首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Purpose

Submerged rice cultivation has been practiced in China for 7000 years. Empirical evidence on changes of soil organic carbon (SOC) contents in paddy soils over this historical time period is scarce. Therefore, a field study was conducted to investigate the effect of submerged rice cultivation on the accumulation and preservation of SOC in paddies.

Materials and methods

Two buried ancient paddy profiles (6280 years BP, named P-01 and P-03) in the Yangtze Delta of eastern China were excavated to illustrate the development of SOC contents in soils during the evolution of paddies under anthropogenic land use and environmental changes from the prehistoric period to the present time. Trends in SOC concentrations, total nitrogen concentrations, and stable carbon isotope ratio were identified for different points in time.

Results and discussion

Accumulation of organic carbon was found in the paddy soil layers of P-01 at 100–174 cm depth. This site was taken under submerged rice cultivation in about 6280 years BP. The average SOC concentration in the prehistoric paddy topsoil in 100–130 cm depth was 1.27 %, which is seven times higher than that in the adjacent uncultivated land at 103–130 cm depth of P-03. This implies that the paddy soil has experienced substantial CO2 sequestration under submerged management during that time. By about 3320 years BP, organic carbon contents were halved, potentially due to marine inundation by sea level rise. Up to the year 2003, the SOC contents in all horizons in the present time paddy soil have increased, especially in the surface layer, indicative of continuous rice cultivation. However, due to rapid urbanization and industrialization, the cultivation of paddies in eastern China has gradually been discontinued leading to the loss of SOC stocks of approximately 10 % in a 6-year interval (from 2003 to 2009). A significant relationship between SOC and rice phytolith contents was found in the paddy soil horizons of P-01 (r?=?0.71, p?<?0.01) and P-03 (r?=?0.72, p?<?0.01), suggesting that phytolith-occluded organic carbon could be used as a biomarker to ascertain the development of SOC in the evolution of rice paddies over the past 6000 years.

Conclusions

Submerged rice cultivation led to a noticeable accumulation of SOC in paddies. Phytolith-occluded organic carbon could be used as a biomarker to monitor changes of OC contents in paddy soils.
  相似文献   

2.

Purpose

Phosphorus (P) in soil particulate fraction (PF; >53 μm) is suggested to have a significant importance in soil P cycling. However, the effects of continuous fertilization on P-PF and its association with soil organic carbon (SOC) in paddy soils have not been well studied.

Materials and methods

We sampled paddy soils at 0–20 cm from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilization treatments with equivalent P input (135 kg P2O5?ha?1 year?1) except the control treatment (CK). Changes in total P (Pt), inorganic P (Pi), organic P (Po), and SOC under different fertilization managements were evaluated in the whole soil, in the PF, and in the mineral-associated fraction (MAF; <53 μm).

Results and discussion

Continuous fertilization increased the contents of SOC and P in all soil fractions. Both Po and organic carbon in PF were the most sensitive variables to fertilization, indicating that they constitute a useful tool to detect the effects of management practices. Among the fertilization treatments, organic amendments significantly increased Po-PF contents more than chemical fertilizer applied only (p?<?0.05), although they had equivalent P input. The paddy soil without fertilization showed a more significant decrease in Pi compared with Po. The SOC/Po ratios were significantly lower in fertilization treatments (especially those with manure or straw incorporation) than in CK and decreased from PF to MAF. A significant relationship was found between Po-PF contents and rice P uptake during the growing season.

Conclusions

These results demonstrate that Po-PF may also play a significant role in P cycling of paddy soil, and thus, it would be better to consider Po-PF in soil diagnosis to promote P management of paddy soil, especially for that under long-term organic amendments.
  相似文献   

3.

Purpose

Understanding the effects of temperature and moisture on soil organic carbon (SOC) dynamics is crucial to predict the cycling of C in terrestrial ecosystems under a changing climate. For single rice cropping system, there are two contrasting phases of SOC decomposition in rice paddy soils: mineralization under aerobic conditions during the off-rice season and fermentation under anaerobic conditions during the growth season. This study aimed to investigate the effects of soil temperature and moisture on SOC decomposition under the aerobic and subsequently anaerobic conditions.

Materials and methods

Two Japanese paddy soils (Andisol and Inceptisol) were firstly incubated under four temperatures (±5, 5, 15, and 25°C) and two moisture levels (60 and 100% water-filled pore space (WFPS)) under aerobic conditions for 24 weeks. Then, these samples were incubated for 4 weeks at 30°C and under anaerobic conditions. Carbon dioxide (CO2) and methane (CH4) productions were measured during the two incubation stages to monitor the SOC decomposition dynamics. The temperature sensitivity of SOC was estimated by calculation of the Q10 parameter.

Results and discussion

The total CO2 production after the 24-week aerobic incubation was significantly higher in both soils for increasing soil temperature and moisture (P < 0.01). During the subsequent anaerobic incubation, total decomposed C (sum of CO2 and CH4 productions) was significantly lower in samples that had been aerobically incubated at higher temperatures (15 and 25°C). Moreover, CH4 production was extremely low in all soil samples. Total decomposed C after the two incubation stages ranged from 256.8 to 1146.1 mg C kg?1 in the Andisol and from 301.3 to 668.8 mg C kg?1 in the Inceptisol. However, the ratios of total decomposed C to SOC ranged from 0.29 to 1.29% in the Andisol and from 2.21 to 4.91% in the Inceptisol.

Conclusions

Both aerobic and anaerobic decompositions of SOC in two paddy soils were significantly affected by soil temperature and moisture. Maintaining optimal soil temperature and medium moisture during the off-rice season might be an appropriate agricultural management to mitigate CH4 emission in the following rice growth season. Although it is high in SOC content, Andisol has less biodegradable components compared to Inceptisol and this could be a probable reason for the distinct difference in temperature sensitivity of SOC decomposition between two paddy soils.
  相似文献   

4.

Purpose

The objectives of the study were (1) to quantify the long-term effects of nitrogen-phosphorus fertilizer (NP) and a combination of nitrogen-phosphorus with organic manure (NPM) on total soil organic carbon (SOC) and total soil inorganic carbon (SIC), (2) to identify the changes of SOC and SIC in soil particle-size fractions, and (3) to investigate the relationship between SOC and SIC.

Materials and methods

Two long-term field experiments (sites A and B) were performed in 1984 (site A) and 1979 (site B) in the North China Plain. The soil samples were collected in 2006 and separated for clay, silt and sand size particle fractions and then determined for SOC and SIC.

Results and discussion

The long-term fertilization significantly increased SOC in 0–20 cm soil layer by 9–68% but significantly decreased or had no effect on SIC. In total, soil carbon storage was little affected by NP, but significantly increased by NPM application (p < 0.05). Fertilization affected both SOC and SIC in sand- and silt-sized particles but not in clay-size fraction. Both NP and NPM increased SOC in sand- and silt-sized particles by 8.7–123.9% in the 0–20 cm layer but decreased SIC up to 80.4% in the 40–60 cm layer. The SOC concentration in the particle-size fractions was negatively correlated with SIC concentration, which may imply an antagonistic interaction between organic and inorganic carbon levels.

Conclusions

These results illustrate the importance of soil inorganic carbon pool in evaluating soil total carbon pool in semi-arid farmlands. Previous assessments of the effects of fertilizers on the soil carbon pool, using only SOC determinations, require re-evaluation with the inclusion of SIC determinations.
  相似文献   

5.

Purpose

Despite the ancillary knowledge that soil N is chiefly retained as soil organic matter, little is known about how it is affected by other soil and environmental factors, especially in the tropics. In this study, we performed a comprehensive survey of soils under native vegetation in Minas Gerais, Brazil, aiming to (a) measure soil Kjeldahl-N concentrations to a 1-m depth, (b) identify the main affecting factors of soil N retention, and (c) predict N through soil profile based on organic C (SOC) and its main conditioning factors.

Materials and methods

Soils under 36 fragments of native forest and savanna were sampled at five depths (0–10, 10–20, 20–40, 40–60, and 60–100 cm) and characterized by physical and chemical analyses, including total N determined by the micro-Kjeldahl method. Single and multivariate regressions were used to predict N concentrations based on soil properties and climatic factors.

Results and discussion

The average N concentrations ranged between 0.12 and 7.54 g kg?1, decreasing with depth, and can be predicted using SOC concentrations (R 2 = 0.86). Multivariate regressions using more input data, namely texture, cation exchange capacity (CEC), and altitude increased slightly R 2 values (0.68–0.90) for separate soil depths, but not for the whole dataset (R 2 = 0.85).

Conclusions

We demonstrated that N can be adequately predicted based on SOC concentrations, for any depth and forest type. The implications of the stable SOC/N relation and their coupled cycles and the environmental factors affecting N retention in Brazilian weathered soils are further discussed.
  相似文献   

6.

Purpose

Organo-mineral biochar fertiliser has the potential to replace conventional biochar and organic fertiliser to improve soil quality and increase plant photosynthesis. This study explored mechanisms involved in nitrogen (N) cycling in both soil and ginger plants (Zingiber officinale: Zingiberaceae) following different treatments including organic fertiliser, commercial bamboo biochar fertiliser, and organo-mineral biochar fertiliser.

Materials and methods

Soil received four treatments including (1) commercial organic fertiliser (5 t ha?1) as the control, (2) commercial bamboo biochar fertiliser (5 t ha?1), (3) organo-mineral biochar fertiliser at a low rate (3 t ha?1), and (4) organo-mineral biochar fertiliser at a high rate (7.5 t ha?1). C and N fractions of soil and plant, and gas exchange measurements were analysed.

Results and discussion

Initially, organo-mineral biochar fertiliser applied at the low rate increased leaf N. Organo-mineral biochar fertiliser applied at the high rate significantly increased N use efficiency (NUE) of the aboveground biomass compared with other treatments and improved photosynthesis compared with the control. There was N fractionation during plant N uptake and assimilation since the 15N enrichment between the root, leaf, and stem were significantly different from zero; however, treatments did not affect this N fractionation.

Conclusions

Organo-mineral biochar fertiliser has agronomic advantages over inorganic and raw organic (manure-based) N fertiliser because it allows farmer to put high concentrations of nutrients into soil without restricting N availability, N uptake, and plant photosynthesis. We recommend applying the low rate of organo-mineral biochar fertiliser as a substitute for commercial organic fertiliser.
  相似文献   

7.

Purpose

The purpose of this study was to better understand how both the content and flux of soil carbon respond to forest succession and anthropogenic management practices in forests in subtropical China.

Materials and methods

We assembled from the literature information on soil organic carbon (SOC) and soil respiration (Rs) covering the forest successional chronosequence from pioneer masson pine (Pinus massoniana) forest (MPF) to medium broadleaf and needleleaf mixed forest (BNMF) and the climax evergreen broadleaf forest (EBF), along with the two major forest plantation types found in subtropical China, Chinese fir (Cunninghamia lanceolata) forest (CFF) and Moso bamboo (Phyllostachys pubescens) forest (MBF).

Results and discussion

Both SOC and Rs increased along the forest successional gradient with the climax EBF having both the highest SOC content of 33.1?±?4.9 g C kg?1(mean?±?standard error) and the highest Rs rate of 46.8?±?3.0 t CO2?ha?1 year?1. It can be inferred that when EBF is converted to any of the other forest types, especially to MPF or CFF, both SOC content and Rs are likely to decline. Stand age did not significantly impact the SOC content or Rs rate in either types of plantation.

Conclusions

Forest succession generally increases SOC content and Rs, and the conversion of natural forests to plantations decreases SOC content and Rs in subtropical China.
  相似文献   

8.

Purpose

Process-based models such as CENTURY have been extensively validated for simulating soil organic carbon (SOC) dynamics at the homogeneous plot scale. However, considerable uncertainty may exist when upscaling a simulation from the plot scale to a larger scale because of variation in the model inputs. The objectives of this study were to assess the uncertainty of CENTURY-modeled SOC and to identify the most influential model inputs in various upland regions of China.

Materials and methods

Global sensitivity analysis was used to explore the sensitivity of CENTURY-modeled SOC to seven key model inputs. The uncertainties of the SOC simulated using various model inputs and climate-soil-management conditions were evaluated at 21 long-term monitoring sites located across upland areas in China.

Results and discussion

The identified sensitive model inputs differed among regions and periods due to diverse climate-soil-management conditions; nevertheless, initial SOC content (SOCi), soil clay content, and crop residue removal rate (Residuerr) were the most influential inputs. The site-to-region upscaling uncertainties remained moderately large (±42.7, ±49.4, and ±69.3 % at the 90, 95, and 100 % confidence levels, respectively) when currently available observation data were used. Therefore, the collection of detailed information on soil properties and crop residue removal, particularly legacy soil data such as the SOCi and clay content, is important for reducing the uncertainties in SOC modeling.

Conclusions

Data on SOCi, Residuerr, and clay content need to be collected prior to other input data to reduce input-related uncertainty and thus to provide more reliable SOC assessment at the regional or national scale in China.
  相似文献   

9.

Purpose

Biochar application is deemed to modify soil properties, but current research has been mostly conducted on the degraded land in tropical regions. Using six consecutive years of biochar field trial, we investigated effects of biochar on soil aggregates, structural stability, and soil organic carbon (SOC) and black C (BC) concentrations in aggregate fractions. The findings have important implications in managing soil structure and SOC sequestration in high fertility soils of the temperate areas.

Materials and methods

The study had four treatments: control; biochar rate at 4.5 (B4.5) and biochar rate at 9.0 t ha?1 year?1 (B9.0); and straw return (SR). Soil samples were collected from 0–10-cm layer, and aggregate size distribution was determined with the wet-sieving method. Then, the mean weight diameter (MWD) of aggregates and the aggregate ratio (AR), i.e., the ratio of the >250 μm to the 53–250 μm size were calculated to assess the structural stability. Total SOC and BC concentrations in bulk soil (<2 mm) and separated fractions (i.e., >2000, 250–2000, 53–250, and <53 μm) were measured.

Results and discussion

The B4.5 and B9.0 significantly increased macroaggregate (250–2000 μm) and MWD and AR indices relative to the control. Comparing to the SR, the improvements in soil aggregation under biochar treatments were limited. Additionally, more SOC in larger fractions (>2000, 250–2000, and 53–250 μm) and BC in extracted fractions under biochar soils were observed. These results implied that biochar addition enhanced both native SOC and BC physical protection by aggregation.

Conclusions

Biochar application is effective in mediating soil aggregation, and thus improves both native SOC and BC stabilization in an intensive cropping system of North China.
  相似文献   

10.

Purpose

Colloid-facilitated migration of phosphorus (P) is a widely accepted phenomenon in surface and subsurface environment. Release and migration of colloidal P (Pcoll) in agricultural fields are closely related to P fertilization regimes. In this study, a site-specific experiment with rice/oilseed rape rotation was conducted to determine the export potential of Pcoll from the field and literatures reporting the impact of P fertilization regimes on release and migration of Pcoll in other agricultural fields were compared.

Materials and methods

In this 2-year field experiment, four P fertilization regimes (no fertilizer control, inorganic P fertilizer of low and high rates, and swine manure treatment) with three replicates were conducted. Floodwater and runoff samples were collected in flooding season and the 100-cm-depth soil samples were collected after both crops’ harvest seasons. Colloidal particles were separated by microfiltration and ultracentrifugation processes and determined gravimetrically. The Pcoll value was calculated as the difference between the concentration of total P in non-ultracentrifuged and ultracentrifuged samples. The same method was applied for the colloidal mineral elements (Fe and Al) and organic carbon.

Results and discussion

Total P concentration in paddy floodwater significantly increased after fertilization but decreased quickly in the following days, maintaining at 6.0 mg m?2. In soil extracts, concentration of Pcoll was low but stable, which ranged from 6 to 22 % of total P after oilseed rape season and from 7 to 18 % after rice season. In runoff samples, there were positive correlations between Pcoll, colloidal Fe (Fecoll), colloidal Al (Alcoll), and colloidal TOC (TOCcoll); the majority of P forms was molybdate reactive P. In both crops’ seasons, the amount of colloids increased with soil depth. Content of soil Pcoll was low and occupied 0.1–2 % of total P. The literature review showed that Pcoll in soil solution, runoff, and leachate ranged from 1.4 to 94 % of total P.

Conclusions

These results suggested that although the concentrations of Pcoll were not high, they widely distributed in paddy floodwater, runoff, and soil profile. Fertilization regimes and planting systems had a significant influence on the contents of Pcoll. Moreover, the Pcoll binding with Fe/Al minerals and organic carbon might be an alternative route of P loss in paddy field.
  相似文献   

11.

Purpose

Organic matter amendment is usually used to improve soil physicochemical properties and to sequester carbon for counteracting climate change. There is no doubt that such amendment will change microbial activity and soil nitrogen transformation processes. However, the effects of straw and biochar amendment on anammox and denitrification activity and on community structure in paddy soil are unclear.

Materials and methods

We conducted a 30-day pot experiment using rice straw and rice straw biochar to deepen our understanding about the activity, microbial abundance, and community structure associated with soil nitrogen cycling during rice growth.

Results and discussion

Regarding activity, anammox contributed 3.1–8.1% of N2 production and denitrification contributed 91.9–96.9% of N2 production; straw amendment resulted in the highest denitrification rate (38.9 nmol N g?1 h?1), while biochar amendment resulted in the highest anammox rate (1.60 nmol N g?1 h?1). Both straw and biochar amendments significantly increased the hzsB and nosZ gene abundance (p < 0.05). Straw amendment showed the highest nosZ gene abundance, while biochar amendment showed the highest hzsB gene abundance. Phylogenetic analysis of the anammox bacteria 16S rRNA genes indicated that Candidatus Brocadia and Kuenenia were the dominant genera detected in all treatments.

Conclusions

Straw and biochar amendments have different influences on anaerobic ammonia oxidation and denitrification within paddy soil. Our results suggested that the changes in denitrification and anammox rates in the biochar and straw treatments were mainly linked to functional gene abundance rather than microbial community structure and that denitrification played the more major role in N2 production in paddy soil.
  相似文献   

12.

Purpose

Processes that lead to soil organic carbon (SOC) protection depend on both soil porosity and structure organization, as well as chemical and biological properties. In particular, the soil micro-nano porosity (<30 μm) regulates microorganism accessibility to the soil pore system and offers surfaces for organic carbon adsorption and intercalation into soil minerals. The aim of this work was to investigate how pore size distribution can selectively protect specific carbon pools in different aggregate size fractions, by considering the effects of long-term application of farmyard manure (FYM) and mineral (Min) fertilization.

Materials and methods

Macroaggregates (250–2000 μm), microaggregates (53–250 μm), and silt–clay (<53 μm) fractions of three different soils (clayey, peaty, and sandy) were separated by wet sieving technique and then subjected to chemical and physical analysis. Sample porosity and pore size distribution were analyzed using mercury intrusion porosimetry (MIP), while SOC chemical structure was characterized by means of nuclear magnetic resonance (13C cross-polarization–magic angle spinning nuclear magnetic resonance (CP MAS 13C NMR)) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopies.

Results and discussion

Results showed that FYM increased organic (OC) and humic carbon (HC) content compared to the Min fertilization and unfertilized soils. However, it caused a gradual decrease in O,N-alkyl C, and alkyl C of humic C from macroaggregate to silt–clay fractions, suggesting an advanced state of humic component degradation as revealed by CP MAS 13C NMR, DRIFT analyses. MIP analysis showed a clear increase of micropores (5–30 μm) and cryptopores (0.0035–0.1 μm) from macroaggregate to silt–clay fractions, while minor differences were observed among the treatments. The application of principal component analysis to mineral soil fractions identified the formation of three main clusters, where (i) macroaggregates of clayey soil were mainly associated to cryptopores and OC and (ii) microaggregates and silt–clay fraction were mainly isolated by carbonyl C, ultramicropores, and total porosity. The third cluster was associated with medium and fine sand of the sand soil fraction as coupled with O,N-alkyl C, anomeric C, mesopores, and HC/OC ratio.

Conclusions

Overall, this study indicates that pore size distribution may be a valuable indicator of soil capacity to sequester carbon, due to its direct influence on SOC linkages with soil aggregates and the positive effects against SOC decomposition phenomena. In this context, micropore- to nanopore-dominated structures (e.g., clayey soil) were able to protect OC compounds by interacting with mineral surfaces and intercalation with phyllosilicates, while meso/macropore-dominated structures (i.e., sandy soil) exhibited their low ability to protect the organic components.
  相似文献   

13.

Purpose

Soil properties are highly heterogeneous in forest ecosystems, which poses difficulties in estimating soil carbon (C) and nitrogen (N) pools. However, little is known about the relative contributions of environmental factors and vegetation to spatial variations in soil C and N, especially in highly diverse mixed forests. Here, we examined the spatial variations of soil organic carbon (SOC) and total nitrogen (TN) in a subtropical mixed forest in central China, and then quantified the main drivers.

Materials and methods

Soil samples (n = 972) were collected from a 25-ha forest dynamic plot in Badagonshan Nature Reserve, central China. All trees with diameter at breast height (DBH) ≥1 cm and topography data in the plot were surveyed in detail. Geostatistical analyses were used to characterize the spatial variability of SOC and TN, while variation partitioning combined with Mantel’s test were used to quantify the relative contribution of each type of factors.

Results and discussion

Both surface soil (0–10 cm) and subsurface soil (10–30 cm) exhibited moderate spatial autocorrelation with explainable fractions ranged from 31 to 47 %. The highest contribution to SOC and TN variation came from soil variables (including soil pH and available phosphorus), followed by vegetation and topographic variables. Although the effect of topography was weak, Mantel’s test still showed a significant relationship between topography and SOC. Strong interactions among these variables were discovered. Compared with surface soil, the explanatory power of environmental variables was much lower for subsurface soil.

Conclusions

The differences in relative contributions between surface and subsurface soils suggest that the dominating ecological process are likely different in the two soil depths. The large unexplained variation emphasized the importance of fine-scale variations and ecological processes. The large variations in soil C and N and their controlling mechanisms should be taken into account when evaluating how forest managements may affect C and N cycles.
  相似文献   

14.

Purpose

The objective of this study was to determine the changes in the main soil chemical properties including pH, electrical conductivity (EC), available phosphorus (P), soil organic carbon (SOC) and total nitrogen (TN) stocks after long-term (31 years) additions of two types of organic matters—rice straw and rice straw compost, combined with NPK fertilizers in single rice paddy in a cold temperate region of Japan.

Materials and methods

A long-term experiment on combined inorganic fertilizers and organic matters in paddy rice cultivation began in May 1982 in Yamagata, northeastern Japan. After the 31st harvest, soil samples were collected from five treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)] at five soil depths (0–5, 5–10, 10–15, 15–20, and 20–25 cm). Soil chemical properties of pH, EC, available P, SOC, and TN were analyzed.

Results and discussion

The pH decreased significantly only at the higher compost rate of 30 Mg ha?1, while EC increased in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock increased by 67.2, 21.4, and 8.6 %, and soil TN stock by 64.1, 20.2, and 8.5 % in CM3, RS, and CM1, respectively, compared to NPK treatment.

Conclusions

Significant changes in soil properties were observed after 31 years of organic matter applications with reference to PK- and NPK-fertilized rice paddy soils. A significant decrease in pH was observed with the application of a high rate (30 Mg ha?1) of rice straw compost but not with the conventional rate of 10 Mg ha?1. However, EC increased significantly relative to that of the PK- and NPK-fertilized plots in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock expressed as a percentage of total C applied to the soil were higher from 10 Mg ha?1 compost (28.7 %) than that from 6 Mg ha?1 rice straw (17.4 %), indicating a more effective soil organic C accumulation from rice straw compost than that from original rice straw.
  相似文献   

15.

Purpose

Soil enzyme activities are sensitive indicators of soil quality reflecting effects of land management. This study aims to monitor the effects of four crop rotation systems (rice-rice-rice: R-R-R, soya-rice-rice: S-R-R, fallow-rice: F-R and pea-soya-rice: P-S-R) on the activities of six important soil enzymes involved in C, N, P, and S cycling and soil properties during rice growth.

Materials and methods

Four rice plots with different rotation systems were investigated before rice planting and during the phenological cycle in a paddy soil from the Veneto region, Italy; sampling of soils (0–15 cm) was carried out four times during growing season (three replicates). A total of 48 samples were air dried, for some chemical (soil pH, electrical conductivity, soil organic carbon, extractable P), physical (particle size distribution), and biochemical measurements (enzymatic assays and extraction of soil DNA). Moreover, the total concentration of trace and macro- and microelements were measured for assessing element levels and possible contamination of soils.

Results and discussion

The results demonstrated that compared with field moist soil, drained soil conditions resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphomonoesterase, leucine aminopeptidase, and chitinase activities in almost all rotations. The results obtained point to a land with high soil contamination by Li and TI. Moreover, soil DNA was negatively correlated to soil TI stress (r = ? 0.41, p ? 0.01). The P–S–R rotation had the highest TI concentration in April and it is likely to be responsible for the lowest enzyme activities in the field-moist condition.The total concentrations of most studied elements (Al, As, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, Sn, Sr, V, Zn) in the soil samples fell within the natural geochemical background concentration levels.

Conclusions

The obtained results suggest that the activity of most enzymes decreases in the different experimental conditions with the following order: drained soil > late waterlogging > early waterlogging > moist soil. However, the response of enzymes to waterlogging differed with the chemical element and the cropping pattern. The best rotation system for chitinase, leucine aminopeptidase, and β-glucosidase activity (C and N cycles) was R-R-R, while for arylsulfatase, alkaline, and acid phosphatase activities (S and P cycles), it was the S-R-R.
  相似文献   

16.

Purpose

This study aims to explore the dynamics of the factors influencing soil organic carbon (SOC) sequestration and stability at erosion and deposition sites.

Materials and methods

Thermal properties and dissolved aromatic carbon concentration along with Al, Fe concentration and soil specific surface area (SSA) were studied to 1 meter depth at two contrasting sites.

Results and discussion

Fe, Al concentrations and SSA size increased with depth and were negatively correlated with SOC concentration at the erosion site (P?<?0.05), while at the deposition site, these values decreased with increasing depth and were positively correlated with SOC concentration (P?<?0.05). TG mass loss showed that SOC components in the two contrasting sites were similar, but the soils in deposition site contained a larger proportion of labile organic carbon and smaller quantities of stable organic carbon compared to the erosion site. SOC stability increased with soil depth at the erosion site. However, it was slightly variable in the depositional zone. Changes in SUVA254 spectroscopy values indicated that aromatic moieties of DOC at the erosion site were more concentrated in the superficial soil layer (0–20 cm), but at the deposition site they changed little with depth and the SUVA254 values less than those at the erosion site.

Conclusions

Though large amounts of SOC accumulated in the deposition site, SOC may be vulnerable to severe losses if environmental conditions become more favorable for mineralization in the future due to accretion of more labile carbon. Deep soil layers at the erosion site (>30 cm deep) had a large carbon sink potential.
  相似文献   

17.

Purpose

Soils of tidal marshes play an important role in regional carbon (C) cycles as they are able to store considerable amounts of organic carbon (OC). However, the C dynamics of marsh soils of the Elbe estuary have not been investigated so far. Therefore, the aim of this study was to identify the sources and distribution of soil organic carbon (SOC) and the factors influencing the SOC pools of tidal marshes of the study region.

Materials and methods

In this study, SOC pools were determined in different salinity zones and elevation classes of the estuarine marshes. The amount of initial allochthonous OC was derived from the OC content in fresh sediments. The difference to the recent OC content in the soils was interpreted as autochthonous accumulation or mineralization by microorganisms.

Results and discussion

Young, low marshes of the study sites seem to be predominantly influenced by allochthonous OC deposition whereas the older, high marshes show autochthonous OC accumulation in the topsoils (0–30 cm) and mineralization in the subsoils (30–70 cm). SOC pools of the whole profile depth (0–100 cm) did not significantly differ between elevation classes, but decreased significantly with increasing salinity from 28.3 kg m?2 in the most upstream site of the oligohaline zone to 9.7 kg m?2 in the most downstream site of the polyhaline zone. Even though the areal extent of the investigated salinity zones was similar, the SOC mass within 100 cm soil depth decreased from 0.62 Tg (1 Tg = 1012 g) in the oligohaline zone to 0.18 Tg in the polyhaline zone.

Conclusions

Elevation was found to be one factor influencing the SOC pools of tidal marshes. However, salinity seems to be an even stronger influencing factor reducing the above-ground biomass and, accordingly, the autochthonous OC input as well as the allochthonous input by enhanced mineralization of OC along the course of the estuary. An upstream shift of the salinity zones by sea level rise could, therefore, lead to a reduction of the SOC storage of the estuarine marshes.
  相似文献   

18.

Purpose

Both overharvesting and climate changes have greatly altered forest composition in northeastern China; however, forest-specific effects on soil organic carbon (SOC), N, and compositional features in different soil fractions have not yet been defined.

Materials and methods

By sampling from broad-leaved Korean pine forest (the climax vegetation) and aspen–birch forest (the secondary forest), five soil fractions were separated by a physicochemical soil fractionation method, and Fourier transform infrared spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectrometry were used for functional groups, mineral diffraction, and elemental composition determination together with SOC and N measurements.

Results and discussion

Aspen–birch forests tended to sequestrate more SOC in the slow fractions (sand and aggregate [SA] and easily oxidized fractions) and more N in the sensitive fractions (particulate and soluble fractions), indicating that in aspen–birch forests, high SOC sequestration (1.26-fold) coincided with the active and rapid N supply. Much higher percentages (13.1–40.5 %) of O–H and N–H stretching, O–H bending, and C=O, COO–, and C–H stretching, and also the much lower quartz grain size and mineral diffraction peaks in SA and acid-insoluble fraction (over 85 % of total soil mass), in aspen–birch forests were possibly associated with the 1.17- to 1.53-fold higher SOC compared to broad-leaved Korean pine forest. However, elemental composition on soil particles might marginally contribute to the SOC and N forest-dependent differences.

Conclusions

Considering the increase of aspen–birch forests and the decrease of broad-leaved Korean pine forests in historical and future scenarios in northeastern China, more SOC has been and also will sequestrate in intact soils and stable soil fractions, with more N in sensitive fractions, and these should be highlighted in evaluating forest C and N dynamics during forest successions in this region.
  相似文献   

19.

Purpose

Soil organic carbon (SOC) stock is one of the most important carbon reservoirs on the earth and plays a vital role in the global climate change. However, research on the carbon sequestration and storage of coastal wetland soil is very scarce. Therefore, a study in the coastal wetland was conducted to investigate the SOC distribution, storage, and variation under the influence of human activities.

Materials and methods

Surface soil samples in different seasons and profile soil samples were collected in the Changyi coastal wetland. SOC content, soil physicochemical properties, and sedimentation rate were determined. Organic carbon storage and burial flux were calculated. On the basis of correlation analysis and comparative study, factors affecting the distribution and storage of SOC were investigated.

Results and discussion

The average SOC content of the surface soil in June and November was 4.65 and 6.13 g kg?1, respectively. The distribution of surface SOC content was consistent with the distribution of vegetation and was affected by the soil particle size. In plant-covered area, the relationship between SOC content and depth could be expressed by the power function y?=?ax b . The contribution of plants to SOC was only significant in the shallow layer. As for the deep layer, the SOC content was higher in the mudflat. The organic carbon storage in the upper 1 m soil was estimated at 1.795 kg m?2 in average and the total organic carbon storage of Changyi wetland was estimated at 6.373?×?107 kg. The sedimentation rate was very low and the average organic carbon burial flux of the whole wetland was 17.5 g m?2 a?1.

Conclusions

Low sedimentation rate, weak downward migration, and high decomposition rate of organic matter caused by poor hydrological condition were the reasons why the SOC storage in Changyi wetland was low. Under intensive human activities, the Changyi wetland was drying and the organic carbon storage was reducing. Strategies were proposed to be taken urgently to restore the wetland for the long-term benefit.
  相似文献   

20.

Purpose

A better understanding of the role of grassland systems in producing and storing phytolith-occluded carbon (PhytOC) will provide crucial information in addressing global climate change caused by a rapid increase in the atmospheric CO2 concentration.

Materials and methods

Soil samples of typical steppe, meadow steppe, and meadow in Inner Mongolia, China, were taken at 0–10-, 10–20-, 20–40-, and 40–60-cm depths in July and August of 2015. The soil phytoliths were isolated by heavy liquid (ZnBr2), and the soil PhytOC was determined by the traditional potassium dichromate method.

Results and discussion

The results of our study showed that the storage of soil phytoliths was significantly higher in the meadow (33.44 ± 0.91 t ha?1) cf. meadow steppe (26.8 ± 0.98 t ha?1) and typical steppe (21.19 ± 4.91 t ha?1), which were not different. The soil PhytOC storage was significantly different among grassland types, being: meadow (0.39 ± 0.01 t ha?1) > meadow steppe (0.29 ± 0.02 t ha?1) > typical steppe (0.23 ± 0.02 t ha?1). PhytOC storage in typical steppe soil within the 0–60-cm soil layer is the lowest and that in meadow soils is the highest. The grassland type and the soil condition play significant roles in accumulation of phytoliths and PhytOC in different grassland soils. We suggest that the aboveground net primary productivity (ANPP) is important in soil phytolith accumulation and PhytOC content.

Conclusions

Phytolith and PhytOC storages in grassland soil are influenced by factors such as grass type, local climate and soil conditions, and management practices. Management practices to increase grass biomass production can significantly enhance phytolith C sequestration.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号