首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were conducted at Agricultural Experimental Farm, Giridih, Jharkhand, during the kharif (wet) seasons of consecutive four years (1998–2001) to study the effect of staggered seeding of blackgram (Phaseolus mungo L.) in rice field as a cereal–legume intercropping system and to minimize the degree of competition between the crop species to avoid yield damage, and at the same time to create a high level of competition by the intercrops to suppress the weeds. Intercropping systems were assessed on the basis of land equivalent ratio, relative crowding coefficient, aggressivity, actual yield loss, monetary advantage, etc. Intercropping reduced the yield of component crops when compared with respective pure stands. However, deferred seeding of blackgram in rice (30 cm) after one weeding was most remunerative system and registered maximum rice-equivalent yield (2711 kg ha−1). Rice–blackgram (20 cm) intercropping system was very effective for weed smothering among unweeded intercropping treatments. In conclusion, deferred seeding of blackgram in rice field (30 cm) with one weeding may be recommended for better yield, weed suppression and better economics in the eastern plateau region of India.  相似文献   

2.
In a 2‐year experiment on Typic Ustochrept soils of the North Plain Zone of India, the effect of different row ratios (3 : 1, 6 : 2, 4 : 1 and 8 : 2) and staggered sowing of mustard (simultaneous and 15 days later) was studied in intercropping of chickpea (Cicer arietinum) and mustard (Brassica juncea L.). Nodule number, dry weight, grain yield, protein content and yield were higher in monocrop chickpea compared with intercropping. Among row ratios, except for protein content in grain, all the above parameters were significantly higher in the 4 : 1 intercropping of chickpea + mustard. Similarly, delayed sowing of mustard by 15 days also gave higher plant dry weight (1.80–2.36 g plant?1), nodule number (0.41–1.56 and 0.5–3.0 at 55‐ and 70‐day stages, respectively), protein yield (63 kg ha?1), grain yield (290 kg ha?1) and biological yield (1104 kg ha?1) than sowing with chickpea. Widening the row ratio and pairing of the rows of mustard were also found to be beneficial in increasing chickpea growth and yield. Like chickpea, sowing of mustard as a monocrop gave higher growth and yield. Delayed sowing by 15 days reduced the growth and yield of mustard drastically. Productivity, measured in terms of land equivalent ratio, was higher for intercropping of chickpea and mustard in the 4 : 1 row ratio than for sowing of chickpea and mustard in sole stands. Interestingly, the land equivalent ratio was also higher in the simultaneously sown crop than for staggered sowing.  相似文献   

3.
The performance of sorghum and groundnut cultivars was studied in sole cropping and intercropping systems at Babile in the semiarid area of eastern Ethiopia in 1996, 1997 and 1999. On average, late-maturing cultivars of groundnut and sorghum gave higher dry pod yield and grain yield, respectively, when intercropped with early-maturing cultivars of the associated crops. The significant variation among groundnut cultivars in yield and yield components under intercropping with sorghum cultivars revealed that sole cropping may not provide the appropriate environment for selecting varieties intended for use in intercropping. The productivity of intercropped groundnut and sorghum cultivars, as determined by total land equivalent ratios (LER), was higher than sole cropping, indicating the presence of temporal complementarity in the use of growth resources. A mean yield advantage of 32 % was obtained under intercropping.  相似文献   

4.
Wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping is widely practiced in arid regions of northwestern China because of its high land use efficiency. However, its sustainability has been questioned because it consumes much more water than sole cropped wheat or maize. The present study was conducted to investigate the effects of water limitation on the yield advantage and water use of this system. Three field experiments were conducted in the Hetao Irrigation District in Inner Mongolia during the growing seasons of 2012–2014. Each experiment comprised two water applications, in which one was full irrigation and the other was a period of water limitation during the co-growth period of intercropping.The interspecific competition in wheat/maize intercropping was intensified by water stress. For water limitation applied during the wheat booting/maize V5 stage (Exp. I, second irrigation was not applied), the yield advantage of intercropped wheat (IW) over sole wheat was enhanced, whereas that of intercropped maize (IM) over sole maize was reduced compared with full irrigated treatments; for water limitation applied during the wheat jointing/maize V2 stage (Exp. II, first irrigation was not applied), the yield advantages of both IW and IM were greatly reduced; for water limitation applied during the wheat grain filling/maize V9 stage (Exp. III, third irrigation was not applied), the yield advantage of IW was slightly improved, whereas that of IM was reduced. The yield advantage of intercropping under limited irrigation was 25%, 3%, and 18% in Exps. I–III, respectively, whereas that under full irrigation ranged between 22 and 24%.Under well-watered conditions, wheat/maize intercropping used 24–29% more water than the weighted means of sole crops with the water use efficiency equivalent to sole crops. After the application of water limitation, 60 mm irrigation water was saved by intercropping every year, whereas the reduction of water use ranged from 25.1 to 70.8 mm; the changes in water use of intercropping relative to sole crops was reduced to 18–24%; the changes in water use efficiency stayed at nearly zero in Exps. I and III but decreased to a value of −13% in Exp. II. These results indicated that water limitation could be applied during wheat booting or filling stage in wheat/maize intercropping to save irrigation water in our study area.  相似文献   

5.
The aim of this study was to evaluate the agronomical performance of old unhuUed wheat species (farro) in comparison with an old cultivar of durum wheat, selected for morphological and rusticity characteristics similar to farro, in a drought-flat land environment of southern Italy. The trials were carried out during the 1992/93 and 1993/94 growing seasons. Agronomical responses concerned the behaviour of the different species to weeding treatment (diclofop-methyl, 568 g a.i, ha−1) and to three (0%, 50%, 100%) artificial weed levels with Avenafatua and Phalaris arundinacea with respect to grain yield and its components, plant morphological aspects and two qualitative characters. In all of the species the weeding treatment increased the mean values of almost all the parameters analysed except for days to head and grain protein content which remained constant. The effect of weed treatment on the characters considered was a general decrease of mean values when weed level was increased. The grain protein content showed an opposite trend. As far as the grain yield alone is concerned, yielding differential in medium and large farro decreased by 3% whereas in small farro it increased by 4.3% vs, durum wheat when no weeding and weeding treatments were compared. Small and large farro resulted more susceptible than medium farro and durum wheat to weed treatment. In fact, these latter showed, at the maximum weed level, the same grain yield loss as small and large farro at the 50% weed level. Small farro was the most susceptible species, while Triticum dicoccum showed similar affinity and behaviour to durum wheat.  相似文献   

6.
Intercrops of pea (Pisum arvense L.), a popular legume used in intercropping systems with winter cereals for forage and silage production, with wheat (Triticum aestivum L.), rye (Secale cereale L.), and triticale (× Triticosecale Wittmack) in two seeding ratios (60:40 and 80:20) were compared with monocrops of pea and cereals for two growing seasons. Growth rate, dry matter yield, and N uptake were determined in each intercropping system. Furthermore, several indices were used to evaluate the intercropping systems and analyze the competition and the interrelationships between mixture components. Growth rate of cereals was lower in the mixtures than in the monocrops. Dry matter yield was higher in triticale monocrop, followed by its two intercrops, and the pea–wheat 80:20 intercrop. Moreover, triticale monocrop, pea–triticale intercrops, and pea–wheat 80:20 intercrop showed the highest crude protein yield and N uptake. The land equivalent ratio (LER), relative crowding coefficient (K), actual yield loss (AYL), and system productivity index (SPI) values were greater for the pea–triticale mixtures and the pea–wheat and pea–rye mixtures (80:20), indicating an advantage of intercropping. In most intercrops, the values of partial K, AYL, aggressivity, and competitive ratio (CR) indicated that the cereal was more competitive than pea. The highest values of monetary advantage index (MAI) and intercropping advantage (IA) were recorded for the pea–triticale and the pea–wheat mixtures (80:20). Overall, pea–triticale and pea–wheat mixtures (80:20) were more productive and produced better forage quality than the other mixtures and thus could be adopted by the farmers as alternative options for forage production.  相似文献   

7.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

8.
养分优化管理促进间作小麦高产群体的构建   总被引:2,自引:1,他引:1  
华北平原上最近出现的、既能保障粮食安全又可提高农民收入的小麦/西瓜/玉米间作体系备受农民欢迎,但是该体系普遍存在施肥不合理,养分盈余严重的问题。因此,本研究通过单因素随机区组设计的田间试验,探讨养分优化对该体系间作小麦群体动态和产量形成的影响,为建立间作小麦高产高效技术体系提供科学依据。本试验共设置了2个施肥处理,即:农户传统施肥(Con处理)和养分优化施肥(Opt处理),在4个农户的地块进行,共8个试验小区。从小麦返青期开始,监测间作小麦在两种施肥方式下,边行和内行的分蘖数动态变化;从小麦抽穗期开始,每隔3天,监测两个处理间作小麦边行和内行的抽穗数、扬花数的动态及收获期的生物量、产量及其构成要素。研究结果表明,通过养分的优化管理,显著增加了间作小麦的有效分蘖数、抽穗数、扬花数,提高了小麦的成穗率;同时,养分优化管理也增强间作小麦的边行优势,其小麦产量同传统相比,增产11.8%,收获指数增加16.7%。因此,通过养分优化可提高间作小麦边行的收获指数,促进间作小麦高产群体的建成,边行优势的增强,有助于间作优势的提高。  相似文献   

9.
To examine the advantages of cereal-legume intercropping system with maize as main crops, field studies conducted for two years on sandy upland loamy soils in Bihar plateau, India, indicated maize-groundnut as the best system. Yield advantages were noticed between 22–44 % over sole maize cropping. Different production indices largely indicated the same pattern in ranking intercropping treatments. Of the other legumes used, mung also showed potential whereas cowpea and soyabean did not. Increasing cropping intensities through use of interspace by legume did not significantly reduce maize yield, particularly in combination with groundnut and mung. Soil nitrogen enrichment through legume cultivation could be noted through examination of soil test values and yield of succeeding wheat crop. Wheat, however, did not show its promise as a follow-up crop without input of water and fertilizer.  相似文献   

10.
In order to better understand how mixed crop cultures mitigate stressful conditions, this study aims to highlight the beneficial effect of the intercropping legume-cereal in enhancing soil phosphorus (P) availability for plant growth and productivity in a P-deficient soil of a northern Algerian agroecosystem. To address this question, common bean (Phaseolus vulgaris L. cv. El Djadida) and maize (Zea mays L. cv. Filou), were grown as sole- and inter-crops in two experimental sites; S1 (P-deficient) and S2 (P-sufficient) during two growing seasons (2011 and 2012). Growth, nodulation and grain yield were assessed and correlated with the rhizosphere soil P availability. Results showed that P availability significantly increased in the rhizosphere of both species, especially in intercropping under the P-deficient soil conditions. This increase was associated with high efficiency in use of the rhizobial symbiosis (high correlation between plant biomass and nodulation), plant growth and resource (nitrogen (N) and P) use efficiency as indicated by higher land equivalent ratio (LER > 1) and N nutrition index (for maize) in intercropping over sole cropping treatments. Moreover, the rhizosphere P availability and nodule biomass were positively correlated (r2 = 0.71, p < 0.01 and r2 = 0.62, p < 0.01) in the intercropped common bean grown in the P-deficient soil during 2011 and 2012. The increased P availability presumably improved biomass and grain yield in intercropping, though it mainly enhanced grain yield in intercropped maize. Our findings suggest that modification in the intercropped common bean rhizosphere-induced parameters facilitated P uptake, plant biomass and grain yield for the intercropped maize under P-deficiency conditions.  相似文献   

11.
Cotton (Gossypium hirsutum L.) is the leading cash crop being grown across the globe including Pakistan. By the inclusion of insect resistant transgenic cotton (BT cotton), the cotton production has mounted many folds in Pakistan. BT cotton is mostly grown in Southern Punjab in cottonwheat cropping system of Pakistan; however there exists a time conflict among wheat harvest and BT cotton sowing in this system. Wheat is harvested during late April but the ideal sowing time of BT cotton is early-mid March indicating a time conflict of 46 weeks which is becoming the main concern leading to wheat exclusion from this system. Intercropping of BT cotton in standing wheat is one of the possible options to manage this overlapping period. This two year field study was, therefore, conducted at two locations (Multan, Vehari) to evaluate the economic feasibility of relay intercropping of BT cotton through different sowing methods in BT cottonwheat cropping system. BT cottonwheat cropping systems included in the study were: conventionally tilled cotton (CTC) on fallow land during early and late March, CTC during late April after harvest of flat sown wheat (FSW), bed sown wheat (BSW) + intercropped cotton during early and late March, and ridge sown wheat (RSW) + intercropped cotton during early and late March. Planting cotton in fallow land with conventional tillage during early March had more seed cotton yield; whereas planting in the same way during April after wheat harvest had minimum seed cotton yield. Likewise, FSW had more yield than ridge and bed sown wheat with intercropped BT cotton during early or late March. However, the system productivity in terms of net income, benefit: cost ratio and marginal rate of return of BSW + intercropped BT cotton during early March was the highest during both years at both locations. However, the system with sole crop of BT cotton sown on fallow land during late or early March was the least economical even than the system with CTC during late April after harvest of FSW. In conclusion, BSW + intercropped cotton during early March may be opted to manage the time conflict and improve the economic productivity of BT cottonwheat cropping system without wheat exclusion from the system.  相似文献   

12.
间作小麦光合性能对地上地下互作强度的响应   总被引:1,自引:0,他引:1  
本研究旨在探讨地上地下互作强度对间作小麦光合性能的影响,为进一步揭示间作体系作物产量优势的光合机制提供依据。2015—2017年连续3年在河西绿洲灌区进行田间试验,以小麦间作玉米为研究对象,设置地下部3种互作强度:根系不分隔(完全地下互作处理, W/M)、300目尼龙网分隔(部分地下互作处理, NW/M)和0.12 mm塑料布分隔(无地下互作处理,PW/M),以及地上部高、低玉米密度(M1、M2)2种互作强度,同时设置相应单作处理。结果表明,小麦间作玉米共生前期和后期完全地下互作处理促使小麦净光合速率(P_n)显著提高,且共生后期玉米密度的提高促使完全地下互作效应增强,进一步提高了小麦P_n。小麦间作玉米共生前、中和后期,完全地下互作处理可显著提高小麦叶片气孔导度(G_s)、胞间CO_2浓度(Ci),且玉米密度提高对共生前期完全地下互作处理和部分地下互作处理小麦Gs的增加起到促进作用。在共生前期、后期完全地下互作和部分地下互作处理保持了较低的Tr。间作完全地下互作处理有助于小麦叶日积(LAD)的增加,且随着生育进程的推进,提高比率越大。完全地下互作处理使共生中期间作小麦叶片相对叶绿素含量值(SPAD)显著增加,有利于光合强度的提高。间作小麦具有显著的增产效应,完全地下互作处理中小麦籽粒产量达到相应单作产量的76.8%,具有显著提高间作群体籽粒产量的优势,且地上部互作强度增强有利于完全地下互作处理正效应的发挥。地上地下互作强度是影响间作小麦光合性能的重要因素之一,在生产实践中可通过调节地上地下互作强度的强弱来优化低位作物光合性能。  相似文献   

13.
Intensive use of chemical herbicides and pesticides has raised serious concern about their effect on non-target organisms, plants, human bodies and the environment. Hence there is a continuous search for benign, harmless, non-hazardous and eco-friendly technology to control the growth of weeds which compete with crops for water, nutrients, light and space; thus reducing crop yield significantly. An attempt was made to control the weeds through smothering. This controls the weeds by cutting off light from the photosynthetic portion of weed plants by using black polyethylene sheets (LPDE film) which inhibit the top growth. Experiments to control the weeds in a lowland rice field through smothering were conducted in the high rainfall coastal region of eastern India wth eight treatments including smothering and conventional methods like hand/mechanical weeding and herbicides, etc. The treatment of smothering for one week + puddling + transplanting proved to be better than other conventional methods and may replace herbicide and hand/mechanical weeding totally with a better rice yield.  相似文献   

14.
A field experiment was conducted on deep vertisols of Bhopal, India to study the effects of three levels of nitrogen (N), namely 0, 75 and 100 % of the recommended dose of nitrogen (RDN), on the dry matter accumulation (DMA) and productivity of three cropping systems (sole soybean, sole sorghum and soybean + sorghum intercropping) during the rainy season and their residual effect on the subsequent wheat crop during the post-rainy season. During the rainy season, sole sorghum was found to have significantly higher DMA and productivity in terms of soybean equivalent yield (SEY) than sole soybean or soybean + sorghum intercropping. Increasing the N dose from 0 to 100 % RDN significantly improved the DMA and SEY. At a low fertility level (N0), soybean + sorghum intercropping was found to be more productive, while at a high fertility level (100 % RDN), sole sorghum was more productive than the other two cropping systems. However, during the post-rainy season, sole soybean as the preceding crop gave the highest DMA and seed yield of wheat, which were similar to those found with soybean + sorghum intercropping. Sorghum followed by wheat gave the lowest DMA and seed yield of wheat. Application of 100 % RDN irrespective of cropping system during the preceding crop improved the DMA of wheat but not its seed yield. However, N applied to the wheat crop significantly increased its DMA and seed yield.  相似文献   

15.
保护性耕作具有提高作物水分利用效率、减少能耗等优点,但能否将该技术集成应用于间作套种,尚需理论研究和具体实验依据。本研究通过2011至2012年度的田间定位试验,探讨不同耕作和秸秆还田方式对小麦间作玉米作物群体竞争、互补作用及产量的影响。试验设3种秸秆还田处理,分别是小麦带25 cm高茬收割立茬免耕(NTSS)、小麦带25 cm高茬等量秸秆覆盖免耕(NTS)及小麦带高茬等量秸秆还田翻压(TIS),以传统耕作(CT)为对照。秸秆还田后少耕间作的土地当量比高于传统耕作间作,且大于1,说明少耕小麦秸秆还田有利于提高间作优势;少耕秸秆还田降低了共生期小麦相对于玉米的竞争力,以NTS处理对小麦竞争力的影响最大,NTSS、NTS和TIS的小麦全生育期相对竞争力分别降低37%~54%、109%~141%和22%~24%。与单作玉米相比,NTSS、NTS、TIS和CT处理间作玉米的相对生长率分别高54%~59%、66%~71%、61%~63%和71%~78%,其中小麦秸秆还田间作处理中NTS更有利于发挥玉米的恢复效应。间作条件下,3种秸秆还田处理的产量较对照高6%~10%(2011年度)和4%~12%(2012年度),其中NTS增产显著。总体来看,间作群体籽粒产量与小麦相对于玉米全生育期的平均竞争力呈二次相关关系,当该竞争力在0.24~0.27时利于获得间作高产。本研究表明,秸秆还田配合少耕是调控种间竞争力的可行途径,其中小麦等量秸秆(小麦留茬25 cm)还田覆盖是优化小麦玉米竞争力的理想耕作措施。  相似文献   

16.
Intensive land use in the Rolling Pampa of Argentina have resulted in a mosaic of fields with different cultural histories creating different soil environments, which interact with crops and cropping activities producing a wide range of habitats for insects. Species and functions in canopy structure, food quality and essential oils of the crop–weed associations may vary depending on the field's cropping history and management (i.e. crops, soil degradation, weeding and fertilization). Species composition and functional structure of insect communities may respond to these changes. We studied insect communities in wheat and coriander crops that differed in their canopy structures, essential oil production, and the cropping histories of the fields on which they grew. For this purpose we planted wheat (Triticum aestivum L.), and two coriander (Coriandrum sativum L.) landraces in plots with two levels of weeding and fertilization. The crops were grown in two consecutive years at two locations differing in cropping history and related to this in level of soil degradation. Insects were sampled in all plots at crop full flowering, and were classified and related to agronomic variables and to essential oils using multivariate techniques. Among all the environmental factors tested in this study, year and soil degradation were the main factors explaining insect community structure; and also weed community structure in unweeded plots. The proportion of essential oil components varied with cropping history, suggesting an association among soil properties indicative of soil degradation, plant chemical signals and insect distribution. Although insect community composition varied widely, functional structure was very similar among crop–weed communities. Soil degradation appeared to have affected directly crop–weed communities and insects’ assemblages, since no consistent relationship was found between plant composition and insect community structure. It can be hypothesized that soil degradation might have affected the amount of volatiles produced especially by coriander, generating a “soil degradation scent” that determined the structure in the insect community, and/or the soil itself emitted different signals, in relation to changes in its physical, chemical and biological characteristics.  相似文献   

17.
空间配置是影响间作套种作物生长和产量构成的关键因素之一。本研究固定玉米–大豆套作带宽200 cm,玉米采用宽窄行种植,设置4个玉米窄行行距为20 cm(A1)、40 cm(A2)、60 cm(A3)和80 cm(A4)套作处理,2个玉米和大豆净作对照处理,研究行距配置对套作系统中玉米和大豆生物量、根系及产量的影响。结果表明,套作大豆冠层光合有效辐射和红光/远红光比值均低于净作,且随着玉米窄行的增加而降低。套作系统中大豆地上地下生物量、总根长、根表面积和根体积从第三节龄期(V3)到盛花期(R2)逐渐增加,但随着玉米窄行的增加而降低。套作玉米地上地下生物量从抽雄期到成熟期逐渐增加,根体积却逐渐降低,但这些参数随玉米窄行的变宽而增加。玉米和大豆在带状套作系统中产量均低于净作,且随玉米窄行的变宽,玉米产量逐渐增加,2012和2013两年最大值平均为6181 kg hm–2,而大豆产量逐渐降低,两年最大值平均为1434 kg hm–2,产量变化与有效株数和粒数变化密切相关。此外,玉米–大豆带状套作群体土地当量比(LER)大于1.3,最大值出现在A2处理,分别为1.59(2012年)和1.61(2013年),且最大经济收益也出现在A2处理(2年每公顷平均收益为1.93万元)。因此,合理的行距配置对玉米–大豆带状套作系统中作物的生长、产量构成和群体效益具有重要的作用。  相似文献   

18.
为了解不同除草剂组合对麦田杂草发生状况和小麦产量的影响,于2016—2017年选用高产小麦品种‘淮麦43号’进行大田试验,共设置了5个除草处理(T1:人工拔草、T2:5%唑啉草酯+50%异丙隆+15%双氟·氯氟吡、T3:4%啶磺草胺+50%异丙隆+15%双氟·氯氟吡、T4:4%啶磺草胺+15%双氟·氯氟吡和T5:15%炔草酯+50 g·L双氟磺草胺),以不除草为对照(CK)。结果表明,与对照相比,施用除草剂后均显著降低了单位面积杂草的发生数目和重量,其中T3和T4表现较好的防除效果,达到90%以上。小麦的产量随着杂草数量和重量的增加而降低。同对照相比,除草后小麦产量均显著增加,其中T2和T3的小麦产量与T1(人工除草)处理增产幅度最大,其次为T4,T5增产的幅度最小。从生理指标分析,T1、T2和T3处理的小麦叶面积指数、干物质积累量、叶片光合速率以及籽粒中吲哚-3-乙酸、赤霉素和玉米素+玉米素含量较高,T4和T5的上述生理指标增加较小。这可能是T4和T5处理小麦产量增加幅度较小的重要原因。  相似文献   

19.
Cotton-based intercropping systems are one of modern agriculture farming systems aiming at improving overall economic profitability of cotton field, which not only release the competition for land between other crops and cotton and increase growing area and yield of both crops, but also represent a mechanistic approach to reconciling crop production and biodiversity conservation. Recently, cotton-based intercropping systems have been widely focused and applied. Here, we reviewed the potential of cotton-based intercropping systems to reinforce agroecosystem services and functioning, including promoted plant biodiversity, improved overall productivity and economic profits, increased light use efficiency, improved cotton quality, reduced pest and disease occurrence, and suppressed weed growth. Further, the underlying mechanisms behind the enhancement of agroecosystem services and functioning by cotton-based intercropping systems through niche complementarity, interspecific facilitation, and allelopathy between intercropped species were summarized in the paper. Finally, the research prospects were also pointed out.  相似文献   

20.
小麦/蚕豆间作条件下硅对小麦白粉病发生的影响   总被引:2,自引:0,他引:2  
农作物间作可以持续降低病虫害发生,但间作条件下硅对病害发生的影响研究较少。此文通过砂培、水培试验,研究比较了单作和间作条件下施硅对小麦氮养分吸收及小麦白粉病发生的影响。试验结果表明:间作平均降低小麦白粉病9.8%。施用硅肥显著降低小麦白粉病的发病率和严重程度,单作条件下施硅降低小麦白粉病发病率2.2%~35.1%,间作条件下降低3.4%~15%。水培条件下,施用硅肥没有提高小麦生物量的趋势,对小麦氮含量无影响。砂培条件下,施硅增加单作小麦生物量14.2%,增加间作小麦生物量57.1%。施硅降低单作小麦氮含量10.4%,而增加间作小麦氮含量5.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号