首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epidemiological approach to the control of horse strongyles   总被引:2,自引:0,他引:2  
An investigation of the spring rise in strongyle egg output of grazing horses on two commercial horse farms in northern USA in 1981 and 1982 revealed two distinct spring and summer rises in faecal egg counts, with peaks in May and August/September. There was a marked rise in the concentration of infective larvae on pasture two to four weeks after the peaks in egg output, so that grazing horses were at serious risk from June onwards and pasture larval counts on one farm did not fall to low levels until June of the following year. The spring and summer rises in faecal egg counts appeared to be seasonal in nature, to be derived largely from worms developing from previously ingested larvae, rather than from newly ingested larvae, and to be unrelated to the date of foaling. An epidemiological approach to strongyle control based on prophylactic treatments in the spring successfully eliminated the spring rise in egg output but was inadequate to control the summer rise or subsequent escalation of pasture infectivity in September. It was, nevertheless, superior to a conventional treatment programme at eight week intervals, using the same drug, pyrantel pamoate. Prophylactic spring/summer treatments proved to be much more effective. Both pyrantel pamoate at four week intervals and ivermectin at eight week intervals kept faecal egg counts at low levels during spring and summer. As few as two ivermectin treatments (11 May, 6 July) resulted in a sixfold reduction in pasture larval counts on 9 November and 3 January for the treated group (8872, 8416 stage three larvae [L3]/kg) compared to the control group (52,824, 50,984 L3/kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Faecal pats containing parasitic nematode eggs were deposited monthly on worm-free pasture, from mid-1975 to early in 1979, near Rockhampton in central Queensland. Pasture samples were collected monthly from beside these pats and the number of infective larvae on the samples was counted.

Cooperia spp. were the most numerous larvae on pasture all year round and Haemonchus placei were commonly present in low numbers. Small numbers of Oesophagostonum radiatum larvae were found, mostly during summer.

Dung beetle activity and rainfall influenced larval populations on pasture, but temperature did not. Beetles were not active in winter, and pats deposited in spring, summer and autumn when beetles were active yielded only 42, 44 and 26%, respectively, as many larvae per 1000 eggs deposited as winter pats. Pats in which beetle activity was minimal (feeding only), moderate and intense (complete destruction), yielded 43, 10 and 6%, respectively, as many larvae per 1000 eggs as intact pats.

Larval densities on pasture were highest after the first saturating rains during the spring-summer period and most of these larvae migrated from unattacked pats deposited in winter. Beetle numbers and activity increased with the summer rains and so few larvae were available to migrate onto pasture during late summer and autumn when the highest falls of rain were recorded. The regression of larval recovery on rainfall was positive and statistically significant when data collected soon after these very heavy rainfall periods were omitted from the analysis.

In 1977, drought-breaking rains increased the normal larval density on pasture 10-fold because larvae in pats deposited in the last 4 months of the drought migrated onto pasture immediately after the rains.

This work suggests that in summer rainfall areas where dung beetles are active, helminth control may be achieved by reducing the worm egg output from cattle during the winter.  相似文献   


3.
Epidemiology and control of equine strongylosis at Newmarket   总被引:1,自引:0,他引:1  
Seasonal rises in mean faecal egg output were observed in grazing ponies in spring (578 eggs per gram) and in summer (930 epg) on 30 April and 2 September, respectively, in untreated ponies. Pasture infectivity reached a peak of 18,486 third stage larvae (L3)/kg on 17 September, two weeks after peak egg counts, coincidental with abundant September rainfall (103.0 mm). Differentiation of infective larvae from pasture showed the cyathostomes (small strongyles) to be predominant, but Trichostrongylus axei assumed major importance from late August to October. The large strongyles were rarely detected: Strongylus vulgaris was found only once and S edentatus only twice. The most effective parasite prophylaxis was achieved by twice weekly removal of faeces. In this group, concentrations of infective L3 on pasture reached a maximum of 1000 L3/kg, compared to 18,486 L3/kg for a control group and 4850 to 10,210 L3/kg for anthelmintic treatment groups. The removal of faeces increased the grazing area by about 50 per cent, by eliminating the characteristic separation of horse pasture into roughs and lawns. Spring and summer anthelmintic treatments of mature ponies with oxibendazole were effective in reducing the late season rise in pasture infectivity to 4850 L3/kg, but treatment of young ponies (mainly yearlings) with ivermectin every eight weeks or oxibendazole every four weeks resulted in pasture infectivity as high as 10,000 L3/kg. There was evidence of cyathostome resistance to benzimidazole drugs.  相似文献   

4.
A field experiment was conducted over two grazing seaons with calves on a permanent pasture in order to follow the pattern of infection with Dictyocaulus viviparus. Infective larvae persisted during the first, but not during the second, winter of observation. By means of the agar-bile herbage technique, a moderate first peak of infection was demonstrated in the pasture 2–3 weeks before the appearance of respiratory signs in the calves. Fluctuations in faecal larval output were reflected in the herbage contamination with infective larvae close to faecal pats. This, as well as the horizontal dispersion of larvae in the pasture, took place in less than a week. The proportion of lungworm larvae recovered away from faeces was low during a period of dry and hot weather while herbage sampling at two-hour intervals during two days showed an increase in herbage contamination with lungworm larvae, but not with trichostrongyle larvae between 10 a.m. and 12 noon.The infectivity of the pasture was monitored by tracer calves and compared with the results of the pasture sampling. The general course of the infection in the calves and in the pasture was the results of interaction between them. In addition, the pasture infection was influenced by climate and the infection in the calves by the development of immunity. The course of infection in individuals appeared to have an influence on the general course of the infection through the contamination of the pasture.  相似文献   

5.
This study investigated the effect of successive harvests of grazable herbage around cattle faecal pats on the population dynamics of infective gastrointestinal nematode larvae (L(3)). Faecal material, collected from naturally infected calves, was deposited as pats during summer, autumn and winter on three different topographical aspects within a moist, temperate region of New Zealand. Herbage was harvested four times (22-248 days) from around the faecal pats to a height of 2cm in three radial zones (0-20cm, 20-35cm and 35-45cm from the centre of the faecal pat) and L(3) extracted. Harvest date was determined by herbage mass to simulate grazing events. L(3) extracted from herbage were predominantly Cooperia spp. More L(3) were recovered from faeces deposited in summer and autumn, than those deposited during winter. L(3) concentration on herbage was highest (P<0.001) in the zone nearest the pat for all except the fourth harvest. Mean concentrations of L(3) on herbage were 11,447, 3154, 337 and 102 L(3)/kg dry matter herbage, for the four successive harvests, respectively. Microclimate differences as affected by aspect had a marked effect on herbage growth, but did not significantly affect L(3) concentration on herbage. In this study, L(3) remained aggregated close to the faecal pats they emerged from even after two successive harvests and significant rainfall. Successive harvests simulated the effect of repeated grazing events by a non-infective stock class. Two such grazings and the associated time, reduced L(3) presence on grazable herbage to <3% of the original population. Grazing strategies to generate clean pasture for vulnerable cattle are discussed in relation to these results.  相似文献   

6.
A study was conducted over 3 years (1998-2000) to investigate larval availability of gastrointestinal nematodes from faeces of cattle reared under different parasite control schemes. These cattle were part of a parallel, but separate grazing trial, and were used as donor animals for the faecal material used in this experiment. At monthly intervals, faeces were collected and pooled from three groups of first-season grazing cattle. These groups were either untreated, ivermectin bolus treated or fed the nematophagous fungus Duddingtonia flagrans. The untreated and fungus treated animals were infected with gastrointestinal nematodes and the number of eggs per gram (epg) pooled faeces ranged between 50 and 700 in the untreated group and between 25 and 525 epg in the fungus treated group. Each year between June and September, artificial 1 kg dung pats were prepared and deposited on pasture and protected from birds. The same treatments, deposition times and locations were repeated throughout the study. Larval recovery from herbage of an entire circular area surrounding the dung pats was made in a sequential fashion. This was achieved by clipping samples in replicate 1/4 sectors around the dung pats 4, 6, 8 and 10 weeks after deposition. In addition, coinciding with the usual time of livestock turn-out in early May of the following year, grass samples were taken from a circular area centred where the dung pats had been located to estimate the number of overwintered larvae, which had not been harvested during the intensive grass sampling the previous year. It was found that recovery and number of infective larvae varied considerably within and between seasons. Although the faecal egg counts in 1999 never exceeded 300 epg of the faecal pats derived from the untreated animals, the abnormally dry conditions of this year generated the highest level of overwintered larvae found on herbage in early May 2000, for the 3 years of the study. Overall, biological control with D. flagrans significantly reduced larval availability on herbage, both during and between the grazing seasons, when compared with the untreated control. However, the fungus did not significantly reduce overwintered larvae derived from early season depositions (June and July), particularly when dung pats disappeared within 2 weeks after deposition. Very low number of larvae (<3 per kg dry herbage) were sporadically recovered from grass samples surrounding the ivermectin bolus faecal pats.  相似文献   

7.
SUMMARY Development of the free-living stages of strongylid nematodes of the horse to the infective stage occurred in faeces in all months of the year in southern Queensland, at a rate which depended on the season. Most rapid development to the infective stage occurred in the warmer months, with the hatching of strongyle eggs being completed in 2 days in summer. During the winter, egg hatching continued for over 2 weeks. Larval moults proceeded at a faster rate in summer—all larvae were infective in 7 days during the hottest months, but it was as long as 5 weeks before all were infective in winter. However, even though development was rapid in summer, survival rates varied from 1 to 10%, in contrast to the spring and autumn, when over 80% reached the infective stage. One percent of larvae in faeces survived for up to 20 weeks in autumn and winter, but for only 4 weeks in summer. These results highlight the inadequacy of short-term pasture spelling for all but the hottest months. Infective larvae were found on herbage in all months of the year, but greatest numbers were recovered in spring and early summer, and in autumn and early winter. The relationship of pasture infestation to migration of larvae from Paecal reservoirs in response to rain was clearly shown. Most infective larvae were found within 30 cm of faecal masses, and in fact 89% of all larvae isolated from herbage in this study were found within 15 cm of faeces. Migration of larvae from faeces to herbage occurred with falls of rain as small as 25 mm. Horse faecal masses dried out completely in 6–8 days in summer and in 14–16 days in winter. Strongyle larvae developed to the infective stage in faeces in the absence of rain, although many remained in the pre-infective stage and completed their development when rain fell. This study shows that massive contamination of pastures with the eggs of strongylid nematodes must be prevented in spring and autumn if susceptible young horses are not to be at serious risk.  相似文献   

8.
This study investigated the overwintering survival and infectivity of free-living gastrointestinal nematode (GIN) stages on pasture. The presence of GIN larvae was assessed on 3 sheep farms in Ontario with a reported history of clinical haemonchosis, by collecting monthly pasture samples over the winter months of 2009/2010. The infectivity of GIN larvae on spring pastures was evaluated using 16 tracer lambs. Air and soil temperature and moisture were recorded hourly. Free-living stages of Trichostrongylus spp. and Nematodirus spp. were isolated from herbage samples. Gastrointestinal nematodes were recovered from all tracer lambs on all farms; Teladorsagia sp. was the predominant species. Very low levels of Haemonchus contortus were recovered from 1 animal on 1 farm. The results suggest that Haemonchus larvae do not survive well on pasture, while Teladorsagia sp., Trichostrongylus spp. and Nematodirus spp. are able to overwinter on pasture in Ontario and are still infective for sheep in the spring.  相似文献   

9.
Over a period of 13 months, faecal samples were collected monthly from approximately 45 cattle over 3 months of age. Additionally, 74 calves of 1-2 months were sampled to determine the presence of Toxocara vitulorum eggs. Individual egg counts and infective strongyle larvae from pooled faecal samples were examined. Post-mortem worm counts were carried out on six groups of tracer calves (n=12) that had been kept for 4 weeks on pasture in and around the village studied. The following helminths were identified: T. vitulorum, Cooperia punctata, C. pectinata, C. oncophora, Oesophagostomum radiatum, Trichostrongylus axei, T. colubriformis, Haemonchus spp., Fasciola spp. and Paramphistomum spp. In 8% of the samples collected from young calves, individual egg counts for T. vitulorum were found indicative for pathogenic worm burdens. Strongyle egg counts and worm counts indicated that transmission is low without a distinct seasonality. In animals of 3-9 months old, a strongyle egg count peak can be demonstrated which at a higher age steadily and significantly decreased. In faecal cultures Cooperia spp. were most prominent in all age groups throughout the year with the exception of the period September-November when Haemonchus spp. and Oesophagostomum spp. were most prevalent. Fasciola spp. eggs were found in 22% of the collected faecal samples and the egg counts were low indicating that the intensity of Fasciola spp. infection is mild. Based on the present data, regular anthelmintic treatments seem not to be justified, except for a single treatment at the age of 2 weeks against toxocariosis.  相似文献   

10.
In a study originally designed to determine the seasonal origin of the high levels of availability of nematode larvae to cattle in winter and spring, plots were serially contaminated with eggs of Ostertagia ostertagi and Cooperia oncophora by naturally-infected calves at monthly intervals from February 1980 to September 1980. The availability of infective larvae was monitored by monthly pasture sampling and larval recovery. Because of the intervention of a 15 month drought, recoveries of larvae from the pastures were very low until March 1981 (autumn in Australia) when large numbers of larvae appeared on pastures contaminated in the preceding spring. Examination of dry dung pats at that time showed that significant numbers of larvae were present in pats deposited up to a year previously, and particularly in pats deposited in May, August and September. Following the resumption of normal rainfall in May 1981, larval numbers in pats rapidly declined and concentrations of larvae on the pastures increased to extremely high levels. It is suggested that survival of infective larvae in dry dung pats was enhanced by the drought, with implications for control of nematode infections of cattle, particularly in winter rainfall environments.  相似文献   

11.
This study was carried out to examine the survival of infective Ostertagia ostertagi larvae (L(3)) on pasture under different simulated conditions of grazing, i.e. mixed grazing of cattle and nose-ringed sows, or grazing by cattle alone. Standardised pats of cattle faeces containing O. ostertagi eggs were deposited on three types of herbage plots, which were divided into zone 1: faecal pat; zone 2: a circle extending 25cm from the edge of the faecal pat; zone 3: a circle extending 25cm from the edge of zone 2. For "tall herbage" (TH) plots, the herbage in zone 2 was allowed to grow naturally, while the herbage in zone 3 was cut down to 5-7cm fortnightly, imitating a cattle-only pasture. For "short herbage" (SH) plots, the herbage in both zones 2 and 3 were cut down to 5-7cm fortnightly, imitating mixed grazing of cattle and sows. The grass in the "short herbage and scattered faeces" (SH/SF) plots were cut as for SH plots, and the faeces were broken down 3 weeks after deposition and scattered within zone 2, imitating the rooting behaviour of co-grazing sows. Five faecal pats from each plot group were collected on monthly basis, along with the herbage from zones 2 and 3 cut down to the ground. Infective larvae were then recovered from both faeces and herbage. The numbers of L(3) recovered from zone 1 were higher in the TH plots than in the other two groups and, furthermore, the larval counts from SH plots were always higher than from SH/SF plots. The three groups followed a similar pattern during the season regarding numbers of L(3) in zone 2, and no clear patterns between plot types were obtained. The presence of L(3) in zone 3 was almost negligible. Important differences were seen throughout the study from the biological point of view; more L(3) were able to survive in faeces on the TH plots, presumably reflecting a better protection from heat and desiccation compared to those in the other plots. The overall results support the idea that mixed grazing of cattle and pigs favour the reduction of O. ostertagi larval levels in pasture. This reduction is mainly due to the grazing behaviour of pigs, which by grazing up to the very edge of the cattle faeces, will either expose the larvae in faeces to adverse environmental summer conditions or ingest cattle parasite larvae, or both.  相似文献   

12.
An experiment was carried out in 1997 to test the efficacy of an isolate of the microfungus Duddingtonia flagrans against free-living stages of horse strongyles under conditions in the field and to assess the eventual effect of the fungus on the normal degradation of faeces. Faecal pats were made from faeces of a naturally strongyle infected horse, which had been fed fungal material at a dose level of 106 fungal unit/kg bwt. Control pats without fungi were made from faeces collected from the same animal just before being fed fungi. Faecal cultures set up for both groups of faeces to monitor the activity of the fungus under laboratory conditions showed that the fungus significantly reduced the number of infective third-stage larvae (L3) by an average of 98.4%. Five faecal pats from each batch of faeces were deposited on pasture plots at 3 times during spring-summer. The herbage around each pat was sampled fortnightly to recover L3 transmitted from faeces. The results showed that the herbage infectivity around fungus-treated pats was reduced by 85.8-99.4%. The remaining faecal material at the end of each sampling period was collected, and the surviving L3 were extracted. Significantly fewer larvae were recovered from the fungus-treated pats. Analysis of wet and dry weight of the collected pats, as well as their organic matter content, were performed to compare the degradation of faeces of both groups. The results indicated that the presence of the fungus did not alter the degradation of the faeces.  相似文献   

13.
An epidemiological study of gastrointestinal nematode parasitism in beef cattle in mountainous areas of Spain was performed. The dynamics of contamination with gastrointestinal nematode larvae of Pyrenean pastures was studied over four years at five areas at different altitudes (900 m to 2100 m), grazed by animals according to traditional systems of beef cattle in mountainous areas. Grass samples were taken every two weeks and larval differentiation was performed. Worm egg counts of grazing animals were assessed in cows, heifers and calves. A consistent seasonal pattern of infective larvae on pasture through the study was observed. In hay meadows, located below 1000 m, infective larvae were found from the end of October until June of the following year. At higher altitudes (1200-2100 m), a bimodal pattern of pasture larvae contamination was observed with increases in late spring (March-June) and in late autumn (September-November). Ostertagia spp., Cooperia spp., Trichostrongylus spp., Oesophagostomum spp., and Nematodirus spp. were found, with Ostertagia spp. being the most frequently found, followed by Cooperia spp. The highest increase of larval contamination in autumn coincided with the grazing of animals in hay meadows. This elevated autumn larval population had a very important epidemiological role because these larvae remained as overwintered larvae until the following grazing season, starting the cycle of contamination of the animals.  相似文献   

14.
During the 1997 Swedish grazing season, faeces were collected every 3 weeks on 7 occasions from young grazing cattle with moderate nematode parasite infections. From this source 12, 400 g dung pats were set up on each sampling occasion on a specially designated area of pasture. Half of these pats were placed on pasture where it was aimed to prevent snow cover during the subsequent winter. During the grazing season, herbage growth was kept at reasonably uniform height by clipping and the dung pats were protected from destruction by animals and birds. At the time of animal turn-out the following year (7th April 1998), it was observed that all dung pats had disappeared. Assessments of the survival of infective larvae, both on pasture and in soil, were made in a circular area encompassing the location of each pat. These sampling procedures were completed within a 3 week period. All faecal deposits yielded infective larvae at turn-out the following year, with proportionally greater numbers developing from nematode eggs deposited in cattle dung during the mid third of the previous grazing season. The surface layer of soil was found to be an important reservoir for infective larvae, with numbers recovered being approximately half those found in the overlying pasture samples. No significant differences were found between the normal pasture and snow excluded pasture in the number of infective larvae recovered from both pasture and soil samples. The epidemiological consequences of these findings are discussed.  相似文献   

15.
An epidemiological investigation was conducted during a 1-year period on a permanent pasture naturally contaminated with Dictyocaulus viviparus and grazed by a varying number of yearling cattle. Seasonal variation in pasture infectivity to cattle was monitored by monthly slaughter of tracer calves, slaughter of pairs of resident yearlings at 30-60-day intervals, herbage larval recovery and by counts of first stage larvae in feces (modified Baermann technique) of resident cattle. A clinical outbreak of dictyocauliasis occurred during January-March 1986 and was associated with peak levels of pasture infectivity. Carrier animals were considered responsible for the survival of infection over summer. Although soil samples were taken regularly on a monthly basis to study the epidemiological importance of the soil as a source of infection, infective larvae were not recovered at any time. The epidemiological pattern observed in the present study provides basic information on the factors involved in infection and diseases outbreaks under sub-tropical conditions.  相似文献   

16.
The survival of Haemonchus contortus infective larvae on pasture and soil was studied over a period of 12 months in the Baghdad area. Infective larvae were found on herbage and soil at all times except in the summer months. During autumn and winter infective larvae in pasture survived for periods of up to 32 weeks. Little larval migration into soil was observed during this study and larvae did not survive for long in the faecal pellets during the summer.  相似文献   

17.
The objective of the present study was to determine the dynamics of infestation of cattle and pasture by gastrointestinal nematodes in a mild humid environment in northwestern Spain. For this, infestation of pasture by free-living stages (L3), dynamics of faecal egg output, blood pepsinogen levels and worm burden in slaughtered animals were quantified. The results showed a high degree of annual variability, which was dependent on weather conditions. The seasons were clearly defined in the study area, with mild humid winters and relatively dry summers registered throughout the years of the study. Infestation of pasture by larvae varied from year to year, peaking during August in the first year, between August and December in the second year, and during October in the third year. The annual variation was mainly due to weather conditions, particularly the amount of rain in summer. The patterns of faecal egg output were similar in the first and third grazing seasons, with maximum levels observed in May/June; however, in the second year, the peak was reached in October. Blood pepsinogen levels increased from pasture turnout (March/April) until the end of the grazing season (November/December), reaching maximum values from August/September onwards. The nematode parasite species identified at necropsy were Ostertagia osteragi, O. lyrata, Cooperia oncophora, C. macmasteri, C. punctata and Trichuris ovis, with O. ostertagi and C. oncophora predominating. In faecal cultures, the following genera were also identified: Haemonchus, Trichostrongylus, Nematodirus, Bunostomum, Oesophagostomum and Strongyloides. There was a significant correlation (r=0.97, P<0.01) between worm burden (Ostertagia spp.) and pasture infestation (Ostertagia L3) 3 weeks prior to slaughter of the calves, and also between blood pepsinogen levels and pasture infestation by Ostertagia L3 (r=0.33, P<0.02). Correlations between worm burden and faecal egg output and between blood pepsinogen level and faecal egg output were not significant. The results obtained in the present study confirm that there is annual variability in the time-course of nematodosis in cattle, and demonstrate the importance of weather, particularly summer rainfall, in an Atlantic temperate environment.  相似文献   

18.
An experiment to determine the origin of populations of infective larvae of cattle nematode parasites on pasture during winter was conducted in south-west Western Australia. Six pasture plots were contaminated with worm eggs by grazing worm-infected cattle for periods of a month during summer and autumn. Each plot was contaminated at a different time from the rest. The levels of infective larvae were determined by counting the worm burdens of tracer calves which test-grazed the plots the following winter.Tracer calves which grazed the plots contaminated during summer acquired few worms, whereas those that grazed the plots contaminated during autumn acquired many worms. It was concluded that the hot, dry conditions prevailing during summer and early autumn prevented the development of eggs or survival of larvae in dung pats or free on pasture. In this environment, a programme of worm control which relied on administration of anthelmintic to grazing cattle to prevent autumn contamination of pasture would be most likely to succeed if the first treatment was given in early autumn.  相似文献   

19.
On a series of pasture plots, 2 kg pats of bovine faeces containing known numbers of strongylid (Haemonchus, Cooperia, Oesophagostomum and Trichostrongylus) eggs were deposited at intervals of 4 weeks from July 1995 to June 1996. The plots were sampled every 2 weeks after contamination and infective larvae were identified and counted. Larvae of all the genera developed throughout the year, but the pats exposed during the rainy season yielded more abundant larvae on the herbage. Irrespective of the season of deposition of the pats, larvae were found in larger numbers from 2 to 6 weeks after deposition and generally declined to below detectable levels within 12 to 16 weeks of contamination. The comparatively short survival times noted in this experiment may present opportunities for manipulation of the population dynamics of the gastrointestinal nematodes in the tropical environment of Kenya.  相似文献   

20.
The seasonal changes in longevity on herbage of the infective larvae of strongylid nematodes of the horse were studied. During the summer months, 1% of the larvae survived on herbage for 2-3 weeks, with 0.2% still viable for a further 2-3 weeks. Equivalent survival periods in winter were 7-11 weeks and over 11 weeks respectively. During spring and autumn, larvae survived for periods varying from 3-8 weeks. On Rhodes grass (Chloris gayana) growing vigorously in the summer of 1976, the majority of larvae remained in the lowest layers of the pasture, within 10 cm of the soil surface. Very few reached the highest fraction of grass sampled, above 40 cm from the soil. More larvae were recovered higher on the pasture in a period when less torrential rain had occurred. It was concluded that the parasitological benefits to be gained from short-term mixed grazing with horses and cattle may be minimal, in view of the tendency of cattle to eat only the upper layers of the pasture initially, with a consequent increase in the number of infective larvae per unit weight of herbage remaining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号