首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
新型固体碱催化大豆油制备生物柴油的工艺研究   总被引:1,自引:0,他引:1  
黄艳芹 《大豆科学》2011,30(4):668-671
制备了新型固体碱催化剂KNO3/AlSBA-15,并以此催化大豆油与甲醇酯交换反应制备生物柴油,对其工艺条件进行了优化.结果表明:醇油物质的量比为12∶1,催化剂用量为大豆油质量的3%,反应温度65C,反应时间4h,生物柴油的产率可达81%以上.该催化剂对酯交换制备生物柴油具有较高的催化活性和良好的重复使用性.  相似文献   

2.
分子筛负载杂多酸催化大豆油制备生物柴油   总被引:2,自引:0,他引:2  
黄艳芹 《大豆科学》2011,30(3):488-492
采用等体积浸渍法制备了负载型催化剂PW/MCM-41,并以此催化大豆油与甲醇酯交换反应制备生物柴油.考察了磷钨酸负载量和催化剂焙烧温度对催化剂催化活性的影响,以及醇油物质的量比、催化剂用量、反应时间和反应温度对生物柴油产率的影响.结果表明:磷钨酸负载量为30%、焙烧温度为300℃时,催化剂活性最高.酯交换反应的最佳条件...  相似文献   

3.
强碱催化大豆油酯交换制备生物柴油   总被引:4,自引:0,他引:4  
研究大豆油在NaOH催化作用下与甲醇经过酯交换反应制备生物柴油的过程,考察了催化剂用量、醇油摩尔比、反应温度、搅拌速度和不同级别甲醇对反应的影响,采用气相色谱(氢火焰)内标法分析产品中脂肪酸甲酯的含量.结果表明,该反应的最适宜工艺条件为:催化剂用量1.0%(相对于油脂质量)、醇油摩尔比6:1、反应温度65℃、搅拌速度400 r/min.大豆油在最优工艺条件下,经过酯交换反应得到的甲酯含量达到了98%~99%.  相似文献   

4.
以等体积浸渍法制备了分子筛Ti-HMS负载碱金属的固体碱催化剂K2O/Ti-HMS,在固体碱催化剂K2O/Ti-HMS作用下,对大豆油制取生物柴油的工艺进行了优化.考察了反应温度、反应时间、K2O负载量、醇油摩尔比和催化剂用量等因素对该反应的影响.结果表明:最佳反应条件是反应温度60℃,反应时间3 h,K2O负载量7mmol·g-1,n(甲醇)∶ n(大豆油)=16∶ 1,催化剂用量为大豆油质量的3%,在此条件下酯交换转化率可达75%以上.  相似文献   

5.
采用共沉淀法合成铜铝水滑石,并以此为载体负载氟化钾(KF)制备了负载型铜铝水滑石催化剂(KF/CuAl-LDOs),用于大豆油酯交换制备生物柴油.考察了铜铝摩尔比、催化剂用量、KF负载量、醇油摩尔比、反应温度和反应时间等因素对该反应的影响,通过正交试验得到了反应的最佳条件:铜-铝摩尔比为3:1,催化剂用量为3%,KF负...  相似文献   

6.
碱催化下大豆生物柴油的制备研究   总被引:1,自引:0,他引:1  
以大豆油和甲醇为原料,研究了氢氧化钠催化下大豆油脂肪酸甲酯-生物柴油的合成反应.并对影响酯化率的反应物料比、催化剂用量、反应温度、反应时间进行研究,通过正交试验,确定了制备生物柴油的最佳工艺条件:甲醇与大豆油摩尔比5∶ 1,0.5%的NaOH为催化剂,反应温度60℃,反应时间50 min.在优化条件下酯化率高达94.5%.  相似文献   

7.
二步法催化高酸值大豆油制备生物柴油   总被引:1,自引:0,他引:1  
采用两步法催化高酸值大豆油制备生物柴油.第一步在固定床反应器中,以002CR型阳离子交换树脂为催化剂,高酸值大豆油中游离脂肪酸和甲醇酯化生成脂肪酸甲酯(生物柴油);然后用氢氧化钾催化油中的甘油三酯和甲醇进行酯交换.结果表明,最佳酯化条件为:醇酸摩尔比2:1,反应温度60℃,进耕速度3 mL/min.该条件下大豆油酸值可降至1 mgKOH/g以下.酯交换条件为:催化剂用量1.5%,醇油摩尔比6:1,反应温度65℃.产品技术指标达到我国0#柴油(GB252-1994优级品)的要求.  相似文献   

8.
固体碱催化剂(K2O/C)的制备及其催化酯交换反应   总被引:1,自引:0,他引:1  
本文以活性碳为载体,负载K2CO3后经过煅烧,制得K2O/C固体碱催化剂,通过正交实验,得到催化剂的优化制备条件为:K2CO3与活性碳摩尔比0.04,粒径40目,煅烧温度450℃,煅烧时间3.5h,浸渍时间3h;将其应用于催化棉籽油酯交换制备生物柴油,考察了催化剂的加入量、醇油比、反应温度、反应时间、原料中水分含量等对酯交换反应的影响,得到最佳工艺参数:醇油摩尔比8︰1、催化剂加入量4.0%、反应时间1h。在此条件下,K2O/C的催化活性优于传统均相催化剂,重复使用多次仍具有较好的催化效果。  相似文献   

9.
以大豆油为原料,KOH作催化剂,通过大豆油与乙醇的酯交换反应合成了大豆油脂肪酸乙酯。应用响应曲面分析法中的Box-behnken模型对影响大豆油脂肪酸乙酯转化率的四个主要因素(催化剂用量、醇油摩尔比、反应温度、反应时间)进行了优化。研究表明大豆油脂肪酸乙酯的最佳合成工艺条件为:KOH用量1.3%,醇油比8.3∶1,反应温度74.8℃,反应时间130min。在此条件下,酯转化率达98.93%。  相似文献   

10.
在I2的催化作用下,大豆油与甲醇经过酯交换反应合成大豆油甲酯,采用正交试验考察了油醇摩尔比、剂油比、反应温度和反应时间对大豆油甲酯产率的影响.得到影响因素的主次顺序为:油醇摩尔比>剂油比>反应时间>反应温度.最佳工艺条件为:油醇摩尔比 1:6、剂油比0.5%、反应温度 60℃,反应时间1.5 h.在最佳工艺条件下,经过酯交换反应得到的大豆油甲酯产率达到了60.88%.  相似文献   

11.
Biodiesel is a biodegradable, renewable, non-toxic and environmentally friendly alternative fuel. The cost of raw materials comprises 60-88% of the production cost in commercial biodiesel (fatty acid methyl esters, FAMEs) production. Therefore, the use of low-cost raw material as a substrate and an in situ process for biodiesel production are being preferred. In this case, rice bran, which contains 13.5% oil, was an interesting substrate. In situ esterification of high-acidity rice bran with methanol and sulfuric acid catalyst was investigated. The individual and interaction effects of methanol to rice bran ratio, sulfuric acid catalyst concentration and reaction time on purity and recovery of biodiesel were discussed. Our results suggest that under the following operation conditions: methanol to rice bran ratio of 5 mL/g, sulfuric acid concentration in methanol of 1.5 vol.%, and reaction time of 60 min, an in situ esterification operated on rice bran could yield FAMEs with a high purity and recovery. By applying an in situ esterification with n-hexane/water extractions, Indonesia will be succesfull in obtaining biodiesel from rice bran up to 96,000 ton per year.  相似文献   

12.
Many research reported vegetable oil as a potential substitute for diesel engines with its ester form known as biodiesel. The biodiesel can be prepared by different process using vegetable oil and alcohol. The common process used for biodiesel preparation is known as transesterification. This paper presents the transesterification of Sal oil (Shorea robusta) into Sal oil methyl ester (SOME) and its performance in direct injection diesel engine. Several process parameters such as catalyst quantity, molar ratio of alcohol, reaction temperature and reaction time were studied and the optimized process conditions are amount of catalyst (NaOH) - 0.25 wt%, alcohol (methanol) - 150% excess, reaction temperature - 65 °C and reaction time - 1.5 h. The studies with SOME as fuel in the direct injection diesel engine shows that the exhaust emissions such as CO, HC and NOx are reduced by 25%, 45% and 12%, respectively compared to diesel without significant difference in thermal efficiency. Based on this study it is concluded that the SOME can be used as fuel without any modifications in the engine and hence this biodiesel can be a potential substitute to standard diesel fuel.  相似文献   

13.
The feasibility of producing biodiesel from Idesia polycarpa var. vestita fruit oil was studied. A methyl ester biodiesel was prepared from refined I. polycarpa fruit oil using methanol and potassium hydroxide (KOH) in an alkali-catalyzed transesterification process. The experimental variables investigated in this study were catalyst concentration (0.5–2.0 wt.% of oil), methanol/oil molar ratio (4.5:1 to 6.5:1), temperature (20–60 °C) and reaction time (20–60 min). A maximum yield of over 99% of methyl esters in I. polycarpa fruit oil biodiesel was achieved using a 6:1 molar ratio of methanol to oil, 1.0% KOH (% oil) and reaction time for 40 min at 30 °C. The properties of I. polycarpa fruit oil methyl esters produced under optimum conditions were also analyzed for specifications for biodiesel as fuel in diesel engines according to China Biofuel Systems Standards. The fuel properties of the I. polycarpa fruit oil biodiesel obtained are similar to the No. 0 light diesel fuel and most of the parameters comply with the limits established by specifications for biodiesel.  相似文献   

14.
The physicochemical properties, fatty acids profile and triglyceride compositions of the stillingia oil were analyzed. The stillingia oil was found to contain 98.79% neutral lipids, 0.22% phospholipids and 0.99% glycolipids, which exhibited varying contents of fatty acids. The major triglyceride was double linoleic acid linolenic acid triglyceride, which accounted for approximately 79.49% of the total triglycerides. Preparation of biodiesel from stillingia oil was investigated by enzyme transesterification with methanol as the acyl acceptor. The results showed that lipase type (Novozym 435, Lipozyme TLIM and Lipozyme RMIM), reaction systems (in solvent-free and tert-butanol system) and operational parameters (lipase loading, reaction time, temperature, and molar ratio of alcohol to oil) influenced the biodiesel yield. Fuel properties of biodiesel from stillingia oil were evaluated and all were in acceptable range for use as biodiesel in diesel engines, and had remarkable flash point and satisfactory cold flow properties. It was concluded that stillingia oil was an alternative potential feedstock oil for biodiesel production.  相似文献   

15.
Jatropha curcas oil (JCO) has a high content of free fatty acids and has been used extensively as a feedstock in biodiesel production. In the present study, the transesterification reaction of JCO to Jatropha curcas methyl ester (biodiesel) was performed in a continuous pulsed loop reactor under atmospheric conditions. The JCO was pre-treated prior to the reaction to reduce the free fatty acid content to below 1% (w/w). The operating parameters of the loop reactor were optimised based on the conversion of the JCO to Jatropha curcas biodiesel and included reaction temperature, molar ratio of oil to MeOH, reaction time and oscillation frequency. The findings show that the highest reaction conversion of 99.7% (w/w) was achieved using KOH catalyst and 98.8% conversion was obtained using NaOCH3 catalyst. The optimal operating conditions were a molar ratio of 6:1, an oscillation frequency of 6 Hz, temperature of 60 °C, feedstock FFA content of 0.5% (w/w) and only 10 min of reaction time. As a commercial commodity, the physical properties of biodiesel were analysed, and they compared well with the characteristics of fossil-based diesel fuel.  相似文献   

16.
The demand for diesel fuel far exceeds the current and future biodiesel production capabilities of the vegetable oil and animal fat industries. New oilseed crops that do not compete with traditional food crop are needed to meet existing energy demands. Hybrid hazelnut oil is just such an attractive raw material for production of biodiesel. Hazelnut oil was extracted from hybrid hazelnuts and the crude oil was refined. Hazelnut oil-based biodiesel was prepared via the transesterification of the refined hazelnut oil with excess methanol using an alkaline catalyst. The effects of reaction temperature, time and catalyst concentration on the yield of diesel were examined, and selected physical and chemical properties of the biodiesel were evaluated. The biodiesel yield increased with increasing temperature from 25 to 65 °C and with increasing catalyst concentration from 0.1 to 0.7 wt%. The increase in yield with reaction time was nonlinear and characterized by an initial faster rate, followed by a slow rate. Hazelnut oil-based biodiesel had an average viscosity of 8.82 cP at 25 °C, which was slightly higher than that of the commercial soy-based diesel (7.92 cP at 25 °C). An approximate 12 °C higher onset oxidative temperature and a 10 °C lower cloud point of hazelnut oil biodiesel than those of its commercial soy counterpart indicated a better oxidative stability and flowability at low temperature. The average heat of combustion of hazelnut oil biodiesel was 40.23 kJ/g, and accounted for approximately 88% of energy content of diesel fuel. The fatty acid composition of hazelnut oil-based biodiesel was the same as the nature oil.  相似文献   

17.
This work describes the mechanical and solvent extraction of Sterculia striata seed oil. It was determined that the seeds contain up to 41% in oil, which has an unusual composition. Indeed, up to 50% of the fatty acid contain cyclopropenoid ring. The oil was used as raw material to produce bio-oil and biodiesel and their physical-chemical properties were evaluated. Some of the studied physical-chemical properties of the S. striata biodiesel are in acceptable range for use as biodiesel in diesel engines, showing a promising economic exploitation of this raw material in semi-arid regions. It was also observed that the cyclopropenoid ring remains after transesterification and is decomposed during pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号