首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Occlusion of carbon in phytoliths is an important biogeochemical carbon sequestration mechanism and plays a significant role in the global biogeochemical carbon cycle and atmospheric carbon dioxide (CO2) concentration regulation at a millennial scale. However, few studies have focused on the storage of phytolith and phytolith-occluded carbon (PhytOC) in subtropical forest soils.

Materials and methods

Soil profiles with 100-cm depth were sampled from subtropical bamboo forest, fir forest, and chestnut forest in China to investigate the variation of phytoliths and PhytOC storage in the soil profiles based on amass-balance assessment.

Results and discussion

The storage of phytoliths in the top 100 cm of the bamboo forest soil (198.13?±?25.08 t ha?1) was much higher than that in the fir forest (146.76?±?4.53 t ha?1) and chestnut forest (170.87?±?9.59 t ha?1). Similarly, the storage of PhytOC in the bamboo forest soil (3.91?±?0.64 t ha?1) was much higher than that in the fir forest soil (1.18?±?0.22 t ha?1) and chestnut forest soil (2.67?±?0.23 t ha?1). The PhytOC percentage in the soil organic carbon pool increased with soil depth and was the highest (4.29 %) in the bamboo forest soil. Our study demonstrated that PhytOC in soil was significantly influenced by forest type and the bamboo forest ecosystem contributed more significantly to phytolith carbon sequestration than other forest ecosystems.

Conclusions

Different forest types have a significant influence on the soil PhytOC storage. Optimization of bamboo afforestation/reforestation in future forest management plans may significantly enhance the biogeochemical carbon sink in the following centuries.
  相似文献   

2.

Purpose

Soil organic carbon (SOC) stock is one of the most important carbon reservoirs on the earth and plays a vital role in the global climate change. However, research on the carbon sequestration and storage of coastal wetland soil is very scarce. Therefore, a study in the coastal wetland was conducted to investigate the SOC distribution, storage, and variation under the influence of human activities.

Materials and methods

Surface soil samples in different seasons and profile soil samples were collected in the Changyi coastal wetland. SOC content, soil physicochemical properties, and sedimentation rate were determined. Organic carbon storage and burial flux were calculated. On the basis of correlation analysis and comparative study, factors affecting the distribution and storage of SOC were investigated.

Results and discussion

The average SOC content of the surface soil in June and November was 4.65 and 6.13 g kg?1, respectively. The distribution of surface SOC content was consistent with the distribution of vegetation and was affected by the soil particle size. In plant-covered area, the relationship between SOC content and depth could be expressed by the power function y?=?ax b . The contribution of plants to SOC was only significant in the shallow layer. As for the deep layer, the SOC content was higher in the mudflat. The organic carbon storage in the upper 1 m soil was estimated at 1.795 kg m?2 in average and the total organic carbon storage of Changyi wetland was estimated at 6.373?×?107 kg. The sedimentation rate was very low and the average organic carbon burial flux of the whole wetland was 17.5 g m?2 a?1.

Conclusions

Low sedimentation rate, weak downward migration, and high decomposition rate of organic matter caused by poor hydrological condition were the reasons why the SOC storage in Changyi wetland was low. Under intensive human activities, the Changyi wetland was drying and the organic carbon storage was reducing. Strategies were proposed to be taken urgently to restore the wetland for the long-term benefit.
  相似文献   

3.

Purpose

Despite the ancillary knowledge that soil N is chiefly retained as soil organic matter, little is known about how it is affected by other soil and environmental factors, especially in the tropics. In this study, we performed a comprehensive survey of soils under native vegetation in Minas Gerais, Brazil, aiming to (a) measure soil Kjeldahl-N concentrations to a 1-m depth, (b) identify the main affecting factors of soil N retention, and (c) predict N through soil profile based on organic C (SOC) and its main conditioning factors.

Materials and methods

Soils under 36 fragments of native forest and savanna were sampled at five depths (0–10, 10–20, 20–40, 40–60, and 60–100 cm) and characterized by physical and chemical analyses, including total N determined by the micro-Kjeldahl method. Single and multivariate regressions were used to predict N concentrations based on soil properties and climatic factors.

Results and discussion

The average N concentrations ranged between 0.12 and 7.54 g kg?1, decreasing with depth, and can be predicted using SOC concentrations (R 2 = 0.86). Multivariate regressions using more input data, namely texture, cation exchange capacity (CEC), and altitude increased slightly R 2 values (0.68–0.90) for separate soil depths, but not for the whole dataset (R 2 = 0.85).

Conclusions

We demonstrated that N can be adequately predicted based on SOC concentrations, for any depth and forest type. The implications of the stable SOC/N relation and their coupled cycles and the environmental factors affecting N retention in Brazilian weathered soils are further discussed.
  相似文献   

4.

Purpose

This study quantified the above- and belowground carbon (C) stocks across a chronosequence of spruce (Picea asperata) plantations established on cutovers and explored the turning point after which the increase in biomass C slowed or biomass C decreased for guiding forest management.

Materials and methods

We assessed above- and belowground plant biomass stocks at 11 sites in three regions, representing 12- to 46-year-old spruce plantations established on clear-cut areas in the eastern Tibetan Plateau, China. Biomass and C stocks of trees, understory vegetation, and forest floor litter were determined from plot-level inventories and destructive sampling. Fine root (<2 mm) biomass and mineral soil organic C (SOC) stock were estimated from soil cores. Tree biomass was quantified using allometric equations based on diameter at breast height (DBH) and height (H).

Results and discussion

Plant biomass C stocks in spruce plantations rapidly increased from 12 to 20 years at a rate of 7.8 Mg C ha?1 year?1, but decreased from 25 to 46 years at a rate of 0.79 Mg C ha?1 year?1. SOC stocks in spruce plantations gradually decreased from 12 to 46 years at a rate of 4.4 Mg C ha?1 year?1. Total C stock in the ecosystem remained unchanged for the first 20 years after the planting of spruce on cutovers, because the buildup of C stock in spruce biomass during the first 20 years was offset by the decrease in SOC. From 21 to 46 years after the reforestation, ecosystem C stock even decreased at a rate of 5.2 Mg C ha?1 year?1. The contribution of the understory vegetation, forest floor litter, and fine root to ecosystem C stock was low (<5.0 %) in the spruce plantations.

Conclusions

Ecosystem C stock in the spruce forest established on the cutover in the eastern Tibetan Plateau was related to stand age. During the first 20 years, this ecosystem was C neutral. However, aged (20–46 years) spruce plantation ecosystem can be a C source if no management was implemented to revitalize tree growth, promote understory vegetation, and enhance SOC accumulation.
  相似文献   

5.

Purpose

Soils of tidal marshes play an important role in regional carbon (C) cycles as they are able to store considerable amounts of organic carbon (OC). However, the C dynamics of marsh soils of the Elbe estuary have not been investigated so far. Therefore, the aim of this study was to identify the sources and distribution of soil organic carbon (SOC) and the factors influencing the SOC pools of tidal marshes of the study region.

Materials and methods

In this study, SOC pools were determined in different salinity zones and elevation classes of the estuarine marshes. The amount of initial allochthonous OC was derived from the OC content in fresh sediments. The difference to the recent OC content in the soils was interpreted as autochthonous accumulation or mineralization by microorganisms.

Results and discussion

Young, low marshes of the study sites seem to be predominantly influenced by allochthonous OC deposition whereas the older, high marshes show autochthonous OC accumulation in the topsoils (0–30 cm) and mineralization in the subsoils (30–70 cm). SOC pools of the whole profile depth (0–100 cm) did not significantly differ between elevation classes, but decreased significantly with increasing salinity from 28.3 kg m?2 in the most upstream site of the oligohaline zone to 9.7 kg m?2 in the most downstream site of the polyhaline zone. Even though the areal extent of the investigated salinity zones was similar, the SOC mass within 100 cm soil depth decreased from 0.62 Tg (1 Tg = 1012 g) in the oligohaline zone to 0.18 Tg in the polyhaline zone.

Conclusions

Elevation was found to be one factor influencing the SOC pools of tidal marshes. However, salinity seems to be an even stronger influencing factor reducing the above-ground biomass and, accordingly, the autochthonous OC input as well as the allochthonous input by enhanced mineralization of OC along the course of the estuary. An upstream shift of the salinity zones by sea level rise could, therefore, lead to a reduction of the SOC storage of the estuarine marshes.
  相似文献   

6.

Purpose

Phosphorus (P) in soil particulate fraction (PF; >53 μm) is suggested to have a significant importance in soil P cycling. However, the effects of continuous fertilization on P-PF and its association with soil organic carbon (SOC) in paddy soils have not been well studied.

Materials and methods

We sampled paddy soils at 0–20 cm from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilization treatments with equivalent P input (135 kg P2O5?ha?1 year?1) except the control treatment (CK). Changes in total P (Pt), inorganic P (Pi), organic P (Po), and SOC under different fertilization managements were evaluated in the whole soil, in the PF, and in the mineral-associated fraction (MAF; <53 μm).

Results and discussion

Continuous fertilization increased the contents of SOC and P in all soil fractions. Both Po and organic carbon in PF were the most sensitive variables to fertilization, indicating that they constitute a useful tool to detect the effects of management practices. Among the fertilization treatments, organic amendments significantly increased Po-PF contents more than chemical fertilizer applied only (p?<?0.05), although they had equivalent P input. The paddy soil without fertilization showed a more significant decrease in Pi compared with Po. The SOC/Po ratios were significantly lower in fertilization treatments (especially those with manure or straw incorporation) than in CK and decreased from PF to MAF. A significant relationship was found between Po-PF contents and rice P uptake during the growing season.

Conclusions

These results demonstrate that Po-PF may also play a significant role in P cycling of paddy soil, and thus, it would be better to consider Po-PF in soil diagnosis to promote P management of paddy soil, especially for that under long-term organic amendments.
  相似文献   

7.

Purpose

Soil properties are highly heterogeneous in forest ecosystems, which poses difficulties in estimating soil carbon (C) and nitrogen (N) pools. However, little is known about the relative contributions of environmental factors and vegetation to spatial variations in soil C and N, especially in highly diverse mixed forests. Here, we examined the spatial variations of soil organic carbon (SOC) and total nitrogen (TN) in a subtropical mixed forest in central China, and then quantified the main drivers.

Materials and methods

Soil samples (n = 972) were collected from a 25-ha forest dynamic plot in Badagonshan Nature Reserve, central China. All trees with diameter at breast height (DBH) ≥1 cm and topography data in the plot were surveyed in detail. Geostatistical analyses were used to characterize the spatial variability of SOC and TN, while variation partitioning combined with Mantel’s test were used to quantify the relative contribution of each type of factors.

Results and discussion

Both surface soil (0–10 cm) and subsurface soil (10–30 cm) exhibited moderate spatial autocorrelation with explainable fractions ranged from 31 to 47 %. The highest contribution to SOC and TN variation came from soil variables (including soil pH and available phosphorus), followed by vegetation and topographic variables. Although the effect of topography was weak, Mantel’s test still showed a significant relationship between topography and SOC. Strong interactions among these variables were discovered. Compared with surface soil, the explanatory power of environmental variables was much lower for subsurface soil.

Conclusions

The differences in relative contributions between surface and subsurface soils suggest that the dominating ecological process are likely different in the two soil depths. The large unexplained variation emphasized the importance of fine-scale variations and ecological processes. The large variations in soil C and N and their controlling mechanisms should be taken into account when evaluating how forest managements may affect C and N cycles.
  相似文献   

8.

Purpose

Anthropogenic-induced greenhouse gas (GHG) emission rates derived from the soil are influenced by long-term nitrogen (N) deposition and N fertilization. However, our understanding of the interplay between increased N load and GHG emissions among soil aggregates is incomplete.

Materials and methods

Here, we conducted an incubation experiment to explore the effects of soil aggregate size and N addition on GHG emissions. The soil aggregate samples (0–10 cm) were collected from two 6-year N addition experiment sites with different vegetation types (mixed Korean pine forest vs. broad-leaved forest) in Northeast China. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) production were quantified from the soil samples in the laboratory using gas chromatography with 24-h intervals during the incubation (at 20 °C for 168 h with 80 % field water capacity).

Results and discussion

The results showed that the GHG emission/uptake rates were significantly higher in the micro-aggregates than in the macro-aggregates due to the higher concentration of soil bio-chemical properties (DOC, MBC, NO3 ?, NH4 +, SOC and TN) in smaller aggregates. For the N addition treatments, the emission/uptake rates of GHG decreased after N addition across aggregate sizes especially in mixed Korean pine forest where CO2 emission was decreased about 30 %. Similar patterns in GHG emission/uptake rates expressed by per soil organic matter basis were observed in response to N addition treatments, indicating that N addition might decrease the decomposability of SOM in mixed Korean pine forest. The global warming potential (GWP) which was mainly contributed by CO2 emission (>98 %) decreased in mixed Korean pine forest after N addition but no changes in broad-leaved forest.

Conclusions

These findings suggest that soil aggregate size is an important factor controlling GHG emissions through mediating the content of substrate resources in temperate forest ecosystems. The inhibitory effect of N addition on the GHG emission/uptake rates depends on the forest type.
  相似文献   

9.

Purpose

The paper describes rhizospheric (Rs) and non-rhizospheric (nRs) soil to demonstrate the zone of the plant root impact on physical and chemical properties of the soil. The effects of the process accompanying the transformations of organic matter into humic substances in the rhizosphere of “common dandelion” Taraxacum officinale have been determined, and the properties of humic acids (HAs) were described. The importance of iron and clay minerals for the formation of a stable and water-resistant soil structure has been emphasized.

Materials and methods

The laboratory analysis involved determination of basic physical and chemical soil properties: texture, pH, cation exchange capacity (CEC), electrical conductivity, and content of total organic carbon (TOC) and dissolved organic carbon (DOC) and quality of humic substances: optical properties of HAs and its separation into hydrophilic (HIL) and hydrophobic (HOB) fractions, speciation of iron, glomalin operationally described as an easily extractable glomalin-related soil protein (EE-GRSP), and soil aggregate stability (SAS) of six size classes of soil aggregates.

Results and discussion

The Rs was reported with a higher TOC and DOC content (measured in the CaCl2 extracts), however not significantly. The HAs isolated from Rs revealed a significantly higher content of humic substances at its initial decomposition stage, as compared with nRs. A significantly higher concentration of EE-GRSP was noted in the aggregates of the rhizospheric zone (mean 1.14 g kg?1) than in the aggregates collected from root-free soil (mean 0.94 g kg?1). There was noted the highest mean share of 1–3 mm soil aggregates in Rs as well as in nRs, respectively 44.4 and 38.3%. The soil material both in Rs and in nRs contained high amounts of exchangeable Ca2+, and smectite is the predominant clay mineral. It was favorable for the accumulation of organic carbon and for the formation of good soil physical condition (tilth). Higher but insignificant SAS values were observed for Rs (mean SAS?=?95.6%) than for nRs (mean SAS?=?93.9%).

Conclusions

The studies confirm the role of common dandelion roots in the process of organic carbon accumulation in rhizospheric zone and a favorable effect on the mechanism of the formation of water-resistant aggregates. Higher values of SAS for the Rs were affected by the content of TOC, DOC, exchangeable Ca2+ and the concentration of EE-GRSP, and, less considerably, the content of Fe and clay minerals.
  相似文献   

10.

Purpose

Quarrying activities in areas with serpentinized rocks may have a negative impact on plant growth. Quarry soils generally offer hostile environments for plant growth due to their low-nutrient availability, low organic matter, and high-trace metal content.

Materials and methods

In order to determine the factors that can limit plant revegetation, this study was carried out in two serpentine quarries in Galicia (NW Spain): one abandoned in 1999 and the other still active.

Results and discussion

The results show that in soils developed in the abandoned quarry, the limitations for revegetation were: moderate alkaline pH (7.87–8.05), strong Ca/Mg (<1) imbalance, low N (<0.42 mg kg?1) and P (<2 mg kg?1) content, and high total heavy-metal content (Co 76–147 mg kg?1; Cr 1370–2600 mg kg?1; and Ni 1340–2040 mg kg?1). The limitations were much less intense in the soils developed in the substratum in the active quarry, which were incipient soils poorly developed and permanently affected by the quarrying activity.

Conclusions

Restoration work should be geared toward establishing a stable diverse vegetation cover, including serpentinophile species, which would provide the necessary modifications to correct nutritive imbalances and improve soil quality.
  相似文献   

11.

Purpose

The validity of soil erosion data is often questioned because of the variation between replicates. This paper aims to evaluate the relevance of interreplicate variability to soil and soil organic carbon (SOC) erosion over prolonged rainfall.

Materials and methods

Two silty loams were subjected to simulated rainfall of 30 mm h?1 for 360 min. The entire rainfall event was repeated ten times to enable statistical analysis of the variability of the runoff and soil erosion rates.

Results and discussion

The results show that, as selective removal of depositional particles and crust formation progressively stabilized the soil surface, the interreplicate variability of runoff and soil erosion rates declined considerably over rainfall time. Yet, even after the maximum runoff and erosion rates were reached, the interreplicate variability still remained between 15 and 39 %, indicating the existence of significant inherent variability in soil erosion experiments.

Conclusions

Great caution must be paid when applying soil and SOC erosion data after averaging from a small number of replicates. While not readily applicable to other soil types or rainfall conditions, the great interreplicate variability observed in this study suggests that a large number of replicates is highly recommended to ensure the validity of average values, especially when extrapolating them to assess soil and SOC erosion risk in the field.
  相似文献   

12.

Purpose

Evergreen broad-leaved forest ecosystems are common in east China, where they are both ecologically and economically important. However, nitrogen (N) addition over many years has had a detrimental effect on these ecosystems. The objective of this research was to evaluate the effect of 4 years of N addition on microbial communities in an evergreen broad-leaved forest in southern Anhui, China.

Materials and methods

Allochthonous N in the form of aqueous NH4NO3 and phosphorus (P) in the form of Ca(H2PO4)2·H2O were applied at three doses with a control (CK, stream water only without fertilizer): low-N (50 kg N ha?1 year?1), high-N (100 kg N ha?1 year?1) and high-N+P (100 kg N ha?1 year?1 + 50 kg P ha?1 year?1). Quantitative PCR analysis of microbial community size and Illumina platform-based sequencing analysis of the V3-V4 16S rRNA gene region were performed to characterize soil bacterial community abundance, structure, and diversity.

Results and discussion

Bacterial diversity was increased in low-N and high-N treatments and decreased in the high-N+P treatment, but α-diversity indices were not significantly affected by N additions. Proteobacteria, Acidobacteria, and Actinobacteria were the predominant phyla in all treatments, and the relative abundance of different genera varied among treatments. Only soil pH (P = 0.051) showed a weak correlation with the bacterial community in CK and low-N treatment.

Conclusions

The composition of the bacterial community and the abundance of different phyla were significantly altered by N addition. The results of the present study indicate that soil bacterial communities in subtropical evergreen broad-leaved forest are, to a certain extent, resilient to changes derived from N additions.
  相似文献   

13.

Purpose

Alpine ecosystems on the Qinghai-Tibetan Plateau are sensitive to global climatic changes. However, the effects of temperature change resulting from global warming or seasonal variation on soil N availability in those ecosystems are largely unknown.

Materials and methods

We therefore conducted a 15N tracing study to investigate the effects of various temperatures (5–35 °C) on soil gross N transformation rates in an alpine meadow (AM) soil on the Qinghai-Tibetan Plateau. A natural secondary coniferous forest (CF) soil from the subtropical region was chosen as a reference to compare the temperature sensitivity of soil gross N transformation rates between alpine meadow and coniferous forest.

Results and discussion

Our results showed that increasing temperature increased gross N mineralization and NH4 + immobilization rates and overall enhanced N availability for plants in both soils. However, both rates in the CF soil were less sensitive to a temperature change from 5 to 15 °C compared to the AM soil. In both soils, different N retention mechanisms could have been operating with respect to changing temperatures in the different climatic regions. In the CF soil, the absence of NO3 ? production at all incubation temperatures suggests that in the subtropical soil which is characterized by high rainfall, an increase in N availability due to increasing temperature could be completely retained in soils. In contrast, the AM soil may be vulnerable to N losses with respect to temperature changes, in particular at 35 °C, in which higher nitrification rates were coupled with lower NH4 + and NO3 ? immobilization rates.

Conclusions

Our results suggest that increased soil temperature arising from global warming and seasonal variations will most likely enhance soil N availability for plants and probably increase the risk of N losses in the alpine meadow on the Qinghai-Tibetan Plateau.
  相似文献   

14.

Purpose

Both overharvesting and climate changes have greatly altered forest composition in northeastern China; however, forest-specific effects on soil organic carbon (SOC), N, and compositional features in different soil fractions have not yet been defined.

Materials and methods

By sampling from broad-leaved Korean pine forest (the climax vegetation) and aspen–birch forest (the secondary forest), five soil fractions were separated by a physicochemical soil fractionation method, and Fourier transform infrared spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectrometry were used for functional groups, mineral diffraction, and elemental composition determination together with SOC and N measurements.

Results and discussion

Aspen–birch forests tended to sequestrate more SOC in the slow fractions (sand and aggregate [SA] and easily oxidized fractions) and more N in the sensitive fractions (particulate and soluble fractions), indicating that in aspen–birch forests, high SOC sequestration (1.26-fold) coincided with the active and rapid N supply. Much higher percentages (13.1–40.5 %) of O–H and N–H stretching, O–H bending, and C=O, COO–, and C–H stretching, and also the much lower quartz grain size and mineral diffraction peaks in SA and acid-insoluble fraction (over 85 % of total soil mass), in aspen–birch forests were possibly associated with the 1.17- to 1.53-fold higher SOC compared to broad-leaved Korean pine forest. However, elemental composition on soil particles might marginally contribute to the SOC and N forest-dependent differences.

Conclusions

Considering the increase of aspen–birch forests and the decrease of broad-leaved Korean pine forests in historical and future scenarios in northeastern China, more SOC has been and also will sequestrate in intact soils and stable soil fractions, with more N in sensitive fractions, and these should be highlighted in evaluating forest C and N dynamics during forest successions in this region.
  相似文献   

15.

Purpose

Process-based models such as CENTURY have been extensively validated for simulating soil organic carbon (SOC) dynamics at the homogeneous plot scale. However, considerable uncertainty may exist when upscaling a simulation from the plot scale to a larger scale because of variation in the model inputs. The objectives of this study were to assess the uncertainty of CENTURY-modeled SOC and to identify the most influential model inputs in various upland regions of China.

Materials and methods

Global sensitivity analysis was used to explore the sensitivity of CENTURY-modeled SOC to seven key model inputs. The uncertainties of the SOC simulated using various model inputs and climate-soil-management conditions were evaluated at 21 long-term monitoring sites located across upland areas in China.

Results and discussion

The identified sensitive model inputs differed among regions and periods due to diverse climate-soil-management conditions; nevertheless, initial SOC content (SOCi), soil clay content, and crop residue removal rate (Residuerr) were the most influential inputs. The site-to-region upscaling uncertainties remained moderately large (±42.7, ±49.4, and ±69.3 % at the 90, 95, and 100 % confidence levels, respectively) when currently available observation data were used. Therefore, the collection of detailed information on soil properties and crop residue removal, particularly legacy soil data such as the SOCi and clay content, is important for reducing the uncertainties in SOC modeling.

Conclusions

Data on SOCi, Residuerr, and clay content need to be collected prior to other input data to reduce input-related uncertainty and thus to provide more reliable SOC assessment at the regional or national scale in China.
  相似文献   

16.

Purpose

Plantation is an important strategy for forest restoration and carbon (C) storage. Plantations with different tree species could significantly affect soil properties, including soil pH, soil nutrient content, soil microbial activities, and soil dissolved organic C. Changes in these abiotic and biotic factors could regulate mineralization of soil organic C (SOC). However, it remains unclear to what extent these factors affect the mineralization of SOC under different tree species plantations.

Materials and methods

Soil was collected at 0–10 cm depth from plantations with Pinus elliottii Engelm. var. elliottii, Araucaria cunninghamii, and Agathis australis, respectively, in southeast Queensland, Australia. Soil samples were assayed for soil organic C; organic N and mineralization of SOC; soil particle size; total C, N, and P; and pH. In addition, a 42-day laboratory incubation with substrate additions was done to examine the influence of different substrates and their combinations on bio-available organic C.

Results and discussion

Our results suggested that SOC mineralization was mainly determined by soil pH and soil C content among plantations with different tree species, whereas SOC mineralization was not correlated with soil N and P contents. These results were further confirmed by the substrate addition experiments. SOC mineralization of soils from slash pine showed greater response to C (glucose) addition than soils from other two plantations, which suggested significant differences in SOC mineralization among plantations with different tree species. However, neither N addition nor P addition had significant effects on SOC mineralization.

Conclusions

Our results indicated that plantations with different tree species substantially affect the mineralization and stability of soil organic C pool mainly by soil pH and soil C content.
  相似文献   

17.

Purpose

Input of N as NH4 + is known to stimulate nitrification and to enhance the risk of N losses through NO3 ? leaching in humid subtropical soils. However, the mechanisms responsible for this stimulation effect have not been fully addressed.

Materials and methods

In this study, an acid subtropical forest soil amended with urea at rates of 0, 20, 50, 100 mg N kg?1 was pre-incubated at 25 °C and 60 % water-holding capacity (WHC) for 60 days. Gross N transformation rates were then measured using a 15N tracing methodology.

Results and discussion

Gross rates of mineralization and nitrification of NH4 +-N increased (P?<?0.05), while gross rate of NO3 ? immobilization significantly decreased with increasing N input rates (P?<?0.001). A significant relationship was established between the gross nitrification rate of NH4 + and the gross mineralization rate (R 2?=?0.991, P?<?0.01), so was between net nitrification rate of NH4 + and the net mineralization rate (R 2?=?0.973, P?<?0.05).

Conclusions

Stimulation effect of N input on the gross rate of nitrification of NH4 +-N in the acid soil, partially, resulted from stimulation effect of N input on organic N mineralization, which provides pH-favorable microsites for the nitrification of NH4 + in acid soils (De Boer et al., Soil Biol Biochem 20:845–850, 1988; Prosser, Advan Microb Physiol 30:125–181, 1989). The stimulated gross nitrification rate with the decreased gross NO3 ? immobilization rate under the elevated N inputs could lead to accumulation of NO3 ? and to enhance the risk of NO3 ? loss from humid forest soils.
  相似文献   

18.

Purpose

Biochar application is deemed to modify soil properties, but current research has been mostly conducted on the degraded land in tropical regions. Using six consecutive years of biochar field trial, we investigated effects of biochar on soil aggregates, structural stability, and soil organic carbon (SOC) and black C (BC) concentrations in aggregate fractions. The findings have important implications in managing soil structure and SOC sequestration in high fertility soils of the temperate areas.

Materials and methods

The study had four treatments: control; biochar rate at 4.5 (B4.5) and biochar rate at 9.0 t ha?1 year?1 (B9.0); and straw return (SR). Soil samples were collected from 0–10-cm layer, and aggregate size distribution was determined with the wet-sieving method. Then, the mean weight diameter (MWD) of aggregates and the aggregate ratio (AR), i.e., the ratio of the >250 μm to the 53–250 μm size were calculated to assess the structural stability. Total SOC and BC concentrations in bulk soil (<2 mm) and separated fractions (i.e., >2000, 250–2000, 53–250, and <53 μm) were measured.

Results and discussion

The B4.5 and B9.0 significantly increased macroaggregate (250–2000 μm) and MWD and AR indices relative to the control. Comparing to the SR, the improvements in soil aggregation under biochar treatments were limited. Additionally, more SOC in larger fractions (>2000, 250–2000, and 53–250 μm) and BC in extracted fractions under biochar soils were observed. These results implied that biochar addition enhanced both native SOC and BC physical protection by aggregation.

Conclusions

Biochar application is effective in mediating soil aggregation, and thus improves both native SOC and BC stabilization in an intensive cropping system of North China.
  相似文献   

19.

Purpose

This study aims to explore the dynamics of the factors influencing soil organic carbon (SOC) sequestration and stability at erosion and deposition sites.

Materials and methods

Thermal properties and dissolved aromatic carbon concentration along with Al, Fe concentration and soil specific surface area (SSA) were studied to 1 meter depth at two contrasting sites.

Results and discussion

Fe, Al concentrations and SSA size increased with depth and were negatively correlated with SOC concentration at the erosion site (P?<?0.05), while at the deposition site, these values decreased with increasing depth and were positively correlated with SOC concentration (P?<?0.05). TG mass loss showed that SOC components in the two contrasting sites were similar, but the soils in deposition site contained a larger proportion of labile organic carbon and smaller quantities of stable organic carbon compared to the erosion site. SOC stability increased with soil depth at the erosion site. However, it was slightly variable in the depositional zone. Changes in SUVA254 spectroscopy values indicated that aromatic moieties of DOC at the erosion site were more concentrated in the superficial soil layer (0–20 cm), but at the deposition site they changed little with depth and the SUVA254 values less than those at the erosion site.

Conclusions

Though large amounts of SOC accumulated in the deposition site, SOC may be vulnerable to severe losses if environmental conditions become more favorable for mineralization in the future due to accretion of more labile carbon. Deep soil layers at the erosion site (>30 cm deep) had a large carbon sink potential.
  相似文献   

20.

Purpose

Soil organic carbon (SOC) and its labile fractions are strong determinants of physical, chemical and biological properties. The objective of the present work was to evaluate the effects of organic amendments (technosol made of wastes and biochar) and Brassica juncea L. on the soil C fractions in a reclaimed mine soil.

Materials and methods

The studied soil was from a former copper mine that was subsequently partially reclaimed with vegetation and wastes. A greenhouse experiment was carried out to amend the mine soil with different proportions of technosol and biochar mixture and planting B. juncea. B. juncea plants can tolerate high levels of metals and can produce a large amount of biomass in relatively short periods of time.

Results and discussion

The results showed that with the addition of biochar and wastes, soil pH increased from 2.7 to 6.18, SOC from undetectable to 105 g kg?1 and soil total nitrogen (TN) from undetectable to 11.4 g kg?1. Amending with wastes and biochar also increased dissolved organic carbon (DOC) from undetectable to 5.82 g kg?1, carbon in the free organic matter (FOM) from undetectable to 30.42 g kg?1, FAP (carbon in fulvic acids removed with phosphoric acid) from undetectable to 24.14 g kg?1 and also increased the humification ratio, the humification index, the polymerisation rate and the organic carbon in the humified fractions (humic acids, fulvic acids and humin). Soils amended and vegetated with B. juncea showed lower FOM values and higher humification index values than the soils amended only with biochar and wastes.

Conclusions

This study concludes that the combined addition of wastes and biochar has a greater potential for both increasing and improving organic carbon fractions in mine soils. The authors recommend the application of biochar and technosol made of wastes as a soil amendment combined with B. juncea on soils that are deficient in organic matter, since they increased all of the SOC fractions in the studied copper mine soil.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号