首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An environmentally friendly procedure suitable to restore a protected area was evaluated at laboratory scale. Soil contaminated by high molecular weight (C > 10) aliphatic hydrocarbons and by chromium was withdrawn from the study site and a qualitative study of soil hydrocarbon components was first performed in order to assess the potential source of contamination. To this aim, a number of characteristic diagnostic ratios of hydrocarbon components were derived by processing chromatographic data, and were used as indicators for distinguishing anthropogenic from natural hydrocarbons. Then, the efficiency of landfarming for soil remediation was tested by comparing the effect of a few selected amendments and by monitoring the fate of chromium. Soil microbial abundance and activity were also evaluated. Results showed that soil hydrocarbons were mainly of anthropogenic origin and land treatment allowed effective degradation by native microbial populations even in the absence of amendments. The investigated procedures had no effect on the mobilisation of chromium that remained in its stable form of Cr(III). Conventional land treatment may therefore be an effective and safe procedure for the removal of hydrocarbons even in the presence of chromium, and may be applied to areas where low-impact procedures are strictly required.  相似文献   

2.
In order to assess the use of magnetic methods to study vertical migration behavior of metal pollutants in natural soils, a controlled experiment was performed near Belle River, Ontario, Canada. The soil at the site consists primarily of clay-rich glacial till overlain by localized alluvium. Twenty PVC tubes (16″ × 8″) were inserted vertically into the ground as test capsules. Magnetite powder (<5 μm) was distributed on the surface of the soil inside ten tubes (10 grams/tube) to simulate anthropogenic contamination, while the other ten were used as controls. While the surficial magnetic susceptibility (MS) remained fairly stable in controls, decreases of 15–60% were observed in contaminated soil tubes. Post-test MS profiles from soil cores in contaminated tubes show that the magnetic signal is strongest at depths between 4 and 6 cm. Magnetic measurements and chemical analysis (using SEM-EDS) on soil layers with enhanced magnetic signal indicate the presence of iron containing particles, likely magnetite. Overall, the results suggest that magnetite powder migrated vertically downwards at a rate of ∼14 cm/year over the four month period, probably as a result of rainwater infiltration. Such magnetic methods and chemical analytical techniques are useful in the investigation of migration of metal pollutants and the potential depth of soil contamination.  相似文献   

3.
The aim of this work was to quantify the soil organic C (SOC) stock in the top 30 cm of mineral soil for the whole Italian territory, according to the different land use types of the Intergovernmental Panel on Climate Change (IPCC) cropland category (arable land, agroforestry, vineyards, olive groves, orchards and rice fields), as a basis for future land use scenarios and to address mitigation policy at country level. A database for SOC stock was created with the data from the national project denominated SIAS and partly from regional map reports. All data were referred to the year 2000 since they were derived from surveys conducted from 1995 to 2005. The data were stratified according to the Italian climatic regions, the landscape position and the IPCC cropland subcategories. Taking into account the uncertainty in the estimate, the mean SOC stock values of the different subcategories show significant differences (p < 0.05) among climatic regions and landscapes, ranging from 41.9 ± 15.9 Mg C ha−1 in the vineyards to 63.3 ± 27.9 Mg C ha−1 in the rice fields. Generally, a small decrease of the SOC stock from the temperate regions toward the Mediterranean ones is observed. Taking into account the mean value of each subcategory and the country area they occupied in 2000, the total C stored in the upper 30 cm of soil was estimated at 490.0 ± 121.7 Tg C. The resulting estimate represents the 17% of the value reported by another study for the soil of the whole country down to 50 cm depth, suggesting the importance of preserving this large C pool. Considering the cropland category as a whole, the estimated mean SOC stock is 52.1 ± 17.4 Mg C ha−1, similar to that reported for other European countries, 50–60 Mg C ha−1. In conclusion, the assessment of the mean SOC stock of the different cropland land uses, landscape position and climate regions could notably help when assessing the impact of different agricultural practices and future stock change evaluation.  相似文献   

4.
Simple and rapid chemical indices of soil nitrogen (N)-supplying capacity are necessary for fertilizer recommendations. In this study, pot experiment involving rice, anaerobic incubation, and chemical analysis were conducted for paddy soils collected from nine locations in the Taihu Lake region of China. The paddy soils showed large variability in N-supplying capacity as indicated by the total N uptake (TNU) by rice plants in a pot experiment, which ranged from 639.7 to 1,046.2 mg N pot−1 at maturity stage, representing 5.8% of the total soil N on average. Anaerobic incubation for 3, 14, 28, and 112 days all resulted in a significant (P < 0.01) correlation between cumulative mineral NH4+-N and TNU, but generally better correlations were obtained with increasing incubation time. Soil organic C, total soil N, microbial C, and ultraviolet absorbance of NaHCO3 extract at 205 and 260 nm revealed no clear relationship with TNU or cumulative mineral NH4+-N. Soil C/N ratio, acid KMnO4-NH4+-N, alkaline KMnO4-NH4+-N, phosphate–borate buffer extractable NH4+-N (PB-NH4+-N), phosphate–borate buffer hydrolyzable NH4+-N (PBHYDR-NH4+-N) and hot KCl extractable NH4+-N (HKCl−NH4+-N) were all significantly (P < 0.05) related to TNU and cumulative mineral NH4+-N of long-term incubation (>28 days). However, the best chemical index of soil N-supplying capacity was the soil C/N ratio, which showed the highest correlation with TNU at maturity stage (R = −0.929, P < 0.001) and cumulative mineral NH4+-N (R = −0.971, P < 0.001). Acid KMnO4-NH4+-N plus native soil NH4+-N produced similar, but slightly worse predictions of soil N-supplying capacity than the soil C/N ratio.  相似文献   

5.
 The effect of land use and different soil tillage systems on CH4 oxidation was tested in a laboratory incubation study. Intact soil cores were collected from the topsoil (0–12 cm) of a field site with ploughed, direct-drilled and set-aside treatments, and from an adjacent undisturbed forest site. CH4 oxidation rates were 4.5 to 11 times higher in the direct-drilled than in the continuously ploughed treatment, in the set-aside soil they were intermediate. The oxidation rates in the forest soil were 11 times the highest rate measured at the field site, pointing to a distinct land use effect. Vertical profiles of CH4 oxidation activity revealed a very clear zonation in all treatments. CH4 oxidation increased significantly below the plough layer (0–25 cm), and showed a subsurface maximum under direct-drilling (5–15 cm) and under forest (5–10 cm). The vertical zonation under set-aside was comparable to that under ploughing. Generally, the maximum CH4 oxidizing activity was in the zone nearest to the soil surface, unless various constraints prevented this. Received: 1 December 1997  相似文献   

6.
This study is aimed at quantifying organic carbon (C) and total nitrogen (N) dynamics associated with physically separated soil fractions in a grassland-cultivation sequence in the Qinghai-Tibetan plateau. Concentrations of organic C and N of soil, free and occluded particulate organic matter (OM), and aggregate- and mineral-associated OM in different land uses are increased in the following order: 50 years cultivation < 12 years cultivation ≤ native grassland. The prolonged cropping of up to 50 years markedly affected the concentrations of free and occluded particulate OM and mineral-associated OM. After wet-sieving, 43% of native grassland soil mass was found in >1−10 mm water-stable aggregates that stored 40% of bulk soil organic C and N; only 16% and 7% of soil mass containing 16% and 7% of bulk soil organic C and N was >1−10 mm water-stable aggregates of soils cultivated for 12 years and 50 years, respectively. This indicated that losses of soil organic C and N following cultivation of native grassland would be largely related to disruption of >1–10 mm size aggregates and exposure of intra-aggregate OM to microbial attack. Organic C and N concentrations of soil aggregates were similar among aggregate size fractions (>0.05−10 mm) within each land use, suggesting that soil aggregation process of these soils did not follow the hierarchy model. The increase of the C-to-N ratio of free and occluded particulate fractions in the cultivated soils compared to the grassland soil indicated a greater loss of N than C.  相似文献   

7.
Alpine and tundra grasslands constitute 7% world terrestrial land but 13% of the total global soil carbon (C) and 10% of the global soil nitrogen (N). Under the current climate change scenario of global warming, these grasslands will contribute significantly to the changing global C and N cycles. It is important to understand the controlling factors on soil N cycling in these ecosystems. To evaluate climate effects on N cycling, soil N mineralization and nitrification rates (0–15 cm) were measured using an in situ closed-top tube incubation across altitudes and positions from 2006 to 2008 in alpine meadows. The data indicated that soil N mineralization and nitrification rates decreased with increasing altitude, but only significantly (P < 0.05) between the lowest and the two higher altitudes. Soil N mineralization and nitrification rates of south-facing slopes were higher than north-facing slopes at each altitude. This suggests that soil temperature and soil water content (WC) were the controlling factors for soil N mineralization and nitrification rates across altitude with soil WC being the most important factors over positions. Soil nitrification rate depended on soil N mineralization rate, and both rates may increase in response to regional warming of the alpine meadow.  相似文献   

8.
9.
 Soil tillage was studied as a strategy to synchronize N mineralization with plant demand following ploughing of two types of grazed pastures [ryegrass/white clover (Lolium perenne/Trifolium repens) and pure ryegrass]. The swards were either rotovated and ploughed or ploughed only. Soil respiration, as determined by a dynamic chamber method, was related to net N mineralization and to plant N uptake in a subsequent spring barley crop (Hordeum vulgare). Diurnal variations in temperature were important for the CO2 flux and care must be taken that temperatures during measuring periods are representative of the daily mean. Soil tillage increased the CO2 flux considerably compared with untilled soil with total emissions of 2.6 and 1.4 t C ha–1, respectively, from start of April to end of June. Sward type or rotovation did not markedly influence accumulated emissions. Rotovation significantly increased the content of nitrate in the soil until 43 days after rotovation, showing that net N mineralization occurred rapidly during this period, in spite of low soil temperatures (5–10  °C). Rotovation increased barley grain yield by 10–12% and N-uptake by 14%. For both sward types, rotovation caused an extra N-uptake in harvested plant material of about 12 kg ha–1. The availability of soil inorganic N at the early stages of barley was important for the final yield and N-uptake. The results indicated that soil biological activity was not enhanced by rotovation and that the yield effect of rotovation was mainly caused by quicker availability and better synchrony between N mineralization and plant uptake due to earlier start of decomposition. Received: 3 May 2000  相似文献   

10.
 The influence of compaction on Diplocardia ornata (Smith) burrowing and casting activities, soil aggregation, and nutrient changes in a forest soil were investigated using pot microcosms. Treatments included two levels each of compaction, organic matter, and earthworms. Both burrowing and casting activities were more abundant in uncompacted soil than in compacted soil. Bulk density decreased in microcosms of compacted soil containing D. ornata from 1.76 g cm–3 to 1.49 g cm–3 over the study period. The overall percent of aggregates in the same size classes in compacted soil was less than the percent of aggregates in uncompacted soil. The mean percent of aggregates in earthworm casts for size classes 0.25–1.00 mm was higher for compacted soil than for uncompacted soil. The reverse was true for aggregates in class sizes 2.00–4.00 mm. Soil compaction also affected soil microbial biomass carbon and soil inorganic N concentrations. These results indicate that the burrowing and casting activities of earthworms in compacted forest soils, as in soils of agricultural and pastured lands, can help ameliorate disturbed soils by improving aggregation, reducing bulk density, and increasing nutrient availability. Received: 1 September 1999  相似文献   

11.
 Soil microbial biomass and the emission of CO2 from the soil surface were measured in yellow soils (Ultisols) of the karst areas of southwest China. The soils are relatively weathered, leached and impoverished, and have a low input of plant residues. The measurements were made for a 1-year period and show a reciprocal relationship between microbial biomass and surface CO2 efflux. The highest (42.6±2.8 mg CO2-C m–2 h–1) and lowest (15.6±0.6 mg CO2-C m–2 h–1) CO2 effluxes are found in the summer and winter, respectively. The cumulative CO2 efflux is 0.24 kg CO2-C m–2 year–1. There is also a marked seasonal variation in the amount of soil microbial biomass carbon, but with the highest (644±71 μg C g–1 soil) and lowest (270±24 μg C g–1 soil) values occurring in the winter and summer, respectively. The cumulative loss of soil microbial biomass carbon in the top 10 cm of the soil was 608 μg C g–1 year–1 soil over 17 sampling times. The mean residence time of microbial biomass is estimated at 105 days, suggesting that the carbon in soil microbial biomass may act as a source of the CO2 released from soils. Received: 13 July 1999  相似文献   

12.
Simple methods for the measurement of nitrogen (N) availability are needed to assess the effect of low-input, organically based land management systems on the N supply of tropical soils. Our objectives were to determine the effect of contrasting land-use systems (LUS) on soil N availability and to identify measures of N availability that correlated with maize (Zea mays L.) grain yield. The LUS at the two sites in Kenya involved growth of a maize crop following 17 months of either: (1) Sesbania sesban (L.) Merr. tree growth (sesbania fallow), (2) natural regrowth of vegetation without cultivation (natural fallow), (3) three crops of unfertilized maize (maize monoculture), or (4) bare uncultivated soil (bare fallow). Soil was collected before the post-fallow maize crop was sown. The LUS had no effect on total soil N or amount of N in the heavy fraction soil organic matter (SOM) (>150 μm, >1.37 Mg m–3). Sesbania and natural fallows, as compared to maize monoculture, increased the N in light fraction SOM (>150 μm, <1.13Mgm–3), N in intermediate fraction SOM (>150 μm, 1.13 to 1.37 Mg m–3), ammonium-N and aerobic N mineralization at a depth of 0–15 cm. Maize yields were highest following the sesbania fallow. Nitrate-N, inorganic-N (ammonium plus nitrate) and anaerobic N mineralization correlated with maize grain yield at both sites. The relationship between maize yield and pre-season nitrate-N improved when the depth of soil sampling was increased to 1 m at one site (an Alfisol), but did not improve at the site with anion adsorption in the subsoil (an Oxisol). The sesbania fallow was more effective than the natural fallow in increasing available soil N. Maize yield was better related to pre-season nitrate than N in size-density fractions of SOM. Received: 5 May 1997  相似文献   

13.
Cattle feedyards can impact local environments through emission of ammonia and dust deposited on nearby land. Impacts range from beneficial fertilization of cropland to detrimental effects on sensitive ecosystems. Shortgrass prairie downwind from an adjacent feedyard on the southern High Plains of Texas, USA changed from perennial grasses to annual weeds. It was hypothesized that N enrichment from the feedyard initiated the cascade of negative ecological change. Objectives were to determine the distribution of soil nitrogen and estimate N loading to the pasture. Soil samples were collected from 119 locations across the pasture and soil total N (TN), nitrate-N and ammonium-N (AN) determined in the top 30 cm. Soil TN concentration decreased with distance downwind from the feedyard from 1.6 ± 0.2 g kg−1 at 75 m to 1.2 ± 0.05 g kg−1 at 582 m. Nitrate-N concentration decreased within 200 m of the feedyard and changed little at greater distances. Ammonium-N concentration decreased linearly (P < 0.001) with increasing distance from the feedyard from 7.9 ± 1.7 mg kg−1 within 75 m from the feedyard to 5.8 ± 1.5 mg kg−1 at more than 550 m from the feedyard; however, distance only explained 12% of the variability in AN concentration. Maximum nitrogen loading, from 75 to 106 m from the feedyard, was 49 kg ha−1 year−1 over 34 years and decreased with distance from the feedyard. An estimate of net dry deposition of ammonia indicated that it contributed negligibly to N loading to the pasture. Nitrogen enrichment that potentially shifted vegetation from perennial grasses to annual weeds affected soil N up to 500 m from the feedyard; however, measured organic and inorganic N beyond that returned to typical and expected levels for undisturbed shortgrass prairie.
Richard W. ToddEmail:
  相似文献   

14.
Soil organic matter level, soil microbial biomass C, ninhydrin-N, C mineralization, and dehydrogenase and alkaline phosphatase activity were studied in soils under different crop rotations for 6 years. Inclusion of a green manure crop of Sesbania aculeata in the rotation improved soil organic matter status and led to an increase in soil microbial biomass, soil enzyme activity and soil respiratory activity. Microbial biomass C increased from 192 mg kg–1 soil in a pearl millet-wheat-fallow rotation to 256 mg kg–1 soil in a pearl millet-wheat-green manure rotation. Inclusion of an oilseed crop such as sunflower or mustard led to a decrease in soil microbial biomass, C mineralization and soil enzyme activity. There was a good correlation between microbial biomass C, ninhydrin-N and dehydrogenase activity. The alkaline phosphatase activity of the soil under different crop rotations was little affected. The results indicate the green manuring improved the organic matter status of the soil and soil microbial activity vital for the nutrient turnover and long-term productivity of the soil. Received: 7 January 1996  相似文献   

15.
The study examined the influence of compost and mineral fertilizer application on the content and stability of soil organic carbon (SOC). Soil samples collected from a long-term field experiment were separated into macroaggregate, microaggregate, and silt + clay fractions by wet-sieving. The experiment involved seven treatments: compost, half-compost N plus half-fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and control. The 18-year application of compost increased SOC by 70.7–121.7%, and mineral fertilizer increased by 5.4–25.5%, with no significant difference between control soil and initial soil. The C mineralization rate (rate per unit dry mass) in microaggregates was 1.52–2.87 mg C kg−1 day−1, significantly lower than in macroaggregate and silt + clay fractions (P < 0.05). Specific C mineralization rate (rate per unit SOC) in silt + clay fraction amounted to 0.48–0.87 mg C g−1 SOC day−1 and was higher than in macroaggregates and microaggregates. Our data indicate that SOC in microaggregates is more stable than in macroaggregate and silt + clay fractions. Compost and mineral fertilizer application increased C mineralization rate in all aggregates compared with control. However, compost application significantly decreased specific C mineralization rate in microaggregate and silt + clay fractions by 2.6–28.2% and 21.9–25.0%, respectively (P < 0.05). By contrast, fertilizer NPK application did not affect specific C mineralization rate in microaggregates but significantly increased that in silt + clay fractions. Carbon sequestration in compost-amended soil was therefore due to improving SOC stability in microaggregate and silt + clay fractions. In contrast, fertilizer NPK application enhanced SOC with low stability in macroaggregate and silt + clay fractions.  相似文献   

16.
Little information is available on soil microbial and biochemical properties, important for understanding nutrient cycling and organic matter dynamics, as affected by different peanut cropping systems and how they relate to soil functioning. Thus, we studied a Tifton loamy sand (fine-loamy, kaolinitic, thermic Plinthic Kandiudults) in Georgia, which is first in peanut production in USA, after 5 and 8 years under continuous cotton (Gossypium hirsutum, L) (CtCtCt), cotton–cotton–peanut (CtCtPt), corn (Zea mays L.)–peanut–cotton (CrPtCt), peanut–peanut–cotton (PtPtCt), and continuous peanut (PtPtPt). Soil organic carbon (OC) at 0–20 cm was already higher under PtPtPt (average, 8.7 g C kg−1 soil), PtPtCt (average, 7.7 g C kg−1 soil), and CrPtCt (average, 7.8 g C kg−1 soil) compared with CtCtPt (average, 4.7 g C kg−1 soil) and CtCtCt (average, 3.3 g C kg−1 soil). Similarly, alkaline phosphatase, acid phosphatase, and phosphodiesterase as a group showed higher activities under PtPtPt, PtPtCt, and CrPtCt than under CtCtPt and CtCtCt. The activities of glycosidases (α-galactosidase, β-glucosidase, and β-glucosaminidase) as a group were more sensitive to the cropping systems than phosphastases and showed a distinctive cropping system separation as follows: PtPtPt = CrPtCt > PtPtCt > CtCtPt > CtCtCt. Similar to OC and microbial biomass C trends, distinctive differences were found in the microbial community structure of this sandy soil after 8 years between peanut-based cropping systems (CrPtCt, PtPtCt, and PtPtPt) and cotton-based cropping systems (CtCtCt and CtCtPt) as indicated by the fatty acid methyl esters profiles. Trade names and company names are included for the benefit of the reader and do not infer any endorsement or preferential treatment of the product by USDA-ARS.  相似文献   

17.
 The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (>60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area. Received: 18 November 1997  相似文献   

18.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

19.
 Fungal and bacterial biomass were determined across a gradient from a forest to grassland in a sub-alpine region in central Taiwan. The respiration-inhibition and ergosterol methods for the evaluation of the microbial biomass were compared. Soil fungal and bacterial biomass both significantly decreased (P<0.05) with the shift of vegetation from forest to grassland. Fungal and bacterial respiration rates (evolved CO2) were, respectively, 89.1 μl CO2 g–1 soil h–1 and 55.1 μl CO2 g–1 soil h–1 in the forest and 36.7 μl CO2 g–1 soil h–1 and 35.7 μl CO2 g–1 soil h–1 in the grassland surface soils (0–10 cm). The fungal ergosterol content in the surface soil decreased from the forest zone (108 μg g–1) to the grassland zone (15.9 μg g–1). A good correlation (R 2=0.90) was exhibited between the soil fungal ergosterol content and soil fungal CO2 production (respiration) for all sampling sites. For the forest and grassland soil profiles, microbial biomass (respiration and ergosterol) declined dramatically with depth, ten- to 100-fold from the surface organic horizon to the deepest mineral horizon. With respect to fungal to bacterial ratios for the surface soil (0–10 cm), the forest zone had a significantly (P<0.05) higher ratio (1.65) than the grassland zone (1.05). However, there was no fungal to bacterial ratio trend from the surface horizon to the deeper mineral horizons of the soil profiles. Received: 30 March 2000  相似文献   

20.
During the intensive flood in May–June 2010, the floodplains in Little Poland Vistula Gap, used mostly for agriculture, were waterlogged for a period of over 1 month. The aim of the study was to assess the effect of the flood on the level of contamination of the soils in this region. The analysis included basic physicochemical soil properties, contents of ten metals, and concentrations of 16 polycyclic aromatic hydrocarbons (PAHs). The studies cover two territories on opposite sites of the river Vistula (Wilkow and Janowiec) differing in their areas (70 and 4.6 km2) and time of water logging (30 and 10 days). Forty soil samples were collected from both areas immediately after the flood event from the upper (0–30 cm) soil layer together with four samples from the 30–60-cm depth layer. This was supplemented by eight samples from the flood-deposited sediment layer (thickness, 2 cm). The concentrations of identified metals (As, Ba, Cr, Sn, Zn, Cd, Co, Cu, Ni, Pb) at all the sampling points were below the Polish legal limits for the upper layer of soils for agriculture use. The same regarded the median contents of nine PAHs compounds specified in the Polish regulations. In both areas, the median contents of Σ16 PAHs (0.21–0.35 mg kg−1), Zn (10.3–10.6 mg kg−1), Pb (9.2–10.7 mg kg−1), and Cd (0.03 mg kg−1) were much below the mean concentrations of those contaminants in arable soils on the national and European levels. The results show that this severe flooding episode in “clean” agricultural area had no immediate negative impact on the soils as regards the basic physicochemical properties (organic matter content, acidity, nitrogen content) and did not result in excessive soil contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号