in shoots of the plants decreased firstly and then increased again (P < 0.05), while the accumulation level of Co kept decreasing with cow dung concentration rising (P < 0.05). Under the amendment treatments, the SOD activity, CAT activity, and MDA concentration in the shoots were all positively correlated to the Co concentration in the plant tissue (r = 0.792, 0.904, and 0.807, P < 0.01), indicating the antioxidant system receptivity to the Co accumulation. The amendments in soil can alleviate the oxidative stress in pakchois owing to Co pollution. As calcium carbonate concentration ranged from 5.64 to 7.86 g kg?1, the parameters reached a maxima (minimum), respectfully.

Conclusions

Calcium carbonate and cow dung in fluvo-aquic soil are effective for Co immobilization and mitigating any pertinent oxidative stress in pakchoi plants. Calcium carbonate concentration within a range of 5.64 to 7.86 g·kg?1 will achieve optimum efficacy.
  相似文献   

11.

Purpose

The nitrification inhibitor 3,4-dimethylpyrazol-phosphate (DMPP) and the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) can mitigate N losses through reducing nitrification and ammonia volatilization, respectively. However, the impact of repeated applications of these inhibitors on nitrogen cycling microorganisms is not well documented. This study aimed to investigate the changes in the abundance and community structure of the functional microorganisms involved in nitrification and denitrification in Australian pasture soils after repeated applications of DMPP and nBTPT.

Materials and methods

Soil was collected in autumn and spring, 2014 from two pasture sites where control, urea, urea ammonium nitrate, and urea-coated inhibitors had been repeatedly applied over 2 year. Soil samples were analyzed to determine the potential nitrification rates (PNRs), the abundances of amoA, narG, nirK and bacterial 16S rRNA genes, and the community structure of ammonia oxidizers.

Results and discussion

Two years of urea application resulted in a significantly lower soil pH at Terang and a significant decrease in total bacterial 16S rRNA gene abundance at Glenormiston and led to significantly higher PNRs and abundances of ammonia oxidizers compared to the control. Amendment with either DMPP or nBTPT significantly decreased PNRs and the abundance of amoA and narG genes. However, there was no fertilizer- or inhibitor-induced change in the community structure of ammonia oxidizers.

Conclusions

These results suggest that there were inhibitory effects of DMPP and nBTPT on the functional groups mediating nitrification and denitrification, while no significant impact on the community structure of ammonia oxidizers was observed. The application of nitrification or urease inhibitor appears to be an effective approach targeting specific microbial groups with minimal effects on soil pH and the total bacterial abundance.
  相似文献   

12.

Purpose

Nitrification and denitrification, two of the key nitrogen (N) transformation processes in the soil, are carried out by a diverse range of microorganisms and catalyzed by a series of enzymes. Different management practices, such as continuous grazing, mowing, and periodic fencing off from grazing, dramatically influenced grassland ecosystems. This study aimed to examine the effects of management practices on the abundance and community structure of nitrifier and denitrifier communities in grassland ecosystems.

Materials and methods

Soil samples were collected from a semiarid grassland ecosystem in Xilingol region, Inner Mongolia, where long-term management practices including free-grazing, different periods of enclosure from grazing, and different frequencies of mowing were conducted. Real-time quantitative polymerase chain reaction (Q-PCR), denaturing gradient gel electrophoresis (DGGE), sequencing, and phylogenetic analysis were applied to estimate the abundance and composition of amoA, nirS, nirK, and nosZ genes.

Results and discussion

The ammonia-oxidizing archaea (AOA) amoA copies were in the range 5.99?×?108 to 8.60?×?108, while those of ammonia-oxidizing bacteria (AOB) varied from 3.02?×?107 to 4.61?×?107. The abundance of AOA was substantially higher in the light grazing treatment (LG) than in the mowing treatments. The quantity and intensity of DGGE bands of AOA varied with pasture management. In stark contrast, AOB population abundance and community structure remained largely unchanged in all the soils irrespective of the management practices. All these results suggested that ammonia oxidizers were dominated by AOA. The higher gene abundance and greater intensity of DGGE bands of nirS and nosZ under the enclosure treatments would suggest greater stimulated denitrification. The ratio of nosZ/(nirS?+?nirK) was higher in mowing treatments than in the free-grazing and enclosure treatments, possibly leading to more complete denitrification. Correlation analysis indicated that soil moisture and inorganic nitrogen content were the two main soil environmental variables that influence the community structure of nitrifiers and denitrifiers.

Conclusions

In this semiarid neutral to alkaline grassland ecosystem under low temperature conditions, AOA mainly affiliated with Nitrososphaera dominated nitrification. These results clearly demonstrate that grassland management practices can have a major impact on nitrifier and denitrifier communities in this semiarid grassland ecosystem, under low temperature conditions.
  相似文献   

13.

Purpose

The present paper concerns the distribution and mobility of heavy metals (Cu, Pb, Zn and Fe) in the soils of some abandoned mine sites in Italy and their transfer to wild flora.

Materials and methods

Soils and plants were sampled from mixed sulphide mine dumps in different parts of Italy, and the concentrations of heavy metals were determined.

Results and discussion

The phytoremediation ability of Salix species (Salix eleagnos, Salix purpurea and Salix caprea), Taraxacum officinale and P?lantago major for heavy metals and, in particular, zinc was estimated. The results showed that soils affected by mining activities presented total Zn, Cu, Pb and Fe concentrations above the internationally recommended permissible limits. A highly significant correlation occurred between metal concentrations in soils.

Conclusions

The obtained results confirmed the environmental effects of mine waste; exploring wild flora ability to absorb metals, besides metal exploitation, proved a useful tool for planning possible remediation projects.
  相似文献   

14.

Purpose

Organic matter amendment is usually used to improve soil physicochemical properties and to sequester carbon for counteracting climate change. There is no doubt that such amendment will change microbial activity and soil nitrogen transformation processes. However, the effects of straw and biochar amendment on anammox and denitrification activity and on community structure in paddy soil are unclear.

Materials and methods

We conducted a 30-day pot experiment using rice straw and rice straw biochar to deepen our understanding about the activity, microbial abundance, and community structure associated with soil nitrogen cycling during rice growth.

Results and discussion

Regarding activity, anammox contributed 3.1–8.1% of N2 production and denitrification contributed 91.9–96.9% of N2 production; straw amendment resulted in the highest denitrification rate (38.9 nmol N g?1 h?1), while biochar amendment resulted in the highest anammox rate (1.60 nmol N g?1 h?1). Both straw and biochar amendments significantly increased the hzsB and nosZ gene abundance (p < 0.05). Straw amendment showed the highest nosZ gene abundance, while biochar amendment showed the highest hzsB gene abundance. Phylogenetic analysis of the anammox bacteria 16S rRNA genes indicated that Candidatus Brocadia and Kuenenia were the dominant genera detected in all treatments.

Conclusions

Straw and biochar amendments have different influences on anaerobic ammonia oxidation and denitrification within paddy soil. Our results suggested that the changes in denitrification and anammox rates in the biochar and straw treatments were mainly linked to functional gene abundance rather than microbial community structure and that denitrification played the more major role in N2 production in paddy soil.
  相似文献   

15.

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L?1) and elevated (700 μL L?1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.
  相似文献   

16.

Purpose

The use of municipal solid wastes (MSWs) as a low-cost source of organic matter for soils should be considered after discarding the environmental risks related to their metal(loid) load. The goal of this work was to assess the employment of a MSW as an organic amendment in two types of soil (an agricultural soil, A, and a metal(loid)-enriched mine tailings soil, T) attending to changes in soil properties and in plant growth, nutrition and metal(loid) translocation from roots to aerial parts of Zea mays L. (stalk, leaves, tassel, husk, cob and kernel).

Materials and methods

After a comprehensive characterisation of each soil treatment (A, A + MSW, T, T + MSW), a pot-designed experiment was carried out. Soil solution was monthly monitored throughout the experiment, and metal(loid) concentrations were measured.

Results and discussion

The MSW improved some fertility-related parameters in both soils, A and T: increased total and dissolved organic carbon, total nitrogen and soil microbiology. However, an increase in 0.01 M CaCl2-extractable metal(loid) concentration was also observed. No differences in dry biomass were found between amended and not amended treatments. A fractionation of metal(loid) concentrations among plant organs occurred. For instance, the highest Cu and Pb concentrations were found in roots, while for Zn occurred in the stalk and the cob. The amended treatments favoured the accumulation of Mn in all plant organs. Kernels showed in general the lowest metal(loid) concentrations.

Conclusions

The addition of municipal solid wastes as organic amendment could be a suitable tool to increase soil fertility. However, due to the high metal(loid) content of this particular MSW, its use on agricultural soils would not be appropriate. By other hand, along with the improvement of soil fertility, the MSW was useful to promote plant development in the mine tailings soil which should be then considered as a potential tool to promote plant establishment in those metal(loid)-impacted soils.
  相似文献   

17.

Purpose

Anthropic activities induce severe metal(loid)s contamination of many sites, which is a threat to the environment and to public health. Indeed metal(loid)s cannot be degraded, and thus accumulate in soils. Furthermore, they can contaminate surrounding ecosystems through run-off or wind erosion. This study aims to evaluate the phytostabilization capacity of Salix viminalis to remediate As and Pb highly contaminated mine site, in a biochar-assisted phytoremediation context and to assess biochar particle size and dose application effects.

Materials and methods

To achieve this, mesocosm experiments were conducted using the contaminated technosol and four different size fraction of one biochar as amendment, at two application rates (2 and 5%). Non-rooted cuttings of Salix viminalis were planted in the different mixtures. In order to characterize the mixtures, soil pore waters were sampled at the beginning and at the end of the experiment and analyzed for pH, electrical conductivity, and metal(loid) concentrations. After 46 days of Salix growth, roots, stems, and leaves were harvested and weighed, and As and Pb concentrations and distributions were measured.

Results and discussion

Soil fertility improved (acidity decrease, electrical conductivity increase) following biochar addition, whatever the particle size, and the Pb concentration in soil pore water decreased. Salix viminalis did not grow on the non-amended contaminated soil while the biochar amendment permitted its growth, with a better growth with the finest biochars. The metal(loid)s accumulated preferentially in roots.

Conclusions

Fine biochar particles allowed S. viminalis growth on the contaminated soil, allowing this species to be used for technosol phytostabilization.
  相似文献   

18.

Purpose

The subjects of this study were to investigate the remediating potential of the co-cultivation of Pleurotus eryngii and Coprinus comatus on soil that is co-contaminated with heavy metal (cadmium (Cd)) and organic pollutant (endosulfan), and the effects of the co-cultivated mushrooms on soil biochemical indicators, such as laccase enzyme activity and bacterial counts.

Materials and methods

A pot experiment was conducted to investigate the combined bioremediation effects on co-contaminated soil. After the mature fruiting bodies were harvested from each pot, the biomass of mushrooms was recorded. In addition, bacterial counts and laccase enzyme activity in soil were determined. The content of Cd in mushrooms and soil was detected by the flame atomic absorption spectrometry (FAAS), and the variations of Cd fractions in soil were determined following the modified BCR sequential extraction procedure. Besides, the residual endosulfan in soil was detected by gas chromatography-mass spectrometry (GC-MS).

Results and discussion

The results indicated that co-cultivation of P. eryngii and C. comatus exerted the best remediation effect on the co-contaminated soil. The biomass of mushroom in the co-cultivated group (T group) was 1.57–13.20 and 19.75–56.64% higher than the group individually cultivated with P. eryngii (P group) or C. comatus (C group), respectively. The concentrations of Cd in the fruiting bodies of mushrooms were 1.83–3.06, 1.04–2.28, and 0.67–2.60 mg/kg in T, P, and C groups, respectively. Besides, the removal rates of endosulfan in all treatments exceeded 87%. The best bioremediation effect in T group might be caused by the mutual promotion of these two kinds of mushrooms.

Conclusions

The biomass of mushroom, laccase activity, bacterial counts, and Cd content in mushrooms were significantly enhanced, and the dissipation effect of endosulfan was slightly higher in the co-cultivated group than in the individually cultivated groups. In this study, the effect of co-cultivated macro fungi P. eryngii and C. comatus on the remediation of Cd and endosulfan co-contaminated soil was firstly reported, and the results are important for a better understanding of the co-remediation for co-contaminated soil.
  相似文献   

19.
20.

Purpose

Phosphate (P) fertilizers are being widely used to increase crop yield, especially in P-deficient soils. However, repeated applications of P could influence trace element bioaccumulation in crops. The effects of 5-year P enrichment on trace element (Cu, Zn, Cd, Pb, As, and Hg) accumulation in Oryza sativa L. were thus examined.

Materials and methods

Two paddy soils with different initial P availabilities were amended with and without P fertilizer from 2009 to 2013. Trace elements and P levels in rice and soils were analyzed.

Results and discussion

In soil initially with limited P, P amendment enhanced grain Pb, As, and Hg concentrations by 1.8, 1.5, and 1.4-fold, respectively, but tended to decrease the grain Cd level by 0.73-fold, as compared to the control. However, in soil initially with sufficient P, P amendment tended to reduce accumulation of all examined elements in rice grain.

Conclusions

Phosphate amendment in initially P-limited and P-sufficient soils had different effects on trace element availability in soil (as reflected by extractable element) and plant physiology (growth and metal translocation), resulting in contrasting patterns of trace element accumulation in rice between the two types of soils. Our study emphasized the necessity to consider the promoting effects of P on Pb, As, and Hg accumulation in grain in initial P-deprived soil.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号