首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在城市化进程中,常出现的缺少生态观、整体观和地域观的"千城一面"保护倾向,使得历史街区失去自身文化、生态价值,如何将历史文化、环境保护更新与当代社会的发展结合成为研究的重要课题。以汕头小公园历史街区为例,利用"天人合一""道法自然""经世致用"的传统生态智慧思想与现代技术进行整合,提出通过对历史街区空间的优化与再利用、环境的保护与提升和潮汕文化的保存与延续的措施,阐释生态智慧在历史街区保护和更新案例中的现代转译方式,以期为未来历史街区的保护和更新提供新的方向。  相似文献   

2.
沙田是珠江三角洲海陆交接地带特殊的地理单元,在人力围垦与自然淤积相互作用下,构成了水网互通、顺水而居、稻作发达的文化景观。通过历史文献、田野调研、历史信息对比等研究方法,发现堤围和聚落是构成沙田文化景观的两个突出要素,呈现空间格局基本保持稳定,要素形态由单一至复杂的发展过程,即为"空间连续、要素变化"的特点,其变迁过程中凝练的生存智慧与生态智慧具有重要的现实意义,另可为有效保护和展示沙田文化景观提供参考。  相似文献   

3.
王丽萍  许大为 《绿色科技》2020,(5):31-32,37
指出了历史文化街区是人类文明的“活化石”,是人类历史文化遗迹和日常生活的重要空间载体。历史文化街区的街道景观是街道展示景观的主要载体,通过对街道界面景观要素的提取、归纳与总结,得出街道界面景观要素由底界面、侧界面以及顶界面三大核心要素组成,并将其应用到鱼山历史文化街区街道景观内进行了分析研究,提出了一些保护策略。旨在进一步了解历史文化街区街道界面景观要素构成,为历史文化街区景观的保护提供更加清晰的思路。  相似文献   

4.
阐述了我国环境影响评价中公众参与在本身的机制上和管理监督上存在的不足,分析了公众参与形式、公众参与主体、信息公开程度等对环境影响评价中公众参与有效性的影响,为促进我国环境影响评价中公众参与机制的科学合理化提供参考。  相似文献   

5.
在对昆明市历史街区保存现状进行调查的基础上,分析了昆明市历史街区保护中存在的三方面问题,并结合昆明历史文化名城的特点,提出了昆明市历史街区保护的相关原则、要求和对策,为昆明创建国家园林城市提供参考.  相似文献   

6.
昆明历史街区保护探讨   总被引:1,自引:0,他引:1  
在对昆明市历史街区保存现状进行调查的基础上,分析了昆明市历史街区保护中存在的三方面问题,并结合昆明历史文化名城的特点,提出了昆明市历史街区保护的相关原则、要求和对策,为昆明创建国家园林城市提供参考。  相似文献   

7.
自青岛开埠一个多世纪以来,青岛近代历史街区经历了从形成到发展再到保护与更新的历史过程。历史街区的保护与更新始终是既矛盾又统一的问题,在保护与更新过程中肯定会出现一些问题。作者以青岛近代历史街区保护与更新中存在问题为研究对象,首先对青岛近代历史街区的形成和发展作了概述;在此基础上总结了青岛近代历史街区现状和特点,接着对青岛近代历史街区保护与更新中存在问题及造成问题原因进行了分析,最后针对青岛近代历史街区的保护与更新的策略提出建议。  相似文献   

8.
为科学评估历史街区旅游业发展是否达到预期目标、历史建筑的文化遗产价值是否得到彰显、空间环境是否符合可持续发展,文章通过分析福建历史文化街区发展中存在的问题,参考美国景观绩效系列、建筑遗产评估和全球目的地可持续旅游标准的相关指标,通过Delphi法结合AHP法构建一套集文化和空间保护为一体的评价体系,以评估福建历史文化街区的发展水平,并为历史街区的提升发展提出科学可靠的新思路。  相似文献   

9.
以福州市中心城区为例,选择历史文化景观为源点,采用最小费用路径模型(MCR)和重力模型,构建历史文化景观廊道。基于景观格局理论,分析5、10、20、30、40、50、60、100、120、160、200 m的廊道宽度对区域的影响,确定靠近滨水、道路、公园绿地和山体的廊道适宜宽度。研究结果表明,西湖历史文化风貌区、三坊七巷历史文化街区、上下杭历史文化街区周边的源地联系强度较大,是当前城市规划保护的重点区域;通过最小费用路径提取的廊道与当前规划的廊道基本吻合,部分未被覆盖区域主要集中在仓山区中部;靠近滨水、道路、公园绿地和山体区域的廊道宽度分别设置为30~60 m、5~20 m、30~50 m和30~60 m较为适宜。  相似文献   

10.
南粤古驿道保护修复及其文化景观设计探究   总被引:1,自引:1,他引:0  
南粤古驿道是广东省珍贵的历史文化资源,对展示广东历史文化景观特色以及促进城乡社会经济发展有着独特的价值,需要在优先保护的前提下进行开发利用。以南粤古驿道为研究对象,从线性文化遗产景观的角度出发,结合多地南粤古驿道规划设计的实践工作经验,在保护古驿道沿线历史文化资源的前提下,通过分析南粤古驿道文化景观的特殊性,提出南粤古驿道的整体性保护措施,并归纳出线性文化景观的设计手法。  相似文献   

11.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

12.
重庆酸雨区缙云山典型林分冠层酸雨淋洗特征   总被引:2,自引:1,他引:2       下载免费PDF全文
选取重庆缙云山的针阔混交林、常绿阔叶林、毛竹林、灌木林4种典型林分,观测酸性降水过程中林外雨、穿透雨及干流等林内水分转换分量中的主要离子含量变化,分析林分冠层对雨水化学组成的影响,结果表明:(1)降雨中的离子当量浓度大小依次是SO42->Ca2+> NH4+>Mg2+>K+>Na+>NO3-;(2)降雨经过林冠层后pH值降低,干流的酸化程度增加最大;(3)降雨经林冠层后离子浓度明显增加(除灌木林),穿透雨中通量增加最大的阴离子和阳离子分别为SO42-(2.19×103~6.47×103 eq·hm-2)和Ca2+(1.41×103~3.39×103 eq-hm-2),离子来源主要为大气沉降和植物分泌物或淋出;(4)同一离子在不同林分的干流和穿透雨中的通量变化不同,反映出不同林分冠层的离子交换性差异.在针阔混交林中,林下降雨净淋溶量大小顺序为SO42->Ca2+> NO3->K+>NH4+>Mg2+> Na+;常绿阔叶林为SO42-> Ca2+> K+>NO3-> NH4+> Mg2+ >Na+;毛竹林为Ca2+> SO42-> K+>NO3-> NH4+>Na+>Mg2+;灌木林为Ca2+> NO3-> K+> Na+>Mg2+> NH4+> SO42-.  相似文献   

13.
A typhoon event catastrophically destroyed a 45-year-old Japanese larch plantation in southern Hokkaido, northern Japan in September 2004, and about 90% of trees were blown down. Vegetation was measured to investigate its regeneration process and CO2 flux, or net ecosystem production (NEP), was measured in 2006–2008 using an automated chamber system to investigate the effects of typhoon disturbance on the ecosystem carbon balance. Annual maximum aboveground biomass (AGB) increased from 2.7 Mg ha−1 in 2006 to 4.0 Mg ha−1 in 2007, whereas no change occurred in annual maximum leaf area index (LAI), which was 3.7 m2 m−2 in 2006 and 3.9 m2 m−2 in 2007. Red raspberry (Rubus idaeus) had become dominant within 2 years after the typhoon disturbance, and came to account for about 60% and 50% of AGB and LAI, respectively. In comparison with CO2 fluxes measured by the eddy covariance technique in 2001–2003, for 4.5 months during the growing season, the sum of gross primary production (GPP) decreased on average by 739 gC m−2 (64%) after the disturbance, whereas ecosystem respiration (RE) decreased by 501 gC m−2 (51%). As a result, NEP decreased from 159 ± 57 gC m−2 to −80 ± 30 gC m−2, which shows that the ecosystem shifted from a carbon sink to a source. Seasonal variation in RE was strongly correlated to soil temperature. The interannual variation in the seasonal trend of RE was small. Light-saturated GPP (Pmax) decreased from 30–45 μmol m−2 s−1 to 8–12 μmol m−2 s−1 during the summer season through the disturbance because of large reduction in LAI.  相似文献   

14.
Dissolved inorganic nitrogen (DIN) (as ammonium nitrate) was applied monthly onto the forest floor of one old-growth forest (>400 years old, at levels of 50, 100 and 150 kg N ha−1 yr−1) and two young forests (both about 70 years old, at levels of 50 and 100 kg N ha−1 yr−1) over 3 years (2004–2006), to investigate how nitrogen (N) input influenced N leaching output, and if there were differences in N retention between the old-growth and the young forests in the subtropical monsoon region of southern China. The ambient throughfall inputs were 23–27 kg N ha−1 yr−1 in the young forests and 29–35 kg N ha−1 yr−1 in the old-growth forest. In the control plots without experimental N addition, a net N retention was observed in the young forests (on average 6–11 kg N ha−1 yr−1), but a net N loss occurred in the old-growth forest (−13 kg N ha−1 yr−1). Experimental N addition immediately increased DIN leaching in all three forests, with 25–66% of added N leached over the 3-year experiment. At the lowest level of N addition (50 kg N ha−1 yr−1), the percentage N loss was higher in the old-growth forest (66% of added N) than in the two young forests (38% and 26%). However, at higher levels of N addition (100 and 150 kg N ha−1 yr−1), the old-growth forest exhibited similar N losses (25–43%) to those in the young forests (28–43%). These results indicate that N retention is largely determined by the forest successional stages and the levels of N addition. Compared to most temperate forests studied in Europe and North America, N leaching loss in these seasonal monsoon subtropical forests occurred mainly in the rainy growing season, with measured N loss in leaching substantially higher under both ambient deposition and experimental N additions.  相似文献   

15.
The competition–density (C–D) effect for non-self-thinning Populus deltoides and Populus × euramericana plantations from 3 to 9 years was analyzed using the reciprocal equation of the C–D effect. The C–D effect was well described by the reciprocal equation, and with the progress of time the C–D curve, on logarithmic coordinates, of the P. × euramericana plantations shifted upward faster than that of the P. deltoides plantations. With increasing physical time t, the biological time τ, i.e. the integral from zero to t of the coefficient of growth λ(t) in the general logistic curve with respect to t, increased rapidly during early growth stages and the increases in τ gradually became slow during later growth stages. This trend was more evident in the P. deltoides plantations than in the P. × euramericana plantations. The coefficients A and B included in the reciprocal equation were calculated at each growth stage. With increasing τ, the coefficient A, the reciprocal of which means the asymptote of yield (=) at a given growth stage, increased abruptly to a maximum value and then tended to decrease gradually to a constant level. On the other hand, the coefficient B, the reciprocal of which means the asymptote of mean stem volume at a given growth stage, decreased exponentially and tended to be close to zero with increasing τ. The λ(t) decreased with increasing stand age, whereas the final yield Y(t) defined as W(t) ρ, where W(t) is the asymptote of w in the general logistic growth curve, increased gradually with increasing stand age. The differences in coefficients A, B, and λ(t) between the two species were reported.  相似文献   

16.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

17.
Jiang XH  Yang JQ  Li N  Wang H  Zhou QX 《Fitoterapia》2011,82(6):878-882
A simple HPLC method was developed to quantify rabbit plasma tetrandrine (Tet) with propranolol (Pro) as internal standard. Based on the established method Tet and Pro were eluted at 7.1 and 12.0 min, respectively. It was shown that the concentration-time data of Tet fit the classical two-compartment model, no matter the drug was administered intravenously or orally to rabbits. The values of AUC0 → ∞, clearance (Cl0 → ∞), volume of distribution (Vd), and elimination half-life (t1/2β) of Tet were 59861.149 ± 26962.196 μg/L ? min, 0.503 ± 0.173 L/min/kg, 179 ± 76.185 L/kg, and 283.808 ± 162.937 min for intravenous injection of 5 mg/kg, or 18986.217 ± 7462.308 μg/L ? min, 0.805 ± 0.267 L/min/kg, 110.284 ± 94.176 L/kg, and 732.919 ± 847.32 min for gavage administration of 10 mg/kg , respectively. The results indicate that Tet displays a limited absorption in intestinal tract, even though it has a favorable pharmacokinetic profile after oral or intravenous administration.  相似文献   

18.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

19.
Thidiazuron (TDZ) induced somatic embryogenesis from immature zygotic embryos in Cinnamomum pauciflorum Nees while 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BA) or picloram only induced callus and/or adventitious buds. The highest induction frequency for somatic embryogenesis was achieved with MS medium (Murashige and Skoog in Physiol Plant 15:473–497 1962) supplemented with 2.5 μM TDZ using torpedo-shaped embryos (3–5 mm in length) as explants. In addition, induction medium was supplemented with 0.8 g l−1 casein, 0.4 g l−1 glutamine, and 10 g l−1 sucrose. Somatic embryos (SEs) initiated from root tips or hypocotyls without callus formation. SEs were maintained and multiplied via secondary somatic embryogenesis. Embryo maintenance medium was similar to induction medium except that TDZ was reduced to 0.5 μM. Secondary embryogenesis was enhanced by supplementation of 5 g l−1 activated charcoal in the culture. The best medium for embryo maturation was MS medium containing 30 g l−1 sucrose and 5 g l−1 Phytagel without plant growth regulators. A typical mature SE consisted of two large cotyledons and a short embryo proper. Approximately 82% of selected mature SEs were able to germinate and 63% could convert into plantlets on germination medium that was composed of half strength MS medium salts, 10 g l−1 sucrose, 3 g l−1 Phytagel, and 5 g l−1 activated charcoal.  相似文献   

20.
After a wildfire, the management of burnt wood may determine microclimatic conditions and microbiological activity with the potential to affect soil respiration. To experimentally analyze the effect on soil respiration, we manipulated a recently burned pine forest in a Mediterranean mountain (Sierra Nevada National and Natural Park, SE Spain). Three representative treatments of post-fire burnt wood management were established at two elevations: (1) “salvage logging” (SL), where all trees were cut, trunks removed, and branches chipped; (2) “non-intervention” (NI), leaving all burnt trees standing; and (3) “cut plus lopping” (CL), a treatment where burnt trees were felled, with the main branches lopped off, but left in situ partially covering the ground surface. Seasonal measurements were carried out over the course of two years. In addition, we performed continuous diurnal campaigns and an irrigation experiment to ascertain the roles of soil temperature and moisture in determining CO2 fluxes across treatments. Soil CO2 fluxes were highest in CL (average of 3.34 ± 0.19 μmol m−2 s−1) and the lowest in SL (2.21 ± 0.11 μmol m−2 s−1). Across seasons, basal values were registered during summer (average of 1.46 ± 0.04 μmol m−2 s−1), but increased during the humid seasons (up to 10.07 ± 1.08 μmol m−2 s−1 in spring in CL). Seasonal and treatment patterns were consistent at the two elevations (1477 and 2317 m a.s.l.), although respiration was half as high at the higher altitude.Respiration was mainly controlled by soil moisture. Watering during the summer drought boosted CO2 effluxes (up to 37 ± 6 μmol m−2 s−1 just after water addition), which then decreased to basal values as the soil dried. About 64% of CO2 emissions during the first 24 h could be attributed to the degasification of soil pores, with the rest likely related to biological processes. The patterns of CO2 effluxes under experimental watering were similar to the seasonal tendencies, with the highest pulse in CL. Temperature, however, had a weak effect on soil respiration, with Q10 values of ca. 1 across seasons and soil moisture conditions. These results represent a first step towards illustrating the effects of post-fire burnt wood management on soil respiration, and eventually carbon sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号