首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Purpose

Increasing data have shown that biochar amendment can improve soil fertility and crop production, but there is little knowledge about whether biochar amendment can improve water infiltration in saline soils. We hypothesized that biochar amendment could promote water infiltration in saline soil. The aims of this study were to evaluate the effects of biochar amendment on water infiltration and find the suitable amendment rate and particle size of biochar as a saline soil conditioner.

Materials and methods

We measured water infiltration parameters in a coastal saline soil (silty loam) amended with non-sieved biochar at different rates (0.5, 1, 2, 5, and 10%, w/w) or sieved biochar of different particle sizes (≤?0.25 mm, 0.25–1 mm, and 1–2 mm) at 1 and 10% (w/w).

Results and discussion

Compared with the control, amending non-sieved biochar at 10% significantly decreased water infiltration into the saline soil (P?<?0.05). In contrast, sieved biochar of ≤?0.25 mm significantly improved water infiltration capacity, irrespective of the amendment rate. Sieved biochar of 1–2 mm was less effective to improve soil porosity and when amended at 10%, it even reduced the water infiltration capacity. The Philip model (R2?=?0.983–0.999) had a better goodness-of-fit than the Green-Ampt model (R2?=?0.506–0.923) for simulation of cumulative infiltration.

Conclusions

Amending biochar sieved to a small particle size improved water infiltration capacity of the coastal saline soil compared with non-sieved biochar irrespective of the amendment rate. This study contributes toward improving the hydrological property of coastal saline soil and rationally applying biochar in the field.
  相似文献   

2.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

3.

Purpose

Biochar application has been shown to be effective in improving soil fertility and sequestering soil contaminants. However, the impact of biochar amendments on the environmental fate of pesticides and the bioavailability of pesticides to living organisms in the soil environment is still not fully understood.

Materials and methods

Dissipation of fomesafen and its bioavailability to corn (Zea mays L.) and the earthworm Eisenia fetida in an agricultural soil amended with three different rates of rice hull biochar (0.5, 1, and 2 % (w/w)) under laboratory conditions was investigated.

Results and discussion

Biochar amendment significantly increased the DT50 of fomesafen from 34 days in unamended soil to 160 days in 2 % biochar-amended soil. Furthermore, biochar amendment decreased fomesafen concentration in soil pore water resulting in lower plant uptake of the pesticide. In this case, total plant residue and soil pore water concentrations of fomesafen in 2 % biochar-amended soil decreased to 0.29 % and 0.28–45 % of that in the control, respectively. Similar results were obtained for bioavailability of fomesafen in earthworms, as the earthworm residue and soil pore water concentration of fomesafen in 2 % biochar-amended soil declined to 0.38–45 and 0.47–0.50 % compared to the level of the control, respectively.

Conclusions

As biochar could markedly reduce the concentration of fomesafen in soil pore water and subsequently reduce plant and earthworm uptake of fomesafen from contaminated soil, biochar amendment could be considered an appropriate option for immobilizing fomesafen in soils, protecting nontarget organisms from fomesafen contamination.
  相似文献   

4.

Purpose

Despite its importance, anammox (anaerobic ammonium oxidation) in estuarine sediment systems remains poorly understood, particularly at the continental scale. This study aimed to understand the abundance, diversity, and activity of anammox bacteria and to determine the main factors influencing the anammox process in estuarine sediments in China.

Materials and methods

Estuarine sediments were collected from 18 estuaries spanning over 4000 km. Experiments using an 15 N–tracer, quantitative PCR, and clone library construction were used to determine the activity, abundance, and diversity of anammox bacteria. The impact of environmental factors on anammox processes was also determined.

Results and discussion

The abundance of the anammox-specific hydrazine synthase (hzsB) gene ranged from 1.8 × 105 ± 3.4 × 104 to 3.6 × 108 ± 7.5 × 107 copies g?1 dw. Candidatus Scalindua, Brocadia, Kuenenia, Jettenia, and two novel unidentified clusters were detected, with Scalindua dominating the anammox population. Additionally, the abundances of Scalindua, Kuenenia, and Brocadia were found to be significantly correlated with latitude. The anammox rates ranged from 0.29 ± 0.15 to 13.68 ± 3.98 nmol N g?1 dw h?1 and contributed to 2.39–82.61% of total N2 production. Pearson correlation analysis revealed that the anammox rate was positively correlated with total nitrogen, total carbon, and temperature, and was negatively correlated with dissolved oxygen (DO). The key factors influencing the hzsB gene abundance were ammonium concentration, salinity, and DO. Ammonium concentration, pH, temperature, and latitude were main variables shaping the anammox-associated bacterial community.

Conclusions

Our results suggested that anammox bacteria are ubiquitous in coastal estuaries in China and underline the importance of anammox resulting in N loss at a continental scale.
  相似文献   

5.

Purpose

Biochar has been suggested as a soil conditioner to improve soil fertility and crop productivity while simultaneously mitigate global climate change by storing carbon in the soil. This study investigated the effect of pine (Pinus radiata) biochar application on soil water availability, nitrogen (N) and carbon (C) pools and growth of C3 and C4 plants.

Materials and methods

In a glasshouse pot trial, a pine biochar (untreated) and nutrient-enriched pine biochar were applied to a market garden soil with C3 (Spinacia oleracea L.) and C4 (Amaranthus paniculatus L.) plants at rates of 0, 1.0, 2.0, and 4.0 % (w/w). Plant biomass, soil pH, moisture content, water holding capacity (WHC), hot water extractable organic C (HWEOC), and total N (HWETN), total C and N, and their isotope compositions (δ 13C and δ 15N) of soils and plants were measured at the end of the experimentation.

Results and discussion

The soil moisture content increased while plant biomass decreased with increasing untreated biochar application rates. The addition of nutrient-enriched biochar significantly improved plant biomass in comparison to the untreated biochar addition at most application rates. Biochar application also increased the levels of labile organic C and N pools as indicated by HWEOC and HWETN.

Conclusions

The results suggested that the addition of pine biochar significantly improved soil water availability but not plant growth. The application of nutrient-enriched pine biochar demonstrated that the growth of C3 and C4 plants was governed by biochar nutrient availability rather than its water holding capacity under the pot trial condition.
  相似文献   

6.

Purpose

Anthropic activities induce severe metal(loid)s contamination of many sites, which is a threat to the environment and to public health. Indeed metal(loid)s cannot be degraded, and thus accumulate in soils. Furthermore, they can contaminate surrounding ecosystems through run-off or wind erosion. This study aims to evaluate the phytostabilization capacity of Salix viminalis to remediate As and Pb highly contaminated mine site, in a biochar-assisted phytoremediation context and to assess biochar particle size and dose application effects.

Materials and methods

To achieve this, mesocosm experiments were conducted using the contaminated technosol and four different size fraction of one biochar as amendment, at two application rates (2 and 5%). Non-rooted cuttings of Salix viminalis were planted in the different mixtures. In order to characterize the mixtures, soil pore waters were sampled at the beginning and at the end of the experiment and analyzed for pH, electrical conductivity, and metal(loid) concentrations. After 46 days of Salix growth, roots, stems, and leaves were harvested and weighed, and As and Pb concentrations and distributions were measured.

Results and discussion

Soil fertility improved (acidity decrease, electrical conductivity increase) following biochar addition, whatever the particle size, and the Pb concentration in soil pore water decreased. Salix viminalis did not grow on the non-amended contaminated soil while the biochar amendment permitted its growth, with a better growth with the finest biochars. The metal(loid)s accumulated preferentially in roots.

Conclusions

Fine biochar particles allowed S. viminalis growth on the contaminated soil, allowing this species to be used for technosol phytostabilization.
  相似文献   

7.

Purpose

We examined the effects of vermicompost application as a basal fertilizer on the properties of a sandy loam soil used for growing cucumbers under continuous cropping conditions when compared to inorganic or organic fertilizers.

Materials and methods

A commercial cucumber (Cucumis sativus L.) variety was grown on sandy loam soil under four soil amendment conditions: inorganic compound fertilizer (750 kg/ha,), replacement of 150 kg/ha of inorganic compound fertilizer with 3000 kg/ha of organic fertilizer or vermicompost, and untreated control. Experiments were conducted in a greenhouse for 4 years, and continuous planting resulted in seven cucumber crops. The yield and quality of cucumber fruits, basic physical and chemical properties of soil, soil nutrient characteristics, and the soil fungal community structure were measured and evaluated.

Results and discussion

Continuous cucumber cropping decreased soil pH and increased electrical conductivity. However, application of vermicompost significantly improved several soil characteristics and induced a significant change in the rhizosphere soil fungal community compared to the other treatments. Notably, the vermicompost amendments resulted in an increase in the relative abundance of Ascomycota, Chytridiomycota, Sordariomycetes, Eurotiomycetes, and Saccharomycetes, and a decrease in Glomeromycota, Zygomycota, Dothideomycetes, Agaricomycetes, and Incertae sedis. Compared to the organic fertilizer treatment, vermicompost amendment increased the relative abundance of beneficial fungi and decreased those of pathogenic fungi. Cucumber fruit yield decreased yearly under continuous cropping conditions, but both inorganic and organic fertilizer amendments increased yields. Vermicompost amendment maintained higher fruit yield and quality under continuous cropping conditions.

Conclusions

Continuous cropping decreased cucumber yield in a greenhouse, but basic fertilizer amendment reduced this decline. Moreover, basal fertilizer amendment decreased beneficial and pathogenic fungi, and the use of vermicompost amendment in the basic fertilizer had a positive effect on the health of the soil fungal community.
  相似文献   

8.

Purpose

This work investigated changes in priming effects and the taxonomy of soil microbial communities after being amended with plant feedstock and its corresponding biochar.

Materials and methods

A soil incubation was conducted for 180 days to monitor the mineralization and evolution of soil-primed C after addition of maize and its biochar pyrolysed at 450 °C. Responses of individual microbial taxa were identified and compared using the next-generation sequencing method.

Results and discussion

Cumulative CO2 showed similar trends but different magnitudes in soil supplied with feedstock and its biochar. Feedstock addition resulted in a positive priming effect of 1999 mg C kg?1 soil (+253.7 %) while biochar gave negative primed C of ?872.1 mg C kg?1 soil (?254.3 %). Linear relationships between mineralized material and mineralized soil C were detected. Most priming occurred in the first 15 days, indicating co-metabolism. Differences in priming may be explained by differences in properties of plant material, especially the water-extractable organic C. Predominant phyla were affiliated to Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes, Planctomycetes, Proteobacteria, Verrucomicrobia, Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Zygomycota, Euryarchaeota, and Thaumarchaeota during decomposition. Cluster analysis resulted in separate phylogenetic grouping of feedstock and biochar. Bacteria (Acidobacteria, Firmicutes, Gemmatimonadetes, Planctomycetes), fungi (Ascomycota), and archaea (Euryarchaeota) were closely correlated to primed soil C (R 2?=??0.98, ?0.99, 0.84, 0.81, 0.91, and 0.91, respectively).

Conclusions

Quality of plant materials (especially labile C) shifted microbial community (specific microbial taxa) responses, resulting in a distinctive priming intensity, giving a better understanding of the functional role of soil microbial community as an important driver of priming effect.
  相似文献   

9.

Purpose

This study was aimed to investigate the potential of biochar (BC), a waste byproduct of a bioenegy industry, Sri Lanka, as a soil amendment to immobilize and reduce the phytotoxicity of Cr in tannery waste-polluted soil (TWS).

Materials and methods

The TWS and bioenergy waste BC were characterized for physio-chemical parameters. A pot experiment was conducted by adding three BC application rates, 1, 2.5, and 5 % (w/w) to investigate the immobilizing capacity and bioaccumulation of chromium (Cr) in tomato plants (Lycopersicon esculentum L.). Soils and plants were digested via microwave digestion and analyzed for total Cr. Further, sequential extraction was conducted to assess the fractionation of Cr before and after the application of bioenergy waste BC on TWS.

Results and discussion

The total Cr concentration in TWS was 12,285 mg/kg. The biomass of tomato plants grown in the 5 % BC amendment doubled compared to the biomass in BC-unamended soil. Bioaccumulation of Cr in plants grown in 5 % BC-amended TWS showed a decrease by 97 % compared to that of the BC-unamended soil. The CaCl2 extractability of Cr indicated that the bioavailability of Cr in the 5 % BC amendment has decreased by 68 % compared to the control. Sequentially extracted Cr in the exchangeable fraction decreased by 98 % in the 5 % BC amendment.

Conclusions

Pore diffusion, and adsorption via π-π electron donor-acceptor interactions were the primary mechanisms to be involved in the Cr retention in BC. Results suggested that the addition of BC to TWS reduces the mobility, bioavailability, and phytotoxicity of Cr in tomato plants.
  相似文献   

10.

Purpose

Nitrification and denitrification processes dominate nitrous oxide (N2O) emission in grassland ecosystems, but their relative contribution as well as the abiotic factors are still not well understood.

Materials and methods

Two grassland soils from Duolun in Inner Mongolia, China, and Canterbury in New Zealand were used to quantitatively compare N2O production and the abundance of bacterial and archaeal amoA, denitrifying nirK and nirS genes in response to N additions (0 and 100 μg NH4 +–N g?1 dry soil) and two soil moisture levels (40 and 80 % water holding capacity) using microcosms.

Results and discussion

Soil moisture rather than N availability significantly increased the nitrification rate in the Duolun soil but not in the Canterbury soil. Moreover, N addition promoted denitrification enzyme activities in the Canterbury soil but not in the Duolun soil. The abundance of bacterial and archaeal amoA genes significantly increased as soil moisture increased in the Duolun soil, whereas in the Canterbury soil, only the abundance of bacterial amoA gene increased. The increase in N2O flux induced by N addition was significantly greater in the Duolun soil than in the Canterbury soil, suggesting that nitrification may have a dominant role in N2O emission for the Duolun soil, while denitrification for the Canterbury soil.

Conclusions

Microbial processes controlling N2O emission differed in grassland soils, thus providing important baseline data in terms of global change.
  相似文献   

11.

Purpose

Polychlorinated biphenyls (PCBs) are persistent soil contaminants that resist biodegradation and present serious risks to living organisms. The presence of biochar in soils can lower the availability of PCBs to biota. In this study, the effect of biochar enrichment in soils on bioaccumulation of PCBs was investigated.

Materials and methods

We applied two types of biochar including pine needle biochar (PC) and wheat straw biochar (WC), and an activated carbon (AC) to soil (2 % w/w) and employed two alternative methods to quantified rates of bioaccumulation: a living bioassay (using earthworm, Eisenia fetida, as a model organism) and a triolein-embedded cellulose acetate membrane (TECAM).

Results and discussion

Our results show that the application of biochar or AC greatly reduced the uptake of PCBs (particularly less-chlorinated PCBs) by earthworms (the reduction in total PCBs concentration was up to 40.0 and 49.0 % for PC and WC treatments, while 71.6 % for AC application). We found that the bioaccumulation factors (BAFs) for PCBs in the earthworms in biochar/AC-enriched soils were strongly correlated with O:C ratio of the biochar/AC (R 2?=?0.998, p?<?0.05). We observed that BAFs increased at log K OW below 6.3 and decreased at log K OW values greater than 6.3. We demonstrated that the concentration of PCBs in TECAM membranes were positively correlated with the concentration of PCBs earthworms in soil.

Conclusions

TECAM offers an efficient and cost-effective method for predicting the bioavailability of PCBs in field-contaminated soils undergoing sorbent-based remediation.
  相似文献   

12.

Purpose

Soil organic carbon (SOC) and its labile fractions are strong determinants of physical, chemical and biological properties. The objective of the present work was to evaluate the effects of organic amendments (technosol made of wastes and biochar) and Brassica juncea L. on the soil C fractions in a reclaimed mine soil.

Materials and methods

The studied soil was from a former copper mine that was subsequently partially reclaimed with vegetation and wastes. A greenhouse experiment was carried out to amend the mine soil with different proportions of technosol and biochar mixture and planting B. juncea. B. juncea plants can tolerate high levels of metals and can produce a large amount of biomass in relatively short periods of time.

Results and discussion

The results showed that with the addition of biochar and wastes, soil pH increased from 2.7 to 6.18, SOC from undetectable to 105 g kg?1 and soil total nitrogen (TN) from undetectable to 11.4 g kg?1. Amending with wastes and biochar also increased dissolved organic carbon (DOC) from undetectable to 5.82 g kg?1, carbon in the free organic matter (FOM) from undetectable to 30.42 g kg?1, FAP (carbon in fulvic acids removed with phosphoric acid) from undetectable to 24.14 g kg?1 and also increased the humification ratio, the humification index, the polymerisation rate and the organic carbon in the humified fractions (humic acids, fulvic acids and humin). Soils amended and vegetated with B. juncea showed lower FOM values and higher humification index values than the soils amended only with biochar and wastes.

Conclusions

This study concludes that the combined addition of wastes and biochar has a greater potential for both increasing and improving organic carbon fractions in mine soils. The authors recommend the application of biochar and technosol made of wastes as a soil amendment combined with B. juncea on soils that are deficient in organic matter, since they increased all of the SOC fractions in the studied copper mine soil.
  相似文献   

13.

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L?1) and elevated (700 μL L?1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.
  相似文献   

14.

Purpose

Soil amendment with biochar can result in decreased bulk density and soil penetration resistance, and increased water-holding capacity. We hypothesized that adding biochar could moderate the reductions in infiltration rates (IR) that occur during high-intensity rainstorms in seal-prone soils, and hence result in reduced runoff and erosion rates. The objectives were to (i) evaluate biochar potential to improve infiltration and control soil erosion, and (ii) investigate the mechanisms by which biochar influences infiltration rate and soil loss.

Materials and methods

Rainfall simulation experiments were conducted on two physicochemically contrasting, agriculturally significant, erosion-prone soils of Israel that are candidates for biochar amendment: (i) non-calcareous loamy sand, and (ii) calcareous loam. Biochar produced from mixed wood sievings from wood chip production at a highest treatment temperature of 620 °C was used as the amendment at concentrations from 0 to 2 wt%.

Results and discussion

In the non-calcareous loamy sand, 2 % biochar was found to significantly increase final IR (FIR) by 1.7 times, and significantly reduce soil loss by 3.6 times, compared with the 0 % biochar control. These effects persisted throughout a second rainfall simulation, and were attributed to an increase in soil solution Ca and decrease in Na, and a subsequently decreased sodium adsorption ratio (SAR). In the calcareous loam, biochar addition had no significant effect on FIR but did reduce soil loss by 1.3 times. There were no biochar-related chemical changes in the soil solution of the calcareous loam, which corresponds to the lack of biochar impact on FIR. Surface roughness of the calcareous loam increased as a result of accumulation of coarse biochar particles, which is consistent with decreased soil loss.

Conclusions

These results confirm that biochar addition may be a tool for soil conservation in arid and semi-arid zone soils.
  相似文献   

15.

Purpose

Chlorpyrifos can be effectively adsorbed by drinking water treatment residuals (WTR), ubiquitous and non-hazardous by-products of potable water production. The major metabolite 3,5,6-trichloro-2-pyridinol (TCP) was found to be much more mobile and toxic than its parent chlorpyrifos. To assess the feasibility of WTR amendment for attenuation of chlorpyrifos and TCP pollution, the sorption/desorption and degradation behavior of chlorpyrifos and TCP in WTR-amended agricultural soils was examined in the present study.

Materials and methods

Two representative agricultural soils were sampled from southern and northern China, respectively. The soils were amended with WTR at the rates of 0, 2, 5, and 10 % (w/w). Batch sorption/desorption test were applied to investigate the sorption/desorption characteristics of chlorpyrifos and TCP in WTR-amended soils. The influence of WTR amendment on chlorpyrifos degradation and TCP formation was evaluated using the incubation test, and its effect on the soil bacterial abundance was further studied through DNA extraction and PCR amplification.

Results and discussion

Results showed that WTR amendment (0–10 %, w/w) significantly enhanced the retention capacity of chlorpyrifos and TCP in both soils examined (P < 0.05). Fractionation analyses further demonstrated that the bioavailability of chlorpyrifos was considerably reduced by WTR amendment, resulting in a decreased chlorpyrifos degradation rate. The WTR amendment also significantly reduced the mobility of TCP formed in chlorpyrifos-contaminated soils (P < 0.001). The chlorpyrifos toxicity to soil bacteria community was largely mitigated following WTR amendment, resulting in increased total bacterial abundance.

Conclusions

Results obtained in the present study indicate a great deal of potential for the beneficial reuse of WTR as soil amendments for chlorpyrifos and TCP pollution control.
  相似文献   

16.

Purpose

The low conductivity of sediments for mass and electron transport is the most severe limiting factor in sediment microbial fuel cells (SMFCs), so that sediment ameliorations yielded more remarkable effects than electrode improvements. The objective of this research was to enhance the electricity generation of SMFCs with amendments of biochar to freshwater sediments for conductivity enhancement.

Materials and methods

Laboratory-scale SMFCs were constructed and biochars were produced from coconut shells at different temperatures. Variations in the power output, electrode potential, internal resistance, total organic carbon (TOC) content, and microbial communities were measured.

Results and discussion

Amending with biochar reduced the charge transfer resistances of SMFCs and enriched the Firmicutes (mainly Fusibacter sp.) in the sediment, which improved the SMFC power generation by two- to tenfold and enhanced the TOC removal rate by 1.7- to fourfold relative to those without the amendment.

Conclusions

The results suggested that biochar amendment is a promising strategy to enhance SMFC power production, and the electrical conductivity of biochar should be considered important when interpreting the impact biochar has on the electrical performance of soil or freshwater sediment MFCs.
  相似文献   

17.

Purpose

We evaluated the ameliorative effects of crop straw biochars either alone or in combination with nitrate fertilizer on soil acidity and maize growth.

Materials and methods

Low energy-consuming biochars were prepared from canola and peanut straws at 400 °C for 2 h. Incubation experiment was conducted to determine application rate of biochars. Afterward, maize crop was grown in pots for 85 days to investigate the effects of 1 % biochars combined with nitrate fertilizer on soil pH, exchangeable acidity, and maize growth in an Ultisol collected from Guangdong Province, China.

Results and discussion

Application of 0.5, 1.0, and 1.5 % either canola straw biochar (CSB) or peanut straw biochar (PSB) increased soil pH by 0.15, 0.27, 0.34, and 0.30, 0.58, 0.83 U, respectively, after 65-day incubation. Soil pH was increased by 0.49, 0.72, 0.78, and 0.88 U when 1 % CSB or PSB was applied in combination with 100 and 200 mg N/kg of nitrate, respectively, after maize harvest in greenhouse pot experiment. These low-cost biochars when applied alone or in combination with nitrate not only reduced soil exchangeable acidity, but also increased Ca2+, Mg2+, K+, Na+, and base saturation degree of the soil. A total of 49.91 and 80.58 % decreases in exchangeable acidity were observed when 1 % CSB and PSB were incubated with the soil for 65 days, compared to pot experiment where 71.35, 78.64, 80.2, and 81.77 % reductions of exchangeable acidity were observed when 1 % CSB and PSB were applied in combination with 100 and 200 mg N/kg of nitrate, respectively. The higher contents of base cations (Ca2+, Mg2+, K+, Na+) in biochars also influenced the plant growth. The higher biomass in CSB-treated pots was attributed to the higher K content compared to PSB. The higher percent reduction in exchangeable Al3+ by applying 1 % CSB combined with 200 mg N/kg of nitrate consistently produced maximum biomass (129.65 g/pot) compared to 100 mg N/kg of nitrate and 1 % PSB combined with 100 and 200 mg N/kg of nitrate. The exchangeable Al3+ mainly responsible for exchangeable acidity was decreased with the application of biochars and nitrate fertilizer. A highly significant negative relationship was observed between soil exchangeable Al3+ and plant biomass (r 2?=?0.88, P?<?0.05).

Conclusions

The biochars in combination with nitrate fertilizer are cost-effective options to effectively reduce soil acidity and improve crop growth on sustainable basis.
  相似文献   

18.

Purpose

The agriculture industry is under intense pressure to produce more food with a lower environmental impact, while also mitigating climate change. Biochar has the potential to improve food security while improving soil fertility and sequestering carbon. The aim of our research was to evaluate the effects of apple branch biochar on wheat yield and soil nutrients under different nitrogen (N) and water conditions.

Materials and methods

Durum wheat was grown for nearly 6 months in pots with silt clay soil supplemented with apple branch biochar. The biochar was applied at five rates (0, 1, 2, 4, and 6% w/w; B0, B1, B2, B3, and B4), and N fertilizer was applied at three rates (0, 0.2, and 0.4 g kg?1; N0, N1, and N2). From the jointing to maturation stages, the soil water content was controlled at two rates to simulate sufficient water and drought conditions (75 and 45% of field capacity; W1 and W2). After harvest, we investigated grain yield and soil nutrient status.

Results and discussion

The application of biochar alone had a positive effect on wheat production and soil nutrients, especially under sufficient water conditions. Compared with the addition of N fertilizer alone, the addition of biochar at B1 and B2 combined with N fertilizer under sufficient water conditions increased the crop yield by 7.40 to 12.00%, whereas this was not the case under drought stress. Furthermore, regardless of water conditions, compared with N fertilizer application alone, a high rate of biochar application (B3 and B4) led to a significant decrease in the grain yield of approximately 6.25–21.83%. Biochar had strong effects on soil nutrients, with NO3? and available phosphorus contents and the C:N ratio exerting the greatest effects on wheat yield.

Conclusions

The effects of biochar on wheat production and soil nutrients varied with the biochar application rate, N fertilizer application rate, and water conditions. Drought stress weakened or offset the positive effect of biochar on crop production, especially under the high-N level (N2) conditions. The optimum application combination was 1% (or possibly even less) apple branch biochar (B1) and moderate N fertilizer (N1).
  相似文献   

19.

Purpose

Acid sulfate soils (ASS) are common in wetlands and can pose an environmental threat when they dry because oxidation of pyrite may cause strong acidification. Addition of organic matter can stimulate sulfate reduction during wet periods and minimize acidification during dry periods. However, the effect of the organic amendment may depend on its composition.

Materials and methods

Three wetland acid sulfate (sulfuric, hypersulfidic, and hyposulfidic) soils collected from different depth in one profile were used. The soils, unamended or amended with 10 g C kg?1 as glucose, wheat straw, pea straw, or Phragmites litter, were incubated for 18 weeks under flooded conditions (“wet period”) followed by 10 weeks during which the soils were maintained at 100 % of maximum water-holding capacity (“dry period”).

Results and discussion

During the wet period, the pH decreased in the control and with glucose to pH 3–4, but increased or was maintained in residue-amended soils (pH at the end of the wet period about 7). In the dry period, the pH of the control and glucose-amended soils remained low, whereas the pH in residue-amended soils decreased. However, at end of the dry period, the pH was higher in residue-amended soils than in the control or glucose-amended soils, particularly with pea straw (C/N 50).

Conclusions

Amendment of acid sulfate soils with plant residues (particularly those with low to moderate C/N ratio) can stimulate pH increase during flooding and reduce acidification under oxidizing conditions.
  相似文献   

20.

Purpose

The use of municipal solid wastes (MSWs) as a low-cost source of organic matter for soils should be considered after discarding the environmental risks related to their metal(loid) load. The goal of this work was to assess the employment of a MSW as an organic amendment in two types of soil (an agricultural soil, A, and a metal(loid)-enriched mine tailings soil, T) attending to changes in soil properties and in plant growth, nutrition and metal(loid) translocation from roots to aerial parts of Zea mays L. (stalk, leaves, tassel, husk, cob and kernel).

Materials and methods

After a comprehensive characterisation of each soil treatment (A, A + MSW, T, T + MSW), a pot-designed experiment was carried out. Soil solution was monthly monitored throughout the experiment, and metal(loid) concentrations were measured.

Results and discussion

The MSW improved some fertility-related parameters in both soils, A and T: increased total and dissolved organic carbon, total nitrogen and soil microbiology. However, an increase in 0.01 M CaCl2-extractable metal(loid) concentration was also observed. No differences in dry biomass were found between amended and not amended treatments. A fractionation of metal(loid) concentrations among plant organs occurred. For instance, the highest Cu and Pb concentrations were found in roots, while for Zn occurred in the stalk and the cob. The amended treatments favoured the accumulation of Mn in all plant organs. Kernels showed in general the lowest metal(loid) concentrations.

Conclusions

The addition of municipal solid wastes as organic amendment could be a suitable tool to increase soil fertility. However, due to the high metal(loid) content of this particular MSW, its use on agricultural soils would not be appropriate. By other hand, along with the improvement of soil fertility, the MSW was useful to promote plant development in the mine tailings soil which should be then considered as a potential tool to promote plant establishment in those metal(loid)-impacted soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号