首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 29 毫秒
1.
不同样点数量对土壤有机质空间变异表达的影响   总被引:4,自引:1,他引:4  
以南京市六合区为研究区,通过完全随机和限制最小采样间距抽样分别设置5个样点系列,基于每个样点系列100次重复抽样的变异结构推断及空间预测误差结果,探讨了不同样点数量对土壤有机质(SOM)空间变异表达的影响。结果表明,两种抽样方式降低样点数量后推断的SOM含量的块金效应(C0/C0+C)均随样点数量减少而降低且限制最小采样间距抽样推断的C0/C0+C要低于完全随机抽样方法,说明适当的减少样点数量以便降低与SOM变异尺度不匹配的样点对变异结构推断的影响有助于提高SOM空间变异结构表达的可靠性。普通Kriging预测的SOM误差对比则表明,尽管两种抽样方式下空间预测的均方根误差(RMSE)随样点数量变化而波动,但均低于全部样点的预测误差;通过限制最小采样间距减少样点至250个时,SOM空间预测的RMSE最低,较全部样点预测误差降低了6%,因此,为了实现样点密度与SOM变异尺度相匹配,合理设置土壤采样点的间距及样点数量较单纯的增加采样点数量更为重要。  相似文献   

2.
不同布点密度条件下土壤有机碳的空间变异特性   总被引:1,自引:0,他引:1  
选择福建省漳州市三个不同尺度的典型区,在格网法采样的基础上设计6种不同分类方法和4种格网密度,研究不同尺度下高效表征耕地土壤有机碳空间变异的样点布设方式。研究结果表明:市级尺度(漳州市)高效的样点布设方法为结合地貌类型和土壤类型信息的分类格网法,样点密度以接近6 km×6 km为最节省的采样方法。县级(龙海市)尺度按土壤类型与格网法相结合的方法是高效的布点方式,土壤类型若仅划分到土类,格网密度需接近1 km×1 km;若土壤类型划分到亚类或土属,格网密度可放宽到2 km×2 km。乡镇级(程溪镇)最适合的样点布设方法是未分类格网法。由于土壤类型信息是表征土壤有机碳空间变异最重要的影响因素,因此建议在县级以上尺度进行土壤有机碳空间变异研究时应考虑到土壤类型的影响。  相似文献   

3.
针对土壤精细化管理体系中合理样点数及空间预测优化问题,本文将基于土壤-地形关系,探讨了不同采样方式下以局部样点数量为代表提供最优数据的可能性。以地统计学、土壤-地形关系、地理加权回归克里格(GWRK)模型为基础,经系统格网、地形单元分区和地形起伏度最佳统计单元等三种采样方式分析合理样点集的空间分布对土壤有机质空间预测精度的影响。结果表明:(1)确定地形起伏度最佳统计单元大小为10 × 10像元,且平原区样点分布最为密集,合理样点数为1656;(2)高程、坡向、地形位置指数、相对位置指数、地形起伏度是影响土壤有机质空间变异的主要因素,能够解释研究区内有机质含量空间变异的69.2%;(3)GWRK模型精度均比普通克里金插值(OK)精度高,且山脊、背坡、陡坡、坡脚等坡位内合理样点数分别为39、481、9、28。在样点数最多时(n = 2806),GWRK精度提高幅度及样点数量对预测结果影响有限。当样点数量减少时,有机质预测值空间分布的局部变异性随样点数减少而减少。因此,不同采样方式下合理样点集明显影响有机质预测精度,但预测结果分布趋势相似,仍可完整表征土壤有机质空间分布的空间格局。  相似文献   

4.
巫振富  赵彦锋  程道全  陈杰 《土壤学报》2019,56(6):1321-1335
明确样点数量和空间分布对土壤属性空间预测的影响,有助于科学制定土壤采样策略、有效提高土壤空间预测精度。从5 403个土壤样点中随机抽取验证数据集以及包含不同样点数量的训练数据子集(每个子集包括五种样点空间分布实例),在研究区表层土壤有机质含量普通克里格(Ordinary Kriging,OK)和反距离加权(InverseDistanceWeighted,IDW)插值结果的基础上,分析和探讨样点数量与空间分布对土壤空间预测效果的影响。结果显示,当样点数量从5000降至39个时,OK和IDW插值图的局部变异信息逐渐减少,基于20和10个样点的插值图存在失真畸变。当样点数量从5 000降至1 250个时,OK插值精度相近(r变幅为0.55~0.59、RMSE变幅为3.03~3.15);从样点数量减少至625个开始,OK插值精度明显下降,同一训练子集不同样点空间分布的插值精度分异明显。IDW插值精度随样点数量与空间分布的变化与OK插值相似,不同的是从1 875个样点开始出现插值精度的明显下降和不同空间分布插值精度的明显分异。在插值图发生失真畸变之前,OK平均插值精度大于IDW。研究结果表明,样点数量及空间分布均可在不同程度上影响土壤属性空间预测结果,当样点数量足够多时,样点数量和空间分布对预测结果的影响非常有限;当样点数量减少至一定程度时,随着样点数量的减少,空间预测图的局部变异信息逐渐减少,预测精度逐渐下降,同时样点空间分布对预测结果的影响开始凸显;在空间预测结果发生失真畸变之前,与OK相比,IDW插值精度较低且更早响应样点数量和空间分布的变化。  相似文献   

5.
如何利用有限的样本数据来获得更为准确的土壤属性空间分布信息是土壤学研究的热点问题之一。利用福建省龙海市采集的1 133个耕地土壤样品,设计了结合地貌类型、土壤类型和土地利用类型等信息的5种克里格插值模型,研究县级尺度上土壤有机碳空间预测优化插值模型及其与样点密度的关系。结果表明:设计的5种插值模型预测精度均高于普通克里格法,但不同样点密度对插值结果影响较大。按0.5 km×0.5 km及以上的格网密度进行样点布设,采用土地利用现状类型结合土壤类型信息的普通克里格法(KDLTR)插值结果误差较小;按2 km×2 km的格网密度布设调查样点时,采用土壤类型信息的普通克里格法(KTR)插值结果误差较小;当格网大于4 km×4 km时,由于样点数少,各种模型的结果相差不大,可直接采用普通克里格法(KYJZ)进行插值。  相似文献   

6.
不同取样方式下土壤质地空间插值的精度分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究土壤质地的合理取样方式,进而研究其空间变异情况,为田间施肥及灌溉提供依据,本试验利用地统计学方法和GIS技术,在重庆市彭水县重庆烟草试验站,利用289个表层土样,研究了16 m间距的栅格取样法(对照,253个土样,扣除36个验证样点)、34 m间距的栅格取样法(115个土样)和随机取样法(115个土样)3种取样方式下土壤质地的空间插值精度。3种土壤颗粒指标中粉粒占68.43%,砂粒含量最少,占12.68%,黏粒含量略高于砂粒。砂粒和黏粒具有中等强度的变异性,粉粒具弱变异性,且数据符合正态分布。地统计分析显示,在分析该区域土壤质地时,采用栅格取样方法应适当增大取样间距,而采用随机取样方法可适当缩小取样间距。交叉检验显示,土壤质地成分在3种取样方式下的插值精度均以对照最大,栅格取样次之,随机取样最小。综合考虑插值误差、样品采集和分析成本及时效性等因素,本研究建议在该区域进行土壤质地空间变异规律分析为生产服务时应采用随机取样。  相似文献   

7.
采样尺度对土壤养分空间变异分析的影响   总被引:12,自引:2,他引:10  
以高密度土壤养分采样数据为数据源,通过随机抽取生成不同采样尺度的样点数据,分析采样尺度对土壤养分空间变异特征分析的影响。研究结果表明:区域土壤养分预测均值随采样尺度减小呈下降趋势,而变异系数增加;养分空间分布的全局趋势随采样尺度增大而增强,但不影响半方差模型;当采样尺度较大,样点间自相关较弱时,相对较少的样点也能满足区域统计参数估测分析需要,但不能用于空间变异特征和插值分析;当样点数大于最佳采样数时,养分统计参数、空间变异特征和插值分析随着采样尺度减小而精度提高,当采样尺度达到0.2左右时,能够满足中等空间变异的土壤养分空间插值分析需要;样点空间布局对相关距和空间插值分析精度的影响比采样尺度本身更为显著。  相似文献   

8.
土壤有机碳(SOC)空间分布具有时序差异性,明确样点数量对不同时期SOC预测精度影响是制定高效采样策略的基础。选取3.93×10~4 km~2江苏北部旱地作为案例区,运用普通克里金插值方法,分析样点数量对不同时期SOC空间预测精度的影响。结果表明:不同数量样点数据集下1980年苏北旱地SOC预测值与实测值的相关系数r和均方根误差RMSE变幅分别在0.15~0.56和2.09~2.63 g·kg~(–1)之间,当样点数量大于75%时,预测精度较高且能达到相对稳定水平,最佳采样数目在563个左右;而2008年r和RMSE变幅分别在0.24~0.63和2.11~2.62 g·kg~(–1)之间,预测精度对于样点数量的变化更为敏感,70%的样点数量即可达到相对稳定水平,最佳采样数目在526个左右,这表明不同时期SOC空间预测精度对于样点数量变化的响应不同,土壤属性的空间自相关性越大,预测精度对于采样数量的敏感性越强,空间信息达到饱和状态所需样点数量也相对较少;此外,本研究也发现在SOC高、低值等关键区域设置足够的样点数量是提高土壤空间预测效果的重要手段之一。  相似文献   

9.
孙益权  张忠启  于东升  茆彭 《土壤》2018,50(4):787-794
基于余江县中部地区土壤密集采样点,通过重采样获得4个集聚度样点分布等级,每个等级取5个重复,其分布VMR均值(样方分析中的样点数变差–均值比)分别为0.13、0.83、1.49和2.16,利用普通克里金(OK)和结合土地利用信息的克里金(KLU)方法对土壤全氮(STN)含量进行空间预测,并通过验证样点比较了4种集聚度采样点的STN空间预测精度,以揭示土壤采样点集聚度对STN空间预测精度的影响。研究结果表明:通过两预测方法得到的验证点实测值与预测值散点图的相关系数(r)均随采样点集聚度的增加而降低,其中OK方法的r值由0.400降低至0.142,KLU方法的r值由0.718降低至0.542;两方法的预测平均绝对误差(MAE)和均方根误差(RMSE)随着集聚度的增加均呈现增加趋势,OK和KLU方法的MAE分别又由0.49和0.33增加至0.61和0.44,RMSE则分别由0.56和0.39增加到0.65和0.47。表明在土壤采样点数量相同的前提下,采样点的空间集聚度越低,即样点分布越均匀,克里金方法的预测精度越高,这说明对STN进行空间预测时,基于规则网格的采样点更有利于克里金方法的空间估算;同时,采样点空间集聚度对不同克里金方法预测精度的影响也存在差异,对KLU方法的影响大于OK方法。  相似文献   

10.
农田表层土壤养分空间变异特性研究   总被引:5,自引:1,他引:4  
为给田间养分监测设施布设方法提供依据,在陕西杨凌选取2块农田,采用12 m×12 m嵌套6 m×6 m的采样方法,采集表层土壤(0~20 cm)养分数据,运用经典统计、地统计学结合Kriging插值方法,分析农田土壤养分空间变异特征。结果表明:冬小麦抽穗期与成熟期农田表层土壤全氮(TN)变异系数10%,为弱变异,土壤有机质(SOM)、有效磷(AP)变异系数介于10%与100%之间,为中等变异,有效钾(AK)和铵态氮(NH_4~+-N)变异系数100%,为强变异,成熟期硝态氮(NO_3~--N)由强变异转为中等变异。土壤养分最优半方差模型为球状模型,作物不同生育阶段,土壤养分空间相关性存在一定的差异,土壤SOM、TN块金系数25%,空间相关性强烈,以结构性因素为主导;冬小麦抽穗期速效态养分块金系数介于25%与75%之间,空间相关性中等,随机性因素主导,成熟期25%,空间相关性增强。采样密度由6 m×6 m变为12 m×12 m时,变异程度保持不变,土壤养分空间变异系数差值在0.04%~59.48%范围内,成熟期2号样地的AK除外,块金系数差值在0.065%~34.177%范围内,2种采样间距获得的土壤养分空间变异特征基本一致,建议选用12 m×12 m网格。  相似文献   

11.
基于方差四叉树法的滨海盐土电导率采样布局研究   总被引:3,自引:0,他引:3  
史舟  李艳  金辉明 《土壤学报》2007,44(2):294-299
利用土壤空间变异特性和空间分布特征进行采样设计是当前土壤采样研究的重要内容。采用方差四叉树法(Variance quad-tree method,简称VQT),结合半方差函数,设计滨海盐土采样的最优布局。并利用普通克立格法对传统网格采样法与方差四叉树采样法所得到的不同的样点数目进行插值,计算估值误差并进行精度比较。结果发现,同样的样本数目,利用方差四叉树法得到的克立格估值误差明显地较利用网格采样法得到的克立格估值误差小,其采样效率提高约16%一25%。该方法的优势在于,可设计在土壤特性变异大的区域密集采样而在变异较小的区域稀疏地采样,从而在有效表达土壤空间变异性的同时,提高了采样效率,减少了采样成本。  相似文献   

12.
空间插值方法的差异以及采样数量不同对土壤质量评价空间分布的预测精度会产生影响。本文通过随机抽样的方法,以山东省禹城市的土壤质量指数为例,从359个土壤采样点中抽取了340,170,90,50,30五个样本子集,通过普通克里格、简单克里格、反距离加权法和样条函数法4种插值方法,分别对其空间变异和布局进行了解析和预测。结果表明:不同插值方法对预测精度影响不显著,而采样点数量则显著影响了土壤质量指数空间分布预测的精度。本文提出在华北平原县域尺度上,以土壤质量评价作为调查目的的土壤采样中,90个样点是比较适宜的采样数量。同时,将我们的结果与Cochran最佳采样数量计算公式获取的最佳采样量比较后发现,Cochran方法获取的最佳采样数量明显偏低,若不考虑实际的空间变异情况,仅仅使用Cochran公式可能会导致土壤质量空间预测不准确。  相似文献   

13.
黄土高原退耕坡地土壤水分空间变异的尺度性研究   总被引:53,自引:11,他引:42  
在面积60 m×60 m的坡地上采用2 m×2 m的网格进行高密度土壤水分测定,通过改变采样幅度和采样间距的“再采样”方法,选取变异系数、相关距离和Moran的I相关指数3个参数作为表征空间变异大小的指标,研究了尺度大小对土壤水分空间变异的影响。研究结果表明,随着采样幅度尺度在一定范围内的增大,土壤水分变异的特征参数如变异系数、相关距离和Moran的I相关指数都呈不同程度地增大;当采样间距增大时,变异系数和Moran的I相关指数没有变化,而相关距离却减小。  相似文献   

14.
15.
表层土壤水分含量和饱和导水率对深层土壤水分的动态的变化具有重要的决定作用。在黄土高原坡地(50m×360 m)范围内进行网格(10 m×10 m)取样,用地统计学方法研究表层(0~30 cm)土壤饱和导水率和水分含量的空间变异特征。结果表明:1)坡地表层土壤密度变化规律为坡下位大于坡上位,土壤饱和导水率变异系数为0.37,属于中等变异强度;2)饱和导水率和自然对数化的饱和导水率在360 m尺度内均不具备空间结构特征,是纯随机变量,线性有基台模型适用于描述表层土壤水分的分布特征,水分分布存在明显的块金效应,并且随滞后距离的增加半方差变大;3)饱和导水率和水分含量从坡上位到坡下位均呈现波浪式变化,饱和导水率大的采样点土壤水分含量低,反之则高。  相似文献   

16.
应用土壤质地预测干旱区葡萄园土壤饱和导水率空间分布   总被引:7,自引:4,他引:3  
田间表层土壤饱和导水率的空间变异性是影响灌溉水分入渗和土壤水分再分布的主要因素之一,研究土壤饱和导水率的空间变化规律,有助于定量估计土壤水分的空间分布和设计农田的精准灌溉管理制度。为了探究应用其他土壤性质如质地、容重、有机质预测土壤饱和导水率空间分布的可行性,试验在7.6 hm2的葡萄园内,采用均匀网格25 m×25 m与随机取样相结合的方式,测定了表层(0~10 cm)土壤饱和导水率、粘粒、粉粒、砂粒、容重和有机质含量,借助经典统计学和地统计学,分析了表层土壤饱和导水率的空间分布规律、与土壤属性的空间相关性,并对普通克里格法、回归法和回归克里格法预测土壤饱和导水率空间分布的结果进行了对比。结果表明:1)土壤饱和导水率具有较强的变异性,平均值为1.64 cm/d,变异系数为1.17;2)表层土壤饱和导水率60%的空间变化是由随机性或小于取样尺度的空间变异造成;3)土壤饱和导水率与粘粒、粉粒、砂粒和有机质含量具有一定空间相关性,而与土壤容重几乎没有空间相关性;4)在中值区以土壤属性辅助的回归克里格法对土壤饱和导水率的预测精度较好,在低值和高值区其与普通克里格法表现类似。研究结果将为更好地描述土壤饱和导水率空间变异结构及更准确地预测其空间分布提供参考。  相似文献   

17.
ABSTRACT

Spatial interpolation methods are frequently used to characterize soil attributes’ spatial variability. However, inconclusive results, about the comparative performance of these methods, have been reported in the literature. Therefore, the present study aimed to analyze the efficiency of ordinary kriging (OK) and inverse distance weighting (IDW) methods in estimating the soil penetration resistance (SPR), soil bulk density (SBD), and soil moisture content (SM) using two distinct sampling grids. The soil sampling was performed on a 5.7 ha area in Southeast Brazil. For data collection, a regular grid with 145 points (20 x 20 m) was created. Soil samples were taken at a 0.20 m layer depth. In order to compare the accuracy of OK and IDW, another grid was created from the initial grid (A), by eliminating one interspersed line, which resulted in a grid with 41 sampled points (40 x 40 m). Results showed that sampling grid A presented less errors than B, proving that the more sampling points, the lower the errors that are associated with both methods will be. Overall, the OK was less biased than IDW only for SBD (A) and SM (B) maps, whereas IDW outperformed OK for the other attributes for both sampling grids.  相似文献   

18.
An extensive knowledge of how sampling density affects soil organic C (SOC) estimation at regional scale is imperative to reduce uncertainty to a meaningful confidence level and aid in the development of sampling schemes that are both rational and economical. Using kriging prediction, this paper examined the effect of sampling density on regional SOC‐concentration estimations in cultivated topsoils at six scales in a 990 km2 area of Yucheng County, a typical region in the N China Plain. Except the original data set (n = 394), five other sampling densities were recalculated using grids of 8 km × 8 km (n = 28), 8 km × 4 km (n = 44), 4 km × 4 km (n = 82), 4 km × 2 km (n = 142), and 2 km × 2 km (n = 257), respectively. Experimental SOC semivariances and kriging interpolations at six sampling density scales were calculated and modeled to estimate regional SOC variability. Accuracy of the effects of the five sampling densities on regional SOC estimations was assessed using the indices of mean error (ME) and root mean square error (RMSE) with 100 independent validation samples. By comparison with the kriged grid map derived from the 394 samples data set, the relative error (RE,%) was spatially calculated to highlight the spatial variability of prediction errors at five sampling‐density scales due to the intrinsic limitations of ME and RMSE in accuracy assessment. The results indicated that sampling density significantly affected the estimation of regional SOC concentration. Particularly when the sampling density was < 4 km × 4 km, the large spatial variation of SOC was concealed. Semivariance analysis indicated that different sampling density had significant effect on reasonable detection of the dominant factors which influenced SOC spatial variation. Greater sampling density could more exactly reveal regional SOC variation caused by human management. The prediction accuracy for regional SOC estimation increased with the increasing of sampling density. The critical areas with larger RE values should be intensified in the future sampling scheme, and the areas of lower RE values should be decreased relatively. A specific sampling scheme should be considered in accordance with the demand to the estimation accuracy of regional SOC stock at a certain confidence level. Our results will facilitate a better understanding of the effect of sampling density on regional SOC estimation for future sampling schemes by providing meaningful confidence levels.  相似文献   

19.
Sampling plays an important role in acquiring precise soil information required in modern agricultural production worldwide, which determines both the cost and quality of final soil mapping products. For sampling design, it has been proposed possibile to transfer the relationships between kriging variance and sampling grid spacing from an area with existing information to other areas with similar soil-forming environments. However, this approach is challenged in practice because of two problems:i) different population variograms among similar areas and ii) sampling errors in estimated variograms. This study evaluated the effects of these two problems on the transferability of the relationships between kriging variance and sampling grid spacing, by using spatial data simulated with three variograms and soil samples collected from four grasslands in Ireland with similar soil-forming environments. Results showed that the variograms suggested by different samples collected with the same grid spacing in the same or similar areas were different, leading to a range of mean kriging variance (MKV) for each grid spacing. With increasing grid spacing, the variation of MKV for a specific grid spacing increased and deviated more from the MKV generated using the population variograms. As a result, the spatial transferability of the relationships between kriging variance and grid spacing for sampling design was limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号