首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The clinical effects of sevoflurane, isoflurane, and halothane anesthesia with or without nitrous oxide, were compared in healthy, premedicated cats breathing spontaneously during 90 minutes of anesthesia. The effect of nitrous oxide in accelerating the induction of and recovery from anesthesia was more evident for halothane than for sevoflurane or isoflurane. The cats recovered more rapidly from sevoflurane-oxygen than from either halothane- or isoflurane-oxygen. Heart rates did not significantly change during anesthesia with any of the anesthetics. Arterial blood pressures during sevoflurane-oxygen anesthesia were somewhat higher than those with either isoflurane- or halothane-oxygen. There were no significant differences in arterial blood pressures among sevoflurane, isoflurane, and halothane anesthesia when combined with nitrous oxide. The respiration rate during sevoflurane-oxygen was similar to that during halothane-oxygen. There were no significant differences in respiration rate among sevoflurane, isoflurane, and halothane anesthesia when combined with nitrous oxide. The degree of hypercapnia and acidosis during sevoflurane anesthesia was similar to that observed during isoflurane anesthesia and less than during halothane anesthesia. The three anesthetic regimens, with or without nitrous oxide, induced a similar degree of hyperglycemia and hemodilution during anesthesia. Serum biochemical examination did not reveal any hepatic or renal injuries after each anesthesia.  相似文献   

2.
Cardiopulmonary effects of halothane anesthesia in cats   总被引:2,自引:0,他引:2  
The cardiopulmonary effects of 2 planes of halothane anesthesia (halothane end-tidal concentrations of 1.78% [light anesthesia] and 2.75% [deep anesthesia]) and 2 ventilatory modes (spontaneous ventilation [SV] or mechanically controlled ventilation [CV]) were studied in 8 cats. Anesthesia was induced and maintained with halothane in O2 only, and each cat was administered each treatment according to a Latin square design. Cardiac output, arterial blood pressure, pulmonary arterial pressure, heart rate, respiratory frequency, and PaO2, PaCO2, and pH were measured during each treatment. Stroke volume, cardiac index, and total peripheral resistance were calculated. A probability value of less than 5% was accepted as significant. In the cats, cardiac output, cardiac index, and stroke volume were reduced by deep anesthesia and CV, although only the reduction attributable to CV was significant. Systemic arterial pressure was significantly reduced by use of deep anesthesia and CV. Respiratory frequency was significantly lower during CV than during SV. Arterial PO2 was significantly decreased at the deeper plan of anesthesia, compared with the lighter plane. At the deeper plane of anesthesia, arterial PCO2 and pulmonary arterial pressure were significantly lower during CV than during SV. The deeper plane of halothane anesthesia depressed cardiopulmonary function in these cats, resulting in hypotension and considerable hypercapnia. Compared with SV, CV significantly reduced circulatory variables and should be used with care in cats. Arterial blood pressure was judged to be more useful for assessing anesthetic depth than was heart rate or respiratory frequency.  相似文献   

3.
The effect of nitrous oxide (N2O) on arterial partial pressure of oxygen (PaO2) was evaluated in 20 adult horses anaesthetised with halothane. A fresh gas flow rate of 20ml/kg/min, comprising a 1:1 N2O/oxygen (O2) mixture, was supplied via the rotameter flowmeters of an anaesthetic machine to a large animal breathing system. The horses breathed spontaneously from the circuit immediately after endotracheal intubation. Ten horses were subsequently positioned in lateral recumbency and ten in dorsal recumbency. A further twenty adult horses were anaesthetised with halothane and acted as controls; halothane in 20mls/kg/min of O2 being supplied to the same breathing system. Fifty percent NO caused significant decreases in PaO2 for horses in lateral and dorsal recumbency. However when administered to horses in lateral recumbency it did not promote arterial hypoxaemia. There was a higher risk of intraopera- tive arterial hypoxaemia (PaO2 < 8.6kPa) associated with its use in spontaneously breathing horses in dorsal recumbency. Arterial hypoxaemia occurred in all horses during the first fifteen minutes of recovery but when N2O was discontinued, halothane in oxygen supplied to the breathing circuit for five minutes at a flow rate of 20ml/kg/minute was sufficient to ensure that diffusion hypoxia did not occur. The magnitude of the hypoxaemia was not signficantly different between the groups. The time taken to adopt sternal recumbency was significantly shorter in the horses that had received N2O.  相似文献   

4.
Anesthetic potency of nitrous oxide in young swine (Sus scrofa)   总被引:1,自引:0,他引:1  
Determination of nitrous oxide (N2O) potency was accomplished by extrapolation using the concepts of minimum alveolar concentration (MAC) and additivity among inhalation anesthetics. Halothane and isoflurane anesthetic requirement (alveolar concentration) necessary to achieve MAC in 9 pigs decreased with each successive increase in the percentage of inspired N2O (25%, 50%, 75%). Halothane and isoflurane MAC was determined to be 0.94 +/- 0.03 and 1.75 +/- 0.01 volumes percent, respectively. Halothane and isoflurane requirements decreased to 0.74 +/- 0.02, 0.66 +/- 0.02, and 0.58 +/- 0.02; and to 1.56 +/- 0.02, 1.38 +/- 0.02, and 1.08 +/- 0.03 volumes percent with 25%, 50%, and 75% N2O, respectively. The line of best fit derived from regression analysis of the combined data (isoflurane and halothane MAC values) had a correlation coefficient of 0.987 and an X intercept equivalent to 195% N2O. The potency of N2O in pigs was similar to that of other domesticated mammals and reduced halothane and isoflurane anesthetic requirements by approximately 50% of the reduction observed in human beings.  相似文献   

5.
OBJECTIVE: To examine the effect of 64% nitrous oxide (N2O) on halothane (HAL), isoflurane (ISO) or sevoflurane (SEV) requirements in dogs undergoing ovariohysterectomy. STUDY DESIGN: Prospective, randomized, clinical trial. ANIMALS: Ninety, healthy dogs of (mean +/- SD) body weight 21.2 +/- 10.0 kg and age 17.8 +/- 22.8 months. MATERIALS AND METHODS: After premedication with acepromazine, hydromorphone and glycopyrrolate, anesthesia was induced with thiopental administered to effect. Dogs received one of six inhalant protocols (n = 15 group): HAL; HAL/N2O; ISO; ISO/N2O; SEV; or SEV/N2O. End-tidal CO2 was maintained at 40 +/- 2 mmHg with intermittent positive pressure ventilation (IPPV). Body temperature, heart rate, indirect systemic arterial blood pressures, inspired and end-tidal CO2, volatile agent, N2O and O2 were recorded every 5 minutes. The vaporizer setting was decreased in 0.25-0.5% decrements to elicit a palpebral reflex, and this level maintained. Statistical analysis included two-way anova for repeated measures with Bonferroni's correction factor and statistical significance assumed when p < 0.05. Percentage reduction in end-tidal volatile agent was calculated at 60 minutes after starting study. RESULTS: End-tidal HAL, ISO and SEV decreased when N2O was administered. Percentage reduction: HAL (12.4%); ISO (37.1%) and SEV (21.4%). Diastolic, mean and systolic blood pressures increased in ISO/N2O compared with ISO. Heart rate increased in ISO/N2O and SEV/N2O compared with ISO and SEV, respectively. Systolic, mean and diastolic blood pressures increased in SEV compared with HAL and ISO. Systolic, mean, diastolic blood pressures and heart rate increased in SEV/N2O and ISO/N2O compared with HAL/N2O. CONCLUSIONS: N2O reduces HAL, ISO and SEV requirements in dogs undergoing ovariohysterectomy. Cardiovascular stimulation occurred when N2O was used with ISO, less so with SEV and not with HAL  相似文献   

6.
Regional distribution of brain blood flow was examined in 6 healthy nonmedicated swine during inhalation of 50% O2 (+ 50% N2) and at 45 minutes of 50% end-tidal nitrous oxide administration. All animals were surgically prepared 10 to 12 days before the hemodynamic study. Catheters were implanted in the left atrium, ascending aorta, descending aorta, and pulmonary artery. Brain blood flow was determined, using 15-micron diameter radionuclide-labeled microspheres injected into the left atrium. Administration of 50% nitrous oxide markedly increased blood flow in all regions of the brain (except corpus callosum), even though the animals were not excited and the arterial blood pressure, arterial blood-gas tensions, pHa, and cardiac output were not different from respective control values. At 45 minutes of 50% nitrous oxide administration, cerebral, cerebellar, and brain-stem blood flows were 144%, 137%, and 137% of respective control values. It is concluded that 50% nitrous oxide administration caused marked vasodilatation in all regions of the porcine brain.  相似文献   

7.
The pharmacokinetics of propofol, 6.5 mg/kg, administered as a bolus dose intravenously (i.v.) were studied in six dogs (group 1). The effect of maintaining anaesthesia with halothane and nitrous oxide in oxygen on propofol pharmacokinetics was also investigated in six dogs undergoing routine anaesthesia (group 2). Induction of anaesthesia was rapid in all animals. Post-induction apnoea was a feature in three of the 12 dogs. The blood propofol concentration-time profile was best described by a bi-exponential decline in two dogs in group 1 and in 3 dogs in group 2, and by a tri-exponential decline in four dogs in group 1 and 3 dogs in group 2. The elimination half-life was long in both groups (90.9 min and 75.2 min, respectively), the volume of distribution at steady state large (4889 and 4863 ml/kg) and the clearance rapid (58.6 and 56.3 ml/kg.min). There were no significant differences between the groups, thus indicating that maintenance of anaesthesia with halothane and nitrous oxide had no effect on the pharmacokinetics of propofol in the dog.  相似文献   

8.
OBJECTIVE: To characterize and determine the sensory innervation of respiratory reflexes elicited by nasal administration of halothane to dogs. ANIMALS: 10 healthy Beagles. PROCEDURE: Dogs underwent permanent tracheostomy and, 2 to 3 weeks later, were anesthetized with thiopental and alpha-chloralose administered IV. The nasal passages were functionally isolated so that halothane could be administered to the nasal passages while dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of halothane at concentrations of 1.25, 1.75, and 2.5 times the minimum alveolar concentration (MAC), and 5% (administered in 100% O2 at a flow rate of 5 L/min) were recorded. Reflexes in response to administration of 5% halothane were also recorded following transection of the infraorbital nerve, transection of the caudal nasal nerve, and nasal administration of lidocaine. RESULTS: Nasal administration of halothane induced an inhibition of breathing characterized by a dose-dependent increase in expiratory time and a resultant decrease in expired volume per unit time. Effects were noticeable immediately after the onset of halothane administration and lasted until its cessation. Reflex responses to halothane administration were attenuated by transection of the caudal nasal nerve and by nasal administration of lidocaine, but transection of the infraorbital nerve had no effect. CONCLUSIONS AND CLINICAL RELEVANCE: Nasal administration of halothane at concentrations generally used for mask induction of anesthesia induces reflex inhibition of breathing. Afferent fibers in the caudal nasal nerve appear to play an important role in the reflex inhibition of breathing induced by halothane administration.  相似文献   

9.
Anaesthesia was maintained with 4 different techniques in each of 12 dogs of ASA grades I or 11 undergoing 4 treatment sessions of mega-voltage x-ray therapy at weekly intervals. After induction of anaesthesia with propofol, these dogs received either: i) continiious pi-opofol iv infusion together with nitrous oxide/oxygen by inhalation: ii) halothane in nitrous oxiddoxygen; iii) entluraiie in nitrous oxide/oxygen; or iv) isollurane in nitrous oxide/oxygen. Anaesthesia dways enabled irradiation to be performed but stable anaesthesia was achieved more easily when enflurnne was used. The incidence of undesirable effects during anaesthesia wiis low. Recovery from the end of anaesthesia to swallowing was fastest Lifter enfluraiie (2.2 min median) but the recovery times to walking were similar (medians: halothane 12.5 min; entlurane 12.0 min; isoflurane 12.5 min; propofol I3 min). Personal preferences. local facilities and cost are likely to be the deciding factors in choice of any one of these techniques for dogs undergoing short procedures unussociatcd with surgical stimulation.  相似文献   

10.
OBJECTIVE: To study the effects of morphine on haemodynamic variables, blood gas values and the requirement for additional anaesthetic drugs in horses undergoing surgery. STUDY DESIGN: Prospective randomized study. METHODS: Thirty-eight client-owned horses, ASA(American Society of Anesthesiologists) category I or II, undergoing elective surgical procedures, were studied. Horses were divided between two groups, and were paired according to operation, anaesthetist, body position during surgery, mass and breed. Group M+ received morphine by intravenous (IV) injection (0.15 mg kg(-1)) before induction of anaesthesia and then by infusion (0.1 mg kg(-1) hour(-1)) throughout anaesthesia. Group M- received the same anaesthetic technique (pre-anaesthetic medication with romifidine (100 microg kg(-1)) IV; induction with ketamine (2.2 mg kg(-1)) and diazepam (50 microg kg(-1)) IV; maintenance with halothane), except that morphine was excluded. Both groups received flunixin IV (1.1 mg kg(-1)) before surgery. Both groups also received 50% nitrous oxide for the first 10 minutes of anaesthesia. During anaesthesia, end-tidal halothane was maintained at 0.9% (+/-0.1%) in both groups. Heart rate (HR) and respiratory rate (fr), systolic, mean and diastolic arterial pressures were recorded every 5 minutes. Arterial blood samples were analysed every 20 minutes. Additional anaesthetics (ketamine and midazolam) were administered whenever the horse moved. Dobutamine was infused to maintain mean arterial pressure (MAP) > 58 mm Hg, but was discontinued when MAP reached 68 mm Hg. Mechanical ventilation was imposed when PaCO(2) exceeded 9.3 kPa (70 mm Hg). RESULTS: Haemodynamic data (HR and MAP) and blood gas measurements were analysed using repeated measure analysis using a mixed covariance pattern model (SAS version 8.2). A Student's t-test was used to investigate differences between groups in the doses of additional anaesthetics required. There were no significant differences between M+ or M- groups in MAP (p = 0.65), HR (p = 0.74), PaO2 (p = 0.40) or PaCO2 (p = 0.20). Fewer horses in the M+ group received additional anaesthetics (15.8% compared to 21.1% in M- group), and the mean dose of ketamine required was higher in the M- group (mean +/- SD: M-, 0.93 +/- 0.70; M+, 0.45 +/- 0.17). These differences were not statistically significant (p = 0.28). CONCLUSIONS: Pre-anaesthetic and peri-operative morphine administration is not associated with significant haemodynamic or ventilatory changes. Horses receiving morphine tended to receive fewer and lower doses of additional anaesthetic drugs, although this was not statistically significant.  相似文献   

11.
OBJECTIVE: To determine the hemodynamic effects of nitrous oxide in isoflurane-anesthetized cats. ANIMALS: 12 healthy adult domestic shorthair cats. PROCEDURE: Cats were anesthetized by administration of isoflurane in oxygen. After instruments were inserted, end-tidal isoflurane concentration was set at 1.25 times the individual minimum alveolar concentration, and nitrous oxide was administered in a Latin-square design at 0, 30, 50, and 70%. Each concentration was administered for 25 minutes before measurements were obtained to allow for stabilization. Heart rate; systemic and pulmonary arterial pressures; central venous pressure; pulmonary artery occlusion pressure; cardiac output; body temperature; arterial and mixed-venous pH, PCO2, PO2, and hemoglobin concentrations; PCV; and total protein and lactate concentrations were measured before and during noxious stimulation for each nitrous oxide concentration. Arterial and mixed-venous bicarbonate concentrations and oxygen saturation, cardiac index, stroke index, rate-pressure product, systemic and pulmonary vascular resistance indices, left and right ventricular stroke work indices, arterial and mixed-venous oxygen contents, oxygen delivery, oxygen consumption, oxygen extraction ratio, alveolar-to-arterial oxygen difference, and venous admixture were calculated. RESULTS: Arterial pressure, central venous pressure, pulmonary arterial pressure, rate-pressure product, systemic and pulmonary vascular resistance indices, arterial PCO2, and PCV increased during administration of 70% nitrous oxide. Arterial and mixed-venous pH, mixed-venous PO2, and alveolar-to-arterial oxygen difference decreased during administration of 70% nitrous oxide. Results before and during noxious stimulation were similar. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of 70% nitrous oxide to isoflurane-anesthetized cats resulted in improved arterial pressure, which was related to a vasoconstrictive effect.  相似文献   

12.
The cardiopulmonary effects of sevoflurane (mean, 2·6, 3·8–3·9 and 5·2 per cent) were compared with those of halothane (1·2, 1·8 and 2·4 per cent), enflurane (2·4, 3·6 and 4·8 per cent) and isoflurane (1·6, 2·4 and 3·2–3·3 per cent) at end-tidal concentrations equivalent to 1, 1·5 and 2 minimal alveolar concentrations (macs) during spontaneous or controlled ventilation (sv or cv) in 57 cats. Cats were assigned to four groups of nine animals each in sv trial and four groups of five or six animals each in cv trial. During sv, respiration rate was decreased by sevoflurane and isoflurane at 2 mac and by enflurane at each mac multiple when compared with control values, whereas halothane increased respiration rate at 2 mac. The degree of hypercapnia and acidosis induced by sevoflurane was not different from that induced by isoflurane and was less than that induced by halothane at 1 to 1·5 mac or enflurane at 2 mac. During sv and cv, four anaesthetics decreased heart rate at 2 mac when compared with control values, but there was no significant difference between anaesthetics. Sevoflurane, like halothane and isoflurane, induced hypotension at 2 mac when compared with 1 mac.  相似文献   

13.
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of sevoflurane and assess the sevoflurane-sparing effect of coadministration of nitrous oxide in mechanically ventilated Dumeril monitors (Varanus dumerili). DESIGN: Prospective crossover study. ANIMALS: 10 healthy adult Dumeril monitors. PROCEDURE: Anesthesia was induced with sevoflurane in 100% oxygen or sevoflurane in 66% nitrous oxide (N2O) with 34% oxygen, delivered through a face mask. Monitors were endotracheally intubated, and end-tidal and inspired isoflurane concentrations were measured continuously; MAC was determined by use of a standard bracketing technique. An electrical stimulus (50 Hz, 50 V) was delivered to the ventral aspect of the tail as the supramaximal stimulus. A blood sample for blood gas analyses was collected from the ventral coccygeal vessels at the beginning and end of the anesthetic period. An interval of at least 7 days was allowed to elapse between treatments. RESULTS: The MAC +/- SDs of sevoflurane in oxygen and with N2O were 2.51 +/- 0.46% and 1.83 +/- 0.33%, respectively. There was a significant difference between the 2 treatments, and the mean MAC-reducing effect of N2O was 26.4 +/- 11.4%. Assuming simple linear additivity of sevoflurane and N2O, the MAC for N2O was estimated to be 244%. No significant differences in blood gas values--with the predictable exception of oxygen pressure--were detected between the 2 groups. CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of sevoflurane in Dumeril monitors is similar to that reported for other species. The addition of N2O significantly decreased the MAC of sevoflurane in this species.  相似文献   

14.
Circulatory and respiratory effects of five h of constant 1.06 per cent alveolar halothane in oxygen were identified in eight healthy horses, which breathed spontaneously, were otherwise unmedicated and positioned in sternal recumbency. Only a few important significant (P less than 0.05) changes occurred with time. Total peripheral resistance was about 15 per cent lower after two hours of constant dose halothane than after 30 mins of constant dose (P less than 0.05) and accounted for the significant 10 per cent reduction in mean carotid arterial blood pressure. By 5 h, the reduction in resistance and arterial blood pressure was 20 and 25 per cent respectively. Heart rate increased progressively with time and the increase became significant at 5 h (15 per cent increase). However, the heart rate change was not large enough to alter cardiac output. There were no major time-related changes in PaO2 or PaCO2. Three of four horses recovered from anaesthesia had markedly elevated serum creatine kinase levels and clinical signs of severe post anaesthetic myopathy.  相似文献   

15.
Studies were carried out on 40 dogs premedicated with acepromazine (0.05 mg kg-1), and atropine (0.02 mg kg-1) to determine the minimum infusion rate of propofol needed to maintain anaesthesia and to compare the quality of the anaesthesia with that produced by halothane/nitrous oxide/oxygen. An infusion rate of 0.4 mg kg-1 min-1 of propofol produced surgical anaesthesia in dogs breathing oxygen or oxygen-enriched air. Cardiovascular and respiratory effects were similar to those in dogs anaesthetized with halothane/nitrous oxide and with both anaesthetic regimes myocardial oxygen consumption appeared to increase with increasing duration of anaesthesia. Propofol infusion was associated with a 16 per cent incidence of vomiting in the recovery period. Maintenance of anaesthesia in healthy dogs by the continuous infusion of propofol appeared to be safe but less satisfactory than the use of halothane/nitrous oxide.  相似文献   

16.
OBJECTIVE: To evaluate cardiovascular effects of epidurally administered oxymorphone (OXY) and an OXY-bupivacaine combination (O/B) in halothane-anesthetized dogs. ANIMALS: 6 dogs. PROCEDURE: In a randomized crossover design study, dogs were anesthetized with halothane and given OXY, O/B, and saline solution (SAL). Eucapnia and end-tidal halothane concentration of 1.2% were established. Heart rate (HR), systemic and pulmonary arterial pressures, central venous pressure (CVP), and cardiac output were measured at baseline and 5, 15, 30, 45, 60, and 75 minutes after treatment. At 90 minutes, glycopyrrolate was administered IV, and measurements were repeated at 95 minutes. Cardiac index (CI), stroke volume, stroke index, systemic vascular resistance (SVR), and left ventricular work were calculated. End-tidal halothane concentration was decreased to 0.8% from 17 to 45 minutes and to 0.5% from 47 to 95 minutes for OXY and O/B, whereas for SAL, it was maintained at 1.5 and 1.2%, respectively. Samples were obtained at 0, 2, 5, 15, 30, 45, 60, and 95 minutes for measurement of serum opiate concentration and comparison with values after IM administration of OXY. RESULTS: HR decreased, but CVP and SVR increased in response to OXY and O/B. These changes were reversed after IV administration of glycopyrrolate, resulting in significant increase in CI, compared with that in response to SAL. Serum opiate concentration increased markedly and peaked within 15 minutes after OXY and O/B administration but did not differ from values after IM administration. CONCLUSIONS: Epidural administration of OXY results in rapid systemic uptake and decreased HR. Glycopyrrolate administration improves HR, resulting in improved CI at equipotent halothane concentrations.  相似文献   

17.
OBJECTIVE: To characterize cardiorespiratory effects for a combination of medetomidine, butorphanol, and midazolam and to compare magnitude of cardiorespiratory depression with that induced by a commonly used inhalation anesthetic regimen (acepromazine-butorphanol-thiopental-halothane). ANIMALS: 10 clinically normal dogs (2 groups of 5). PROCEDURE: In treated dogs, medetomidine was administered (time, 0 minutes); midazolam and butorphanol were administered when effects of medetomidine were maximal (time, 20), and atipamezole was administered subsequently (time 60). In control dogs, drugs were administered after allowing effects of each agent to be achieved: acepromazine was given at time 0, butorphanol and thiopental were administered at time 35, and halothane was administered from time 45 until 110. Various cardiorespiratory and hematologic variables were measured or calculated. RESULTS: Respiratory rate, arterial and venous pH, venous oxygen content, oxygen consumption, and oxygen delivery decreased significantly below baseline values for treated dogs; end-tidal CO2, arterial and venous P(CO)2, and O2 extraction increased significantly above baseline values. Compared with data obtained after anesthesia, arterial HCO3- concentration, venous P(O2) and S(O2), cardiac output, oxygen extraction, and oxygen delivery appeared more modified in treated dogs. Oxygen consumption and physiologic shunt fraction were less modified in treated dogs than control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine-butorphanol-midazolam combination induced respiratory depression, comparable in magnitude to that induced by a widely used inhalation anesthetic regimen. Respiratory variables remained within acceptable limits during anesthesia; however, those associated with cardiovascular function were more severely affected.  相似文献   

18.
Regional distribution of brain and myocardial blood flow were examined in 9 instrumented isocapnic normothermic swine, using 15-microns diameter radionuclide-labeled microspheres injected into the left atrium. Minimal alveolar concentration (MAC) of halothane required to prevent gross purposeful movement in response to a noxious stimulus in 50% of the pigs was found to be 0.70%. Measurements were made on each animal during nonanesthetized state (control), 1.0 and 1.5 MAC halothane anesthesia, and the equivalent of 1.0 and 1.5 MAC halothane anesthesia, using 50% N2O. The order of anesthetized steps was randomized for each pig. Recovery periods of 60 minutes were interposed between the anesthetic treatments. During halothane + 50% N2O anesthesia, heart rate, cardiac output, mean aortic pressure, and rate-pressure product were higher than comparable levels of halothane-O2 anesthesia. Halothane caused dose-dependent vasodilatation in all regions of the brain. Cerebral, cerebellar, and brain-stem blood flows at 1.5 MAC halothane were 135%, 135%, and 115% of respective control values. Substitution of 50% N2O to maintain same MAC dose markedly exaggerated the increment in porcine cerebral and brainstem blood flows, especially at 1.0 MAC when perfusions in these regions were 204% and 128% of respective control values. At 1.5 MAC anesthesia produced by halothane + 50% N2O, the cerebral, cerebellar, and brain stem perfusions were 153%, 146%, and 129% of control values. Transmural myocardial blood flow decreased from control value with both levels of halothane anesthesia, but with equivalent MAC anesthesia produced by halothane + 50% N2O, myocardial perfusion remained near awake values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The cardiopulmonary effects of droperidol-fentanyl, nitrous oxide, and atropine were evaluated in 12 adult male Beagle dogs. All dogs were surgically instrumented with a cardiac output thermistor and arterial and venous catheters and were prepared with a chronic tracheostomy. Each dog was used as its own control, and data obtained when dogs were nonanesthetized and nonmedicated were compared with data recorded after the test drugs were administered. The dogs were randomly allotted to 3 groups of 4 dogs each. Group I dogs were given droperidol-fentanyl alone intravenously (IV); group II dogs were given droperidol-fentanyl IV with 67% nitrous oxide; and group III dogs were given atropine sulfate intramuscularly followed by droperidol-fentanyl IV with 67% nitrous oxide. Minute volume was decreased in the 3 groups of dogs for 3 to 5 minutes after droperidol-fentanyl was injected. This resulted in respiratory and metabolic acidosis in all dogs, as indicated by increased arterial carbon dioxide tension, decreased pH, and increased base deficit. In addition, droperidol-fentanyl given alone caused a decrease in systolic pressure and a slight decrease in heart rate. Group 1 dogs were sensitive to auditory stimulation. Cardiovascular changes were not seen when nitrous oxide was added; however, analgesia and muscle relaxation were improved. Premedication with atropine sulfate resulted in increased cardiac output, heart rate, and diastolic pressure, and subsequent administration of droperidol-fentanyl with nitrous oxide caused a transient increase in mean arterial and systolic pressure. This last anesthetic regimen, along with assisted or controlled respiration, seems to provide an excellent anesthetic state with minimal cardiopulmonary depression.  相似文献   

20.
Induction and recovery from inhalation anesthesia of Dumeril's monitors (Varanus dumerili) using isoflurane, sevoflurane, and nitrous oxide (N2O) were characterized using a randomized crossover design. Mean times to induction for isoflurane in 100% oxygen (O2), sevoflurane in 100% O2, sevoflurane in 21% O2:79% nitrogen (N2; room air), and sevoflurane in 66% N2O:34% O2 were 13.00 +/- 4.55, 11.20 +/- 3.77, 10.40 +/- 2.50, and 9.40 +/- 2.80 min, respectively, at 26 degrees C (n = 10). Mask induction with sevoflurane was significantly faster than with isoflurane. There was no significant difference between the induction time for sevoflurane in O2 or in room air, but sevoflurane combined with N2O resulted in significantly faster inductions than were obtained with sevoflurane in 100% O2. All treatments resulted in a significantly higher respiratory rate than in undisturbed animals. There were no significant differences in respiratory rate among lizards receiving O2, isoflurane in 100% O2, sevoflurane in room air, and sevoflurane combined with N2O, but animals receiving sevoflurane in O2 had a lower respiratory rate than those receiving pure O2. The sequence of complete muscle relaxation during induction was consistent and not significantly different among the four treatments: front limbs lost tone first, followed by the neck and the hind limbs; then the righting reflex was lost and finally tail tone. There were no significant differences in recovery times between isoflurane and sevoflurane or between sevoflurane in 100% O2 and sevoflurane combined with N2O. Similar recovery times were observed in animals recovering in 100 and 21% O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号