首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of the CHIP project was to perform ‘standardised’ investigations of potato (Solanum tuberosum L. cv Bintje) responses to increased O3 and CO2 concentrations by means of open-top chambers (OTC) and free air carbon dioxide enrichment (FACE) systems. The experimental sites are located across Europe representing a broad range of different climatic conditions. In 1998 and 1999 a total number of 12 OTC experiments and four FACE experiments were conducted. According to the specific needs for subsequent modelling purposes, environmental data were collected during experiments, i.e. air temperature, global radiation, air humidity (vapour pressure deficit (VPD)), soil moisture and trace gas concentrations. In the present paper, the results of these measurements are summarised. It was shown that the experiments covered a considerable range of growing season mean air temperatures (13.8–19.9 °C) and global irradiances (12.0–21.3 MJ m−2 per day), the most important driving variables for crop growth simulation models. Analysis of the soils used during the experiments demonstrated that in most cases sufficient nutrient elements were available to guarantee an undisturbed growth. Mean concentrations of CO2 and O3 in ambient air and in different treatments illustrate the observed variability of trace gas exposures between different sites and experiments. However, the effects of these parameters on growth and yield are subject of separate papers. The general climatic conditions across Europe are also causing important growth and yield effects. Comparison of marketable tuber yields revealed an increase at higher latitudes. This result was associated with lower temperatures and VPD and longer day lengths at the higher latitudes, which in turn were associated with longer growing seasons.  相似文献   

2.
Potato cv. Bintje was grown in open-top-chambers and free-air-CO2-enrichment systems at 7 sites across Europe for 2 years (1998–99). The effect of different treatments (CO2 enrichment and O3 fumigation) on the chlorophyll content of fully expanded upper and lower canopy leaves was investigated collecting Minolta SPAD-502 meter readings. In both CO2 treated and O3 fumigated plants, leaves had lower chlorophyll content than those in ambient air controls; season-long chlorophyll averages were 9.3% lower in the ‘CO2’ treatments, 9.1% lower in ‘O3’ treatments and 12.3% lower in ‘CO2+O3’ treatments. The analysis of chlorophyll content in three different growth phases (Emergence–Tuber Initiation; Tuber Initiation–Maximum Leaf Area; Maximum Leaf Area–Harvest) showed that in the early growth period, i.e. before tuber initiation there was a slight indication for an higher chlorophyll content at elevated CO2 (+3.8%) or O3 (+1.7%). However, from tuber initiation onwards the leaves of plants grown under elevated CO2 or O3 showed a progressively lower chlorophyll content (−4.8% for CO2 treatments and −2.6% for O3 treatments) indicating a faster senescence of leaves that increased during the late growth period (−12.8% for CO2 treatments and −12.7% for O3 treatments) and that was enhanced by CO2–O3 interaction (−17.8%).  相似文献   

3.
Spring wheat cv. Minaret crop stands were grown under ambient and elevated CO2 concentrations at seven sites in Germany, Ireland, the UK, Belgium and the Netherlands. Six of the sites used open-top chambers and one used a controlled environment mimicking field conditions. The effect of elevated CO2 for a range of N application regimes, O3 concentrations, and growth temperatures on flag leaf photosynthesis was studied. Before anthesis, flag leaf photosynthesis was stimulated about 50% by 650 compared with 350 μmol mol−1 CO2 at all sites, regardless of other treatments. Furthermore, there was no evidence of a decrease in photosynthetic capacity of flag leaves due to growth at elevated CO2 before anthesis, even for low N treatments. However, photosynthetic capacity, particularly carboxylation capacity, of flag leaves was usually decreased by growth at elevated CO2 after anthesis, especially in low N treatments. Acclimation of photosynthesis to elevated CO2 therefore appears to occur only slowly, consistent with a response to changes in sink–source relationships, rather than a direct response. Effect of elevated CO2 on stomatal conductance was much more variable between sites and treatments, but on average was decreased by ˜10% at 650 compared with 350 μmol mol−1 CO2. Carboxylation capacity of flag leaves was decreased by growth at elevated O3 both before and after anthesis, regardless of CO2 concentration.  相似文献   

4.
Spring wheat cv. Minaret was grown in open-top chambers at four sites across Europe. The effect of different treatments (CO2 enrichment, O3 fumigation, drought stress and temperature) on the chlorophyll content of the flag leaf was investigated using the MINOLTA SPAD-502 meter. Under optimum growth conditions the maximum chlorophyll content, which was reached at anthesis, was consistent among the sites ranging from 460 to 500 mg chlorophyll m−2. No significant effect of elevated CO2 or O3 was observed at anthesis. Leaf senescence, indicated by the chlorophyll breakdown after anthesis, was relatively constant in the control chambers. Under control conditions, thermal time until 50% chlorophyll loss was reached was 600°C day. Elevated CO2 caused a faster decline in chlorophyll content (thermal time until 50% chlorophyll loss was reduced to 500–580°C day) indicating a faster rate of plant development at two experimental sites. The effect of ozone on chlorophyll content depended on the time and dose of O3 exposure. During grain filling, high O3 concentrations induced premature senescence of the flag leaves (up to −130°C day). This deleterious effect was mitigated by elevated CO2. Drought stress led to faster chlorophyll breakdown irrespective of CO2 treatment.  相似文献   

5.
One of the major goals of the European Stress Physiology and Climate Experiment (ESPACE-wheat) was to investigate the sensitivity of wheat growth and productivity to the combined effects of changes in CO2 concentration, ozone and other physiological stresses. Experiments were performed at different sites throughout Europe, over three consecutive growing-seasons using open-top chambers. This paper summarizes the main experimental findings of the effects of CO2 enrichment and other factors i.e. ozone (O3), drought stress or nitrogen supply on the biomass and yield of spring wheat (Triticum aestivum cv. Minaret). Final harvest data from different sites and seasons were statistically analysed: (1) to identify main effects and interactions between experimentally controlled factors; and (2) to evaluate quantitative relationships between environmental variables and biological responses. Generally, ‘Minaret’ wheat did not respond significantly to O3, suggesting that this cultivar is relatively tolerant to the O3 levels applied. The main effect of CO2 was a significant enhancement of grain yield and above-ground biomass in almost all experiments. Significant interactions between CO2 and other factors were not common, although modifications in different N- and water supplies also led to significant effects on grain yield and biomass. In addition, climatic factors (in particular: mean air temperature and global radiation) were identified as important co-variables affecting grain yield or biomass, repectively. On average, the yield increase as a result of a doubling of [CO2] was 35% compared with that observed at ambient CO2 concentrations. However, linear regressions of grain yield or above-ground biomass for individual experiments revealed a large variability in the quantitative responses of ‘Minaret’ wheat to CO2 enrichment (yield increase ranging from 11 to 121%). Hence, CO2 responsiveness was shown to differ considerably when the same cultivar of wheat was grown at different European locations. Multiple regression analyses perfomed to evaluate the relative importance of the measured environmental parameters on grain yield indicated that although yield was significantly related to five independent variables (24 h mean CO2 concentration, 12 h mean O3 concentration, temperature, radiation, and drought stress), a large proportion of the observed variability remained unexplained.  相似文献   

6.
This paper describes the effects of elevated CO2 (550 and 680 μl l−1) and O3 (60 nl l−1 O3 as an 8 h mean), alone or in combination, on canopy development and senescence in potato (Solanum tuberosum L. cv Bintje) across a range of European agro-climatic conditions. The assessments were made within the European CHIP project (CHanging climate and potential Impacts on Potato yield and quality) that was conducted for two growing seasons (1998 and 1999) in free air CO2 enrichment systems (FACE) and open-top chamber facilities (OTCs) at seven European sites. A comparison of chambered and unchambered experimental plots was included to examine the effects of chamber enclosure. Phenological growth stages, plant height, leaf area index (LAI) and the number of green and yellow leaves were recorded non-destructively throughout the growing season and by a destructive intermediate harvest at maximum leaf area (MLA). In the dynamic growth analysis CO2 and O3 effects were studied over three developmental stages: canopy expansion, full canopy and canopy senescence. Chamber enclosures promoted potato crop development (taller plants, more leaves) during the initial growth stages and led to a faster decline of LAI and a higher number of yellow leaves. The growth in ambient plots varied between sites and seasons, as did the scale of the treatment responses. Despite the large background variation, some overall treatment effects could be detected across all sites. Both levels of increased CO2 reduced final plant height in comparison to ambient concentrations, which indicates a premature ending of the active plant growth. At the stage of full canopy and crop senescence the average number of green leaves was significantly (P<0.05) decreased by 680 μl l−1 CO2 (OTC experiments) and LAI showed the same tendency (P=0.07). As there was however no indication of a decreased leaf formation during initial growth and at full canopy, this must have been due to an earlier leaf fall. In the FACE experiments LAI had already began to decline at the stage of full canopy at 550 μl l−1 CO2 but not in ambient CO2 (DAE×CO2, P<0.05). These observations strongly indicated that elevated CO2 induced a premature senescence during full canopy. O3 did not have an overall detrimental effect on crop development during initial growth nor at full canopy, but did induce a faster reduction of LAI during crop senescence (DAE×O3, P<0.05). Final plant height was not affected by O3. There were few CO2×O3 interactions detected. There was a suggestion (P=0.06) that O3 counteracted the CO2-induced decrease of green leaves at full canopy, but on the other hand during crop senescence the decline of LAI due to elevated O3 was faster at ambient compared to elevated CO2 (P<0.05). These responses of canopy development to elevated CO2 and O3 help to explain the treatment responses of potato yield within the CHIP project at sites across Europe.  相似文献   

7.
The physiological effects of elevated CO2 and/or O3 on Solanum tuberosum cv. Bintje were examined in Open-Top Chambers during 1998 and 1999 at experimental sites across Europe as part of the EU ‘Changing Climate and Potential Impacts on Potato Yield and Quality’ programme (CHIP). At tuber initiation (≈20 days after emergence, DAE) elevated CO2 (680 μl l−1) induced a 40% increase in the light saturated photosynthetic rate (Asat) of fully expanded leaves in the upper canopy. This was 16% less than expected from short-term exposures of plants grown under ambient CO2 (360 μl l−1) to elevated CO2, indicating that photosynthetic acclimation began at an early stage of crop growth. This effect resulted from a combination of a 12% reduction in stomatal conductance (gs) and a decline in photosynthetic capacity, as indicated by the significant reductions in the maximum carboxylation rate of Rubisco (Vcmax) and light-saturated rate of electron transport (Jmax) under elevated CO2. The seasonal decline in the promotion of photosynthesis by elevated CO2 reflected the concurrent decrease in gs. Vcmax and Jmax were both reduced in plants grown under elevated CO2 until shortly after maximum leaf area (MLA) was attained. Although non-photorespiratory mitochondrial respiration in the light (Rd) increased during the later stages of the season, net photosynthesis was consistently increased by elevated CO2 during the main part of the season. Photosynthetic rate declined more rapidly in response to elevated O3 under ambient CO2, and the detrimental impact of O3 was most obvious after MLA was attained (DAE 40–50). Several exposure indices were compared, with the objective of determining the critical ozone level required to induce physiological effects. The critical O3 exposure above which a 5% reduction in light saturated photosynthetic rate may be expected (expressed in terms of cumulative exposure above 0 nl l−1 O3 between emergence and specific dates during the season (AOT0-cum)) was 11 μl l−1 h; however this value should only be extrapolated beyond the CHIP dataset with caution. The interaction between O3 and stomatal behaviour was more complex, as it was influenced by both long-term and daily exposure levels. Elevated CO2 counteracted the adverse effect of O3 on photosynthesis, perhaps because the observed reduction in stomatal conductance decreased O3 fluxes into the leaves. The results are discussed in the context of nitrogen deficiency, carbohydrate accumulation and yield.  相似文献   

8.
Potato (Solanum tuberosum L cv. Bintje) was exposed to ambient and elevated carbon dioxide (CO2), to ambient and elevated ozone (O3) and to elevated levels of both gases during two growing seasons, 1998 and 1999. Experiments in open-top chambers (OTC) were carried out in Finland, Sweden, Ireland, United Kingdom, Germany and Belgium and a FACE (Free Air Carbon dioxide Enrichment) experiment was carried out in Italy. In OTCs the plants were grown under ambient CO2 concentrations or with 550 and 680 μl l−1 CO2 alone or in combination with ambient or elevated O3 concentrations (target seasonal mean of 60 nl l−1 8 h per day). In the FACE systems the plants were exposed to ambient or 550 μl l−1 CO2. In the OTC experiments the reducing sugar content of potato tubers decreased significantly with increased concentration of O3. The starch content of potato tubers decreased, with negative impact on tuber quality, but the ascorbic acid concentration increased as a function of the AOT40 (The sum of the differences between hourly ozone concentration and 40 nl l−1 for each hour when the concentration exceeds 40 nl l−1 during a relevant growing season). However, simultaneous exposure to elevated CO2 counteracted the ozone effect. With increase in the CO2 exposure, glycoalkaloid and nitrate concentrations decreased yielding improved quality, while the citric acid concentration decreased causing a higher risk for discoloration after cooking. The amount of dry matter and starch increased significantly in the FACE experiment.  相似文献   

9.
The response of cabbage to controlled atmospheres (CA) of 1–3% O2 and 1–10% CO2; 3% O2 and 5% CO2 was studied in relation to the incidence of physiological and pathological disorders. Fungal infections, pepper spot, low oxygen injury, weight loss, colour, odour, flavour and ethanol were evaluated. The findings show that CA did not reduce Botrytis cinerea rot in comparison to low temperature storage in air. PVC film and CA, on the other hand, reduced pepper spot by over 50% with respect to the air control. In particular, pepper spot was eliminated by high CO2 (10%) levels. Low O2 (1% O2 and 1% CO2) atmospheres caused 33 and 50% injury respectively after 89 and 109 days of storage. CA and PVC film reduced weight loss to 1%, as compared with 11% in the heads in air, which had shrivelled. The combination of 3% O2/5% CO2 and PVC film delayed yellowing with respect to air control. Concentrations of 1–3% O2 and 10% CO2 resulted in off odours and flavours after 74 days of storage. This result was confirmed by a considerable increase in ethanol concentrations. The most effective concentration tested was 3%O2/5%CO2 although, in general, infection by B. cinerea limited the storage life.  相似文献   

10.
Central to the CHanging climate and potential Impacts on Potato yield and quality project (CHIP) was the consideration of the potential impacts of ozone and CO2 on growth and yield of future European Potato crops. Potato crops, cv. Bintje, were exposed to ambient or elevated ozone; targeted daily average, 60 nl l−1 for 8 h, and ambient or elevated CO2; targeted 680 μl l−1 averaged over the full growing season, in open top chambers (OTCs) at six European sites in 1998 and 1999, or to elevated CO2 (550 μl l−1) in Free Air Carbon dioxide Enrichment facilities (FACE) at two sites in both years. Some OTC experiments included 550 μl l−1. Above and below ground biomass were measured at two destructive harvests; at maximum leaf area (MLA) and at final-harvest. Final-harvest fresh weight yields of marketable-size tubers, >35 mm diameter, from ambient conditions ranged from 1 to 12 kg m−2. There was no consistent (P>0.1) CO2×O3 interaction for growth or yield variables at either harvest. No consistent effects of ozone were detected at the maximum-leaf-area harvest. However, at final harvest, ozone had reduced both above-ground biomass and tuber dry weight (P<0.05), particularly of the largest (>50 mm) size class. These yield losses showed linear relationships both with accumulated ozone exposure; AOT40 expressed as nl l−1 h over 40 nl l−1, and with yields from chambered ambient-ozone treatments (P<0.05) but, because of partial confounding between the treatment AOT40s and the ambient-ozone yields in the data, the two relationships were not completely independent. Yields from ambient-ozone treatments, however, explained a significant (P<0.01) amount of the residual variation in ozone effects unexplained by AOT40. When averaged over all experiments, mean dry weights and tuber numbers from both harvests were increased by elevated CO2. Only green leaf number at the MLA harvest was reduced. The CO2 responses varied between sites and years. For marketable-size tubers, this variation was unrelated to variation in ambient-CO2 treatment yields. Yield increases resulting from the 680 μl l−1 and 550 μl l−1 treatments were similar. Thus elevating [CO2] from 550 to 680 μl l−1 was less effective than elevating [CO2] from ambient to 550 μl l−1. On average, CO2 elevation to 680 μl l−1 increased the dry weight of marketable-size tubers by about 17%, which far exceeded the average ozone-induced yield loss of about 5%. The net effect of raising CO2 and O3 concentrations on the European potato crop would be an increase marketable yield.  相似文献   

11.
In the ESPACE-Wheat programme, 25 open-top chamber experiments were carried out in 1994, 1995 and 1996, on nine locations, divided over eight European countries. In most experiments, spring wheat cv. Minaret was subjected to two levels of atmospheric CO2 and two levels of ozone. Grain yields in the control treatments (ambient levels of CO2 and O3) varied strongly between sites. Also, yield response to elevated CO2 and O3 showed great variation. The present study was conducted to determine whether climatic differences between sites could account for the observed variation.

Two simulation models were used for the analysis: AFRCWHEAT2-O3 and LINTULCC. AFRCWHEAT2-O3 simulates phenology, canopy development and photosynthesis in greater detail than LINTULCC. Both models account for the effects of radiation and temperature on crop growth. New algorithms were developed to simulate the effects of CO2 and O3. Weather data that were measured in the experiments were used as input, and simulated growth responses to CO2 and O3 were compared with measurements. No attempt was made to merge the two models. Thus two independent tools for analysis of data related to climate change were developed and applied.

The average measured grain yield in the control treatment, across all 25 experiments, was 5.9 tons per hectare (t ha−1), with a standard deviation (SD) of 1.9 t  ha−1. The models predicted similar average yields (5.5 and 5.8 t ha−1 for AFRCWHEAT2-O3 and LINTULCC, respectively), but smaller variation (SD for both models: 1.2 t ha−1). Average measured yield increase due to CO2-doubling was 30% (SD 22%). AFRCWHEAT2-O3 expected a slightly lower value (24%, SD 9%), whereas LINTULCC overestimated the response (42%, SD 11%). The average measured yield decrease due to nearly-doubled O3 levels was 9% (SD 11%). Both models showed similar results, albeit at lower variation (7% yield decrease at SDs of 6 and 4%). Simulations accounted well for the observation that, at elevated CO2, the percentage yield loss due to O3 was lower than at ambient CO2.

The models predicted lower variation among sites and years than was measured. Yield response to CO2 and O3 was predicted to depend on the climate, with a predominant effect of temperature on the response to CO2. In the measurements, these climatic effects were indeed observed, but a greater part of the variation was not related to light intensity, temperature, CO2, or O3. This unexplained variability in the measured dataset was probably caused by factors not accounted for in the models, possibly related to soil characteristics.

We therefore conclude that even perfect information on the climate variables examined in ESPACE-Wheat, i.e. light intensity and temperature, by itself would be insufficient for accurate prediction of the response of spring wheat to future elevated levels of CO2 and O3.  相似文献   


12.
Storage of ‘Fuji’ apple fruit in a high CO2 (3 kPa) and low O2 (1.5 kPa) controlled atmosphere (CA) reduced firmness and titratable acidity (TA) loss during long term storage. This CA environment also induced development of internal CO2-injury (brown-heart) and slowed the disappearance of watercore. The symptoms of internal CO2-injury were first detected 15 days after CA establishment and the severity increased during the first 4 months of CA-storage. Delaying establishment of CA conditions for 2–12 weeks significantly reduced the severity of CO2-injury. Delaying CO2 accumulation to 3 kPa for 1–4 months during CA (1.5 kPa O2+0.05 kPa CO2) storage also reduced development of CO2-injury symptoms. Delaying CA or CO2 accumulation resulted in lower firmness and TA compared to establishment of CA within 72 h of harvest. However, the delay treatments did result in firmness and TA that were significantly higher compared to values for fruit stored in air. The incidence and severity of senescent injuries (flesh browning and core flush) detected during the late period of storage were greater in air- than CA-stored fruit. The results indicate the susceptibility of ‘Fuji’ apples to CO2-injury is highest during the first weeks of storage after harvest. Delaying establishment of CA or exposure to elevated CO2 after harvest may be a practical strategy to reduce CO2-injury while maintaining other important quality attributes at acceptable levels.  相似文献   

13.
The present study was conducted to investigate the possible interactive effects of rising atmospheric CO2 concentration [CO2] and drought stress on water use of wheat. Spring wheat (Triticum aestivum cv. “Minaret”) was grown either in 1 m diameter lysimeters with 0.4 m soil depth (1998) or in the field (1999) in open-top chambers under two CO2-concentrations (ambient, ambient + 280 ppm) and two watering regimes (well-watered = WW with a plant available water content PAW > 40 mm and drought stressed = DS, 10 mm < PAW < 30 mm) beginning after first node stage. Canopy evapotranspiration (EC) was measured continuously from first the node stage until the beginning of flag leaf senescence using four open-system canopy chambers (0.78 m3). Seasonal changes of the absorption of photosynthetically active radiation (APAR) of the canopy and root growth (1999) were also measured.

In both growing seasons leaf area index increased in response to elevated [CO2] in both water treatments. The related effects of [CO2] on canopy radiation absorption (APAR) were, however, smaller. EC was linearily related to APAR in both growing seasons. While elevated [CO2] reduced the slope of this relation under WW conditions by ca. 20% in both growing seasons, it was not reduced (1998) and even increased (1999) under drought. Canopy conductance (GC) calculated as EC divided by vapour pressure deficit of air, showed a non-linear relationship to APAR that was best explained by saturation curves. Under WW conditions, elevated [CO2] reduced the initial slope of GC versus APAR as well as GC at saturating light conditions (ca. −30%), while under DS conditions no effect of elevated [CO2] could be detected. Under high light conditions (PAR > 400 μmol m−2 s−1) a critical “threshold value” of PAW (TPAW, ca. 40 mm) could be identified above which GC did not respond to PAW. While in 1998 GC did not respond to elevated [CO2] at PAW < TPAW, it was slightly increased at low PAW values in the field experiments of 1999. The reduction of TPAW by elevated [CO2] may be explained by enhanced root growth (1999) that would have given the plants better access to soil water resources. The present results suggest that below a critical soil water content elevated [CO2] will not reduce canopy water loss of wheat or may even enhance it.  相似文献   


14.
Nutrient element concentrations and grain quality were assessed in spring wheat grown under elevated CO2 concentrations and contrasting levels of tropospheric ozone at different nitrogen supply rates at several European sites. Carbon dioxide enrichment proved to affect nutrient concentrations in a complex manner. In green leaves, all elements (with exception of phosphorus and iron) decreased. In contrast, effects on the element composition of grains were restricted to reductions in nitrogen, calcium, sulphur and iron. Ozone exposure resulted in no significant effects on nutrient element concentrations in different tissues in the overall analysis. The nitrogen demand of green tissues was reduced due to CO2 enrichment as shown by reductions in the critical leaf nitrogen concentration and also enhanced nitrogen use efficiency. Reductions in the content of ribulose-bisphosphate carboxylase/oxygenase and repression of the photorespiratory pathway and reduced nitrogen allocation to enzymes driving the photosynthetic carbon oxidation cycle were chiefly responsible for this effect. Thus, nitrogen acquisition by the crop did not match carbon acquisition under CO2 enrichment. Since crop nitrogen uptake from the soil was already completed at anthesis, nitrogen allocated to the grain after anthesis originated from vegetative pools—causing grain nitrogen concentrations to decrease under CO2 enrichment (on average by 15% when CO2 concentrations increased from 360 to 680 μmol mol−1). Correspondingly, grain quality was reduced by CO2 enrichment. The Zeleny value, Hagberg value and dry/wet gluten content decreased significantly with increasing [CO2]. Despite the beneficial impact of CO2 enrichment on growth and yield of C3 cereal crops, declines in flour quality due to reduced nitrogen content are likely in a future, [CO2]-rich world.  相似文献   

15.
Microbial proliferation and sensory quality aspects of sliced onions were tested at different temperatures (−2, 4 and 10 °C) and atmospheric conditions (with or without 40% CO2 + 59% N2 + 1% O2). The relationships among microorganism growth parameters (the initial cell number (N0), the maximum cell number (Nmax), the maximum specific growth rate (μmax) and lag-phase (λ)) and the microbial or sensory shelf life were determined. The microorganism growth parameters were obtained by fitting the modified Gompertz equation to the microbial counts. The results showed that color intensity (yellowness), sensory scores and microbial counts increased, and firmness decreased during storage. The total plate counts (TPC) provided the best indication of the spoilage organism growth capacity under tested temperatures and atmospheric conditions. The microbial shelf lives of the tested onions in 40% CO2 + 59% N2 + 1% O2, or at −2, 4 and 10 °C, were 12.5, 9.5, 7, 12, 9 and 6 days, respectively, and their sensory shelf lives were 12, 8, 5, 10.5, 7 and 5 days, respectively. The lag time (λ) of the TPC, coliforms, pseudomonads and yeasts correlated well with the microbial and sensory shelf life results. The correlations between microbial and sensory shelf life, and the μmax of TPC, lactic acid bacteria (LAB) and coliforms were between (−0.61 and −0.85). The initial microbial counts (N0) of the five microorganisms showed a slight correlation, and the maximum microbial counts (Nmax) of this group showed no obvious correlation with onion shelf life, apart from the LAB and yeasts.  相似文献   

16.
In rape (Brassica napus L., cv. Global) seed growth mainly depends on husk CO2 assimilation. In irrigated plants, the net photosynthetic rate (Amax) was 10–13 μmol CO2 m−2 s−1 in non-maturing pods and correlated with nitrogen content. The stomatal conductance of water vapour (gH2O) was 0.3 mol m−2 s−1 in non-maturing pods. The photosynthetic nitrogen use efficiency (NUE) was 8.3 μmol CO2g−1 N s−1, about one-third of that in leaves. The photosynthetic water use efficiency (WUE; AmaxgH2O−1) was similar in pods and leaves. In severely droughted plants, the photosynthetic rate was reduced to 38%. The seed growth rate, however, was not influenced by intermittent periods of water stress, indicating translocation of assimilates to the seeds. The drought resistant character of the pods was due to low specific area, succulence, low stomatal conductance causing a small decrease of ΔΨ day−1 during soil drying and maintenance of high relative water content during severe drought. A mathematical formulation of the pod water release curve was undertaken. © (1997) Elsevier Science B.V.  相似文献   

17.
The aim of this study was to determine the effects of 1-methylcyclopropene, 1-MCP (1 μL L−1 for 24 h at 5 °C) on quality attributes and shelf life of fresh-cut strawberries. The 1-MCP was applied before (whole product) and/or after cutting (wedges), followed by storage in a continuous flow of air or air +1 μL L−1 C2H4. The combined effects of 1-MCP and CaCl2 dips (1% for 2 min) and/or CA (3 kPa O2 + 10 kPa CO2) were also examined. The application of only 1-MCP before and/or after cutting did not have a significant effect on firmness and appearance quality during storage for up to 12 days at 5 °C. The exposure to a continuous flow of 1 μL L−1 C2H4 in air during storage did not increase the softening rate. 1-MCP applied before cutting or both before and after cutting of the strawberries increased respiration rates but reduced C2H4 production rates. Exposure to 1-MCP had a synergistic effect when combined with CaCl2 plus CA. The combined treatment of 1-MCP + CaCl2 + CA slowed down softening, deterioration rates, TA and microbial growth. Compared to the control, which had a 6-day shelf life, the shelf life of fresh-cut strawberries subjected to the combination treatment was extended to 9 days at 5 °C.  相似文献   

18.
The in vitro mortality of eggs and third instar larvae of Anastrepha ludens and A. obliqua was determined after exposure to 21 treatments of air or controlled atmospheres (CA) at high temperatures and 50% RH. Air at 44°C for 160 min caused very low mortality, which increased significantly by CA. Higher temperatures caused a more rapid kill. One hundred percent mortality was achieved for third instar larvae of both species in air or CA at 48°C for 220 min. A 100% mortality of eggs of A. ludens was achieved in air at 51°C for 240 min or in CA at 52°C for 240 min, and 100% mortality of eggs of A. obliqua was achieved in air or in CA at 55°C for 240 min. A. obliqua was slightly more tolerant than A. ludens, and eggs were more tolerant than third instar larvae in both species. CA had a synergistic effect at <50°C, but was slightly less effective than air at higher temperatures. Low O2 concentrations were more effective than high CO2 levels. The mean estimated temperatures for 50, 99 and 99.9968% mortality (LT50s, LT99s, LT99.9968s) of eggs of A. obliqua (the most tolerant) exposed to 0 kPa O2+50 kPa CO2 for 240 min were 49.4, 54.8 and 60.9°C, respectively. We conclude that dry hot air at ≥44°C and 50% RH in CA (0 kPa O2+50 kPa CO2), for 160 min or longer, is effective in increasing mortality of eggs and third instar larvae of A. ludens and A. obliqua.  相似文献   

19.
Use of a biodegradable laminate of a chitosan-cellulose and polycaprolactone as a film for modified atmosphere packaging (MAP) of fresh produce was tested. The temperature dependence of O2, CO2 and N2 gas permeability coefficients for the biodegradable laminate was examined. The coefficients increased linearly with increasing temperature in the range 10–25 °C. The coefficients were validated by experiments on MAP with shredded lettuce and shredded cabbage. MAP systems with head lettuce, cut broccoli, whole broccoli, tomatoes, sweet corn and blueberries were designed using the gas permeability coefficients. The gas composition in each biodegradable package including the fresh produce was simulated to be close to the optimal composition. The biodegradable laminate was found suitable as a packaging material for storage of fresh produce.  相似文献   

20.
利用可精准控制CO2浓度([CO2])的大型人工气候室, 研究了水分亏缺和[CO2]升高对冬小麦气孔特征、气体交换参数及生物量的影响。结果表明, 水分亏缺导致冬小麦气孔开度减小和气孔空间分布的规则程度降低, 提高[CO2]能够减缓水分亏缺时气孔开度和气孔分布规则程度的下降幅度。与充分灌溉相比, 不同水分亏缺条件下冬小麦的净光合速率、气孔导度和蒸腾速率均显著降低(P<0.05), [CO2]仅可缓解轻度亏水对气体交换过程的影响, 该缓解能力随水分亏缺程度的加剧而降低。水分亏缺降低冬小麦生物量, 但[CO2]升高对水分亏缺时生物量产生的影响不显著(P>0.05)。水分亏缺条件下, 冬小麦通过调整气孔开度和气孔空间分布格局改变叶片的气体交换效率, [CO2]升高对冬小麦产生的“施肥效应”受土壤水分条件的限制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号