首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calanoid copepods, including species of the genus Acartia, are commonly used as larval diets for marine finfish. This study aimed to determine the separate effects of water temperature (18, 22, 24, 28° ± 0.5°C) and photoperiod (24L:0D; 18L:6D; 12L:12D; 8L:18D; 0L:24D) on Acartia grani egg production (EP), hatching rate (EHR) and population growth. Egg production rate was not affected by the two abiotic parameters. A. grani eggs incubated at T24°C and T28°C were the first to achieve 50% hatching rate (23–25 hr), with significant differences at the end of the experiment (48 hr) between T28°C treatment (EHR 88 ± 5%) and T18°C treatment (EHR 65 ± 2%). However, different temperature regimes did not affect final number of individuals in population growth experiment. Still, when eggs were excluded from data, population at lower temperatures (18°C) was mainly composed by the nauplii stage (72%), while at higher temperatures (24°C and 28°C) more than 60% of the population was composed by copepodites and adults. A. grani subjected to long‐day photoperiods had significantly lower EHR (16.7% at 24L:0D; 20.8% at 18L:6D) than at short‐day photoperiods (52.6% at 6L:18D; 50.0% at 0L:24D). In population growth experiment, eggs were the most common life stage after 12‐day culture. Lowest population number was found at constant light conditions (665.0 ± 197.1), suggesting higher metabolic rates and depletion of energy reserves in long‐day conditions. This study expanded knowledge on the biological response of A. grani to separate temperature and photoperiod regimes, and provided ground to improve the culture of this potential life feed species for hatcheries.  相似文献   

2.
One of the major problems involved in the controlled cultivation of Patagonian red octopus (Enteroctopus megalocyathus) is its long embryonic period ranging between 150–176 days, after which the hatching of planktonic paralarvae is achieved. The effect of temperature on the incubation of E. megalocyathus eggs was studied with the aim of establishing if a temperature higher than 12°C is effective to accelerate the embryonic development without altering their morphological and physiological conditions. Fertilized eggs obtained under controlled conditions at 11°C ± 0.1 were randomly distributed in 12 water baths of 30 L at 4 temperatures: 12, 14, 15 and 16°C ± 0.1°C. The experiment lasted until egg hatching occurred.The embryo growth rate was accelerated at 15–16°C, so the time spent in embryonic development can be reduced in 15% when compared with embryo development obtained from eggs incubated at 12°C. The embryos showed no significant differences in the final survival and were morphometrically similar in all stages of development at all temperatures. The increase in temperature from 12 to 16°C, even if it allowed a better growth, had high metabolic costs for embryos of E. megalocyathus. The activities of lipases and proteases were affected by interaction between temperature and the embryo stage, with high lipase activity observed in embryos of stage XV incubated at high temperatures and the highest levels of trypsin and chymotrypsin in stage XX at 14°C. The results suggest that 15°C could be the limit temperature to increase growth.  相似文献   

3.
The purpose of this study was to investigate the growth and physiological status of Litopenaeus vannamei subjected to one constant temperature (25°C) and four cyclical temperature change regimes (25 ± 1°C, 25 ± 2°C, 25 ± 3°C and 25 ± 4°C). The growth rates of shrimp at 25 ± 2°C or 25 ± 3°C were significantly higher than that at a constant temperature of 25°C. On the other hand, the growth rate in 25 ± 4°C regime was significantly lower than those in other regimes. The daily feed intake rate of shrimp at 25 ± 4°C was the lowest, and the food conversion efficiency was also significantly lower than those at 25 ± 2°C and 25 ± 3°C, respectively. The food conversion efficiency at 25 ± 2°C or 25 ± 3°C was significantly higher than those in other regimes. Thus, it can be inferred that the growth enhancement in the test shrimp at the suitable diel fluctuating temperatures was due to high food conversion efficiency. Studies of the physiological parameters showed that at 25 ± 4°C, the hemolymph glucose content of the test shrimp was the lowest, while the activity of PK in hepatopancreas was the highest, which indicated that the test shrimp at 25 ± 4°C was in a stressed condition. The hemolymph glucose content of the test shrimp at 25 ± 3°C was the highest, and the activity of HK in hepatopancreas was the lowest. These results indicated that the test shrimps at 25 ± 3°C were not in a stressed condition. Compared with the constant temperature regime, the expression of HSP70 in any of the four cyclical temperature change regimes was not significantly increased. The reason for this might be that the fluctuation amplitude of ± 4°C did not induce the increased expression of HSP70.  相似文献   

4.
The present study evaluates the effect of two temperatures, 14°C (T14) and 18°C (T18), on yield and the presence of cranial abnormalities during early development in north palm ruff (Seriolella violacea). Different time indices – days post‐hatching (DPH), degree‐days (D°) and effective degree‐days (D°eff) – were used to analyse growth during cultivation. Several ontogenetic events were achieved in less time during cultivation at 18°C. Additionally, a larger total length and final weight, as well as a higher survival rate, were achieved after 80 days of culture at higher temperatures (T18 = 55.5 ± 1.5 mm; 2.87 ± 0.21 g; 1.80 ± 0.18% and T14 = 24.3 ± 2.2 mm; 0.26 ± 0.08 g; 1.33 ± 0.12%). D° and D°eff were valid as independent temperature indices for predicting the growth response of S. violacea against thermal variations. The frequencies of cranial skeletal abnormalities (mouth and opercular complex) were evaluated in the pre‐flexion, flexion, post‐flexion and juvenile stages. However, the frequency of cranial skeletal abnormalities at the end of this study was not significantly influenced (P > 0.05) by temperature, and values below 21% were recorded in both treatments. These results can be of practical use for optimizing culture conditions to maximize the yield and quality of S. violacea juveniles.  相似文献   

5.
This study investigated short‐term effects of increasing water temperature from 27 to 41°C on survival and feed consumption of Penaeus indicus at three different ages: PL25 (postlarvae 25 days old), PL50 and PL90. For each age group, water temperature was maintained at 27°C in the control, but increased to 32, 35, 38 and 41°C at a rate of 1°C every eight hours. The temperature was then kept stable until the end of the 7‐day experiment. Results showed that increasing water temperature affected both survival and feed consumption of the experimental shrimps (p < .01). Survival was highest at 32 and 35°C ranging from 93.8% to 100%, but significantly reduced to 40.0%–81.6% at 38°C. No shrimp survived the 41°C treatment. PL25 were more tolerant to 38–41°C than PL50 and PL90 in terms of survival. Increasing water temperature had no effects on feed consumption of PL25 (p > .05). For PL50 and PL90, feed consumption significantly increased at 38 and 41°C (p < .01) and was similar within the range of 27–35°C. This study suggests that P. indicus in tropical areas can tolerate water temperatures of at least 35°C and should be considered for farming during the summer time.  相似文献   

6.
The physiological responses of the juvenile Crassostrea nippona in terms of filtration, oxygen consumption and ammonia excretion to changes in temperature (16–32°C), salinity (15–35 psu) and body size (small, medium and large) were investigated. In this study, the values of filtration rate (FR), oxygen consumption rate (OCR) and ammonia excretion rate (AER) increased with temperature rising from 16°C to 24°C, reaching the highest values at 24°C and 28°C; with any further increase in temperature above this limit, these values decrease drastically (p < .05). The highest Q10 coefficients were 2.75 for large, 3.54 for medium at 16–20 and 3.47 for small size at 20–24°C respectively. Moreover, the responses of FR and OCR were found to be influenced significantly by salinity, tending to increase concomitantly with salinity up to 25–30 psu, though the values of these parameters were diminished dramatically (p < .05) above this level, showing a reverse pattern from that observed in AER, which firstly decreased to the lowest level at 25 and 30 psu, and then severely (p < .05) increased to the highest level at 35 psu. In addition, the low O:N ratios of all sizes of C. nippona at 16°C and 30–35 psu were indicative of a protein‐dominated catabolism, whereas the O:N ratios of large size at 20–32°C and all sizes at 20–30 psu, indicating that the metabolic energy from protein diminished and lipid and carbohydrate were used as the energy substrates. Physiological rates of C. nippona were well correlated with its size. The average values of mass exponents (b‐values) estimated in the present study were 0.657 for OCR and 0.776 for AER at different temperatures, and 0.647 for OCR and 0.767 for AER at varying salinities, signifying that physiological process of C. nippona becomes relatively slower with increasing body size regardless of temperature or salinity. Finally, our results confirm that the optimal temperature and salinity for juvenile C. nippona lie within 24–28°C and 25–30 psu respectively. The results of physiological traits in response to environmental factors of this species are informative in site selection for the cultivation.  相似文献   

7.
Despite intensive stocking programmes, wild Maraena whitefish Coregonus maraena (Bloch, 1779)‐stocks are in danger of extinction in the Baltic sea region. Current aquaculture rearing methods in recirculating aquaculture systems (RAS) are lacking efficient protocols for transitioning larvae from endogenous to exogenous feeding. In this 34‐day‐experiment the offspring of wild fish was used. Maraena whitefish larvae were weaned at three different temperatures (15.9°C, 17.9°C, 19.7°C) and three feeding regimes, resulting in nine treatments. The first group received pure live feed (freshly hatched Artemia sp. nauplii) for 10 days and a 1:1‐mixture of live and dry feed for 3 days. The second group received the live and dry feed mixture for 13 days and the third group directly received a commercial dry feed. All nine treatments were stocked in triplicate with 500 larvae per tank (19 ind. L?1). Feeding started 4 days post hatch. Survival was highest in the pure dry feed groups and lowest in the pure live feed groups. In contrast to growth, which was highest in the live feed groups and lowest in the dry feed group. Higher temperature increased growth in the live feed groups but had no effect on survival in all groups. These results will enhance the weaning of C. maraena in recirculation aquaculture.  相似文献   

8.
The effect of three different temperatures on growth in a first progeny generation, hatchery reared, subarctic population of European whitefish (Coregonus lavaretus L.) were investigated. The whitefish (start weight 444 g, ±SD 125 g) were reared for 60 days at three constant temperatures; 15, 18 and 21°C and under ambient light regimes for 70°N latitude. The results showed that temperature had a significant influence on the growth of the fish with the highest increase in weight increment occurring at 18°C (mean final weight 656 g ± SD 151 g) compared with the growth of fish held at 15°C (mean final weight 591 g ± SD 143 g) and 21°C (mean final weight 505 g ± SD 121 g). The cumulative per cent mortality of the fish during the experimental period increased with increasing temperature, from 10% at 15°C to 30% at 21°C. The present study indicates that the optimal temperature for farming of European whitefish is somewhere between 15 and 18°C rather than between 18 and 21°C.  相似文献   

9.
This study was carried out to evaluate the effects of water temperature (WT) and dietary protein levels on growth, body composition and blood biochemistry of GIFT tilapia (Oreochromis niloticus; initial average body weight: 38.75 ± 0.61g, n = 20). The fish were fed with six diets contained graded levels of protein (209.6, 251.0, 302.4, 354.3, 401.9 and 456.8 g/kg) and raised in each of WT (22°C, 28°C and 34°C) for 8 weeks. Results showed that the growth, feed utilization and protein efficiency were significantly increased with the increase of dietary protein level and followed by the latter platform at each WT. The fish raised at 28 and 34°C showed similar growth performance, and their values were significantly higher than the fish raised at 22°C (p < 0.05). The lipid contents in whole body were decreases with the increase of dietary protein level at each WT. However, the whole‐body protein, ash and moisture contents were not affected by dietary protein level or WT (p > 0.05). The values of serum biochemical indices (ALP, ALT, AST and TCHO) were all decreased with the increase of dietary protein. The optimal dietary protein requirement for GIFT tilapia to achieve maximal growth performance is 374.4, 301.7 and 304.9 g protein/kg diet at 22, 28 and 34°C, respectively.  相似文献   

10.
The effects of thermal amplitudes of diel fluctuating temperature on growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) were studied at the average temperatures of 15 and 18°C with three diel different fluctuating amplitudes of ±2, ±4 and ±6°C. The optimum thermal amplitudes for growth of the juvenile sea cucumber at the sizes of this experiment, at average temperatures of 15 and 18°C, were estimated to be ±1.38 and ±1.67°C respectively. In the constant temperature regimes, the growth rate at 15°C was higher than that at 18°C. However, the growth rate at 18±2°C was higher than that at 15±2°C. The results from this study suggested that fluctuating temperatures enhanced the optimum temperature for the growth of sea cucumbers compared with that at constant temperatures. Therefore, accurate predictions of the optimum temperature of sea cucumbers in the natural environment, in which water temperatures fluctuate daily and seasonally, should be made from data obtained at fluctuating temperatures.  相似文献   

11.
Poor swimbladder inflation leads to low fish survival due to resulting spinal deformities and the inability to feed and develop normally. Failure of swimbladder inflation may be attributed to the inappropriate range of abiotic conditions. This study investigated the effects of temperature, light source and intensity, and oxygen conditions on initial swimbladder inflation, growth and survival of yellowtail kingfish Seriola lalandi larvae. The study consisted of four separate trials including low (21.5°C) and high (24.5°C) temperatures, natural and artificial light sources, low (1000 lux) and high (32 000 lux) light intensities, and ambient and supersaturated dissolved oxygen. Initial swimbladder inflation was only significantly affected by light source, with the highest inflation rate (97.5 ± 3.5%) under artificial light. Fish growth was improved at the higher temperature and at the higher light intensity. Survival was only significantly influenced by light intensity, with the highest survival (11.0 ± 2.3%) at the high intensity (32 000 lux). This study indicates that light source affects swimbladder inflation timing and high artificial light intensity improves larval fish growth and survival.  相似文献   

12.
Two 3-month experiments were conducted to investigate the effects of temperature and water calcium concentrations on growth, survival and moulting of freshwater crayfish (Paranephrops zealandicus). Both experiments were conducted using three replicates of five treatments (water temperatures of 14, 16, 18, 20 and 22 °C for Experiment 1 and water calcium concentrations of 0, 5, 10, 30 and 80 mg/L for Experiment 2). Growth rates increased with water temperature (maximum specific growth rate = 0.57) but were unchanged with increased water calcium concentration. Variability in growth rates decreased with increased water calcium concentrations. Survival decreased as water temperatures exceeded 16 °C and increased with water calcium concentrations above 10 mg/L. Inter-moult period decreased from > 90 ± 20 days at water temperatures of 14 °C to ∼ 40 ± 10 days at water temperatures > 20 °C. Moult increment of the crayfish was unaltered by either water temperature or water calcium concentrations. The optimum water temperature for productivity under conditions employed was 16 °C.  相似文献   

13.
The movement of adult muskellunge, Esox masquinongy Mitchill, has been investigated in a variety of systems, but temperature selection by muskellunge has not been examined where well‐oxygenated waters were available over a range of temperatures for much of the year. Thirty subadult and adult muskellunge tagged internally with temperature‐sensing radio tags were tracked from March 2010 to March 2011 in a Tennessee reservoir. Mean tag temperatures were 18.9 °C in spring (March to May), 22.1 °C in summer (June to August), 16.5 °C in autumn and 9.8 °C in winter (December to February). When the greatest range in water temperatures was available (7.1–33.3 °C; May to early August 2010), their realised thermal niche (mean ± 1 SD) was 22.3 °C ± 1.8; the realised thermal niche was affected by fish size (smaller fish selected slightly warmer temperatures) but not sex. An electric generating steam plant discharging warm water resumed operation in January 2011, and most (86%) tagged fish occupied the plume where temperatures were ≈10 °C warmer than ambient water temperatures. No mortalities were observed 15 days later when plant operations ceased. Their affinity for the heated plume prompted concerns that muskellunge will be too easily exploited when the plant operates during winter.  相似文献   

14.
The purpose of this study was to investigate variations of glucose content, activities of enzymes involved in glycolysis and HSP70 in Litopenaeus vannamei subjected to one constant temperature (25°C) and four daily cyclical temperature change regimes (25 ± 1°C, 25 ± 2°C, 25 ± 3°C and 25 ± 4°C; max 12 am min 12 pm ). Both the glucose and HSP70 in treatment 25°C had a day/night rhythm city (L14:D10), but it gradually disappeared with the increase in temperature fluctuating amplitude. The PK activities varied more and more acutely with the increasing temperature fluctuating amplitude, especially, that in treatment 25 ± 4°C. HK activities were affected by the flux of glucose and the process of glycolysis, which tended to be stable with the increasing temperature fluctuating amplitude. Besides, the variations of PK activities were very abrupt at 25 ± 4°C, which might be unfavourable to the growth of shrimps. The temperature fluctuations affect metabolic adjustments and change the day/night rhythmicity of some physiological indicators.  相似文献   

15.
Fluctuations in water temperature can have important physiological consequences for fishes. Effects of daily thermal cycles are well studied and can be beneficial, increasing prey consumption and growth rates when mean and maximum temperatures of the fluctuations are at or below the species’ optimum temperature. While less studied, subdaily temperature fluctuations are also common in many aquatic habitats and can be caused by both natural and anthropogenic processes. We performed laboratory experiments to examine how two fish species (yellow perch, Perca flavescens, and walleye, Sander vitreus) with similar thermal preferences respond to chronic exposure to subdaily temperature variability. We selected temperature treatments that reflected observed thermal variation after examining water temperature data from multiple aquatic systems. We then separately exposed yellow perch and walleye to a stable 23 °C treatment and 12‐h cycles of 23 ± 2 °C or 23 ± 4 °C for 45 days. Adult yellow perch exposed to fluctuations of 23 ± 4 °C over 12 h expressed higher consumption, growth and food conversion efficiency than fish experiencing stable 23 °C. Temperature fluctuations, though, resulted in mortalities and the development of skin ulcers in yellow perch that did not occur under stable temperatures. In contrast, the same 12‐h temperature fluctuations did not result in mortalities or stress responses in juvenile walleye. Moreover, unlike yellow perch, growth rates of walleye were lower under 12‐h temperature fluctuations compared with the stable 23 °C treatment. Our results indicate that species with similar thermal preferences can respond differently to the same subdaily temperature fluctuations.  相似文献   

16.
A feeding experiment was conducted in a closed recirculating system to evaluate the effects of freeze‐dried spheroplasts prepared from Pyropia yezoensis (Ueda) on feed intake, growth and biochemical composition of sea cucumber, Apostichopus japonicus (Selenka). Pyropea spheroplasts (PS) were prepared through enzymatic treatment to break down the complex mixture of polysaccharides cell walls that might be easier for growth energy partitioning. Sea cucumbers were fed‐formulated diets with 10 (Diet 1), 30 (Diet 2) and 50 g/kg (Diet 3) inclusion level of PS. A diet without PS was used as a control (Diet 4). The experiment was conducted for 6 weeks maintaining water temperature 15 ± 1°C, photoperiod 18:06 hours (D:L). Feed was supplied ad‐libitum at 16.00 h once in a day, and the remaining feed and faeces were removed in the next day. Results showed that the highest growth was observed in the 50 g/kg PS diet compared to other treatments. Total weight gain, mean weight gain, net yield, protein efficiency ratio (PER) and protein gain (%) were significantly higher in the 50 g/kg PS diet (p < .05). A significantly higher percentage of energy was allocated for growth in the 50 g/kg PS diet. The highest specific growth rate and feed conversion efficiency (p < .05) were observed in the higher percentage of PS diet. Both the growth performance and biochemical analysis showed that superior growth was observed with increasing levels of PS in the diet. We infer that PS can be used as a new, cheaper feed ingredient in the formulated diet of A. japonicus.  相似文献   

17.
The aim of this trial was to study the digestibility of corn distiller's dried grains with soluble (DDGS) in Common carp juveniles at two water temperatures 20°C and 30°C. DDGS digestibility was determined based on the substitution of 30% of a reference diet by test DDGS. Three hundred and sixty Common carp juveniles (average weight, 40 ± 7 g) were distributed in thermo‐regulated recirculation water system equipped with twelve 1m3 fibreglass tanks (30 fish per tank), which were allotted to four experimental group in triplicates. Half of the experimental groups were maintained at 20°C, whereas the other half were exposed to 30°C. Juveniles reared under different temperature regimes were fed either of the two diets, with or without DDGS (DDGS diet or reference diet), to evaluate the interaction effect between water temperature and nutrient digestibility of corn DDGS in Common carp. Diet and water temperature interaction was effective in modulating the response of dry matter digestibility of DDGS ingredient, and digestibility was found higher in juveniles reared at 20°C compared with 30°C. Growth, feed efficiency and protein efficiency were higher at 20°C compared with 30°C. Whole body csomposition of Common carp juveniles was found unaffected due to diet and water temperature interaction. Overall, it is concluded that digestibility and growth performance of Common carp is better at 20°C compared with 30°C, and DDGS has high potential for inclusion in diets of Common carp.  相似文献   

18.
The experiment was designed to determine the combined effect of fish diet and water temperature on juvenile tench Tinca tinca (L.). Three diets were used: commercial dry diet for fish Aller Futura (diet F); frozen Chironomidae larvae (diet C); and Aller Futura substituted with Chironomidae at a ratio of 3:2 (dry weight; diet FC). Daily food rations and duration of the experiment were adjusted to temperatures of 20°C, 23°C and 26°C based on a correction factor q equal to 1.000, 0.779 and 0.609 respectively. The experiment lasted 92, 72 and 56 days for the respective temperatures. No mortality occurred. The highest relative growth rates were found at 26°C in diets F and FC. The lowest food conversion ratio of 1.12–1.22 (recalculated for dry weight of feed diet) was determined in fish fed diet F at 23°C and 26°C. A high value of condition index appeared to be the early warning of decreasing biological quality of fish and deformities. The lowest incidence of fish with deformities (IDef) was found in groups fed diet C (<1%), while the highest (90%) in fish fed diet F at 26°C. A lower share of dry diet in the fish food and a lower water temperature led to a lower IDef. Thus, amount of dry feed in fish diet was the major factor inducing body deformities, while water temperature only modified the effects of the dietary factor. Diet C at 23–26°C was the most cost‐effective of the tested combinations of diet and temperature.  相似文献   

19.
To investigate the possible direct effect of a stepwise reduction in temperature with increasing size on growth, feeding parameters and muscle growth patterns of juvenile Atlantic halibut (Hippoglossus hippoglossus L.), 804 juvenile halibut (mean initial weight individuals: 14.2 g ± 0.2 SEM) were reared at constant 9, 12 and 15°C or shifted (T-step, i.e. 15–12°C after 36 days) for 99 days. Despite indications of lower optimal temperature for growth with increasing size, equal end weights were obtained between the constant 12°C, constant 15°C and T-step groups. Best overall growth was observed for the group kept at constant 12°C. The limited effect of the T-step group may relate to the size at movement (too big), the temperatures investigated (close to optimum) and the time and size interval investigated (too narrow). Differences in growth were reflected more by alterations in feed intake (C T and F%) than by differences in feed conversion efficiencies (FCE). Differences were found with respect to the density of muscle cells, whereas no differences were found between the average muscle cell diameters. The mean diameter of muscle cells tended to increase only slightly with increasing fish weight, while the mean density of muscle cells tended to decrease. Using an optimum temperature of 12°C, an indication of a possible increased rate of hyperplasia in relation to higher growth was seen.  相似文献   

20.
Like all poikilotherms, the growth and reproduction of blue crab, Callinectes sapidus depends on temperature and season. Warmer water temperatures in the Chesapeake Bay allow for ovarian development and spawning, while colder water temperatures slow their metabolism and reproduction. The current study aimed to identify optimal environmental conditions for inducing reproduction in animals held in long‐term captivity for year round production in aquaculture through environmental manipulations. Temperature and photoperiod were the main environmental factors tested for 25 weeks: 11°C and 21°C, with the following photoperiods: 0L:24D, 8L:16D, 16L:8D and 24L:0D. At 21°C, the females increased spawning frequency, which was arrested at 11°C. Shorter light exposure at 21°C increased spawning frequency, while constant light inhibited and did not produce spawning. Constant dark (0L:24D) at 21°C produced the most (86%) spawns, but yielded poor larval quality. At 21°C with all photoperiod conditions except constant light, the first spawning took 94.8 ± 32.4 days to occur (n = 17). With females producing multiple spawns, the intervals between the first and second spawns and the second and third spawns were 37.7 ± 8.7 days (n = 6) and 31.0 ± 7.1 days (n = 2) respectively. Analysis of our data using response surface methodology (RSM) predicts the following conditions: at 15–19°C and 0–10 hr darkness for maximal survival and at 19–22°C and 0–8 hr darkness for spawning. The number of larvae produced was positively correlated with size (weight) of the female C. sapidus, suggesting the importance of female size in reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号