首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
辽河流域降雨侵蚀力的时空变化分析   总被引:3,自引:0,他引:3       下载免费PDF全文
降雨侵蚀力是反映流域降雨侵蚀能力的综合指标之一。根据辽河流域10个气象站的日降雨量资料,利用日降雨侵蚀力模型估算辽河流域的降雨侵蚀力。结果表明:辽河流域降雨侵蚀力的空间变异与降雨量的空间分布趋势基本一致,由东南向西北递减,变化于1000—3800MJ·mm/(hm^2·h·a)之间;降雨侵蚀力年内集中度高,6—8月3个月约占全年的80%;降雨侵蚀力年际变化大,年际变率Cv在0.367—0.649之间,采用时序系列的Mann—Kendall检验表明,降雨侵蚀力并无显著变化趋势;特别是在流域水土流失严重的西辽河地区,年降雨侵蚀力较小,但年内集中程度大,年际变化更突出。  相似文献   

2.
受土壤侵蚀影响大凌河流域水土流失较为严重,为科学评估与防治流域水土流失风险,依据大凌河流域1960—2020年典型气象站点日降水数据,应用R/S分析、小波分析和ArcGIS空间差值等方法分析降雨量及降雨侵蚀力时空变化规律。结果表明:大凌河流域降雨侵蚀力与降雨量之间的正相关关系达到显著水平,并且年内分布不均,其中7、8月降雨量占全年的31.03%和22.69%,降雨侵蚀力占全年的49.93%和26.74%;年均降雨侵蚀力为1 081.53(MJ·mm)/(hm2·h),侵蚀性降雨量494.1 mm,年际降雨侵蚀力整体表现出波动上升趋势,未来也将持续增大,降雨侵蚀力与降雨量的第一主周期为18 a和28 a;从空间上,自西北向东南大凌河流域降雨侵蚀力和降雨量均呈递增趋势。  相似文献   

3.
利用协同克里金空间内插法和半月降雨侵蚀力估算模型,结合2005—2021年日降雨量资料研究分析全省年均降雨侵蚀力时空分布特征。结果表明:(1)全省降雨侵蚀力平均值1 542.68 MJ·mm/(hm2·h·a),其变化范围为651.02~2 716.45 MJ·mm/(hm2·h·a)。(2)在时间变化上,年内降雨侵蚀力表现出先增大后减小的变化特征,其中6~9月降雨侵蚀力占全年80%以上;从空间分布上,自东南向西北降雨侵蚀力程递减的变化规律,即东南部>南部>中部>北部。(3)年侵蚀性降雨量、年降雨量与降雨侵蚀力之间具有极显著相关性,可以利用幂函数做简易估算,为区域土壤侵蚀治理、预报、评估和监测等提供决策依据。  相似文献   

4.
渭河流域降雨侵蚀力时空变化研究   总被引:1,自引:0,他引:1  
降雨侵蚀力是反映流域降雨侵蚀能力的重要指标。基于渭河流域及周边地区25站56年的日降雨量,分析了流域降雨侵蚀力及其时空变化。结果表明:渭河流域降雨侵蚀力与降雨量的空间分布趋势基本一致,由东南向西北递减,变化范围为1 000~3 600 MJ·mm/(hm~2·h·a);降雨侵蚀力在年内呈单峰型分布,8月最大,1月最小,但6—9月占年侵蚀力的70%左右;渭河流域各站降雨侵蚀力年际差异显著;降雨侵蚀力年际变率为0.40~0.54,尤其20世纪80年代以来随机波动大且表现出一定减小趋势,但整体并无显著增加或减少趋势。  相似文献   

5.
三峡库区香溪河流域降雨侵蚀力的时空分布特征   总被引:2,自引:0,他引:2  
为研究流域降雨侵蚀力变化规律,利用三峡库区香溪河流域内10个雨量站1971—2010年的日降雨资料,采用降雨侵蚀力日降雨简易模型,分析该流域降雨侵蚀力的年内分配和年际变化规律。在Arc GIS软件支持下,采用克里格插值研究流域降雨和降雨侵蚀力时空变化特征。结果表明:香溪河流域降雨侵蚀力多年变化范围为2 465.26~7 419.29 MJ·mm/(hm2·h),多年平均均值为4 535.63 MJ·mm/(hm2·h),降雨侵蚀力R值的年际分配差异明显,最大年R值为最小年R值的3倍;流域侵蚀力空间变化趋势为从西向东逐渐递减;流域近40多年的降雨和降雨侵蚀力系列比较平稳,经Mann-kendall检验无显著的变化趋势。流域降雨量、侵蚀性降雨量和降雨侵蚀力年内分布较集中,汛期降雨量、汛期侵蚀性降雨量、汛期降雨侵蚀力占全年的比例分别为85.4%、92.4%和94.0%。  相似文献   

6.
沂河流域1961-2010年降雨侵蚀力时空分布特征   总被引:2,自引:0,他引:2  
[目的]分析沂河流域近50 a的降雨量和降雨侵蚀力的时空变化特征,为流域水土流失防治及土地利用合理规划等工作提供参考.[方法]利用沂河流域及周边12个气象站1961-2010年的日降雨数据,基于日降雨信息的月降雨侵蚀力模型计算流域多年平均降雨侵蚀力,采用Mann-Kendall非参数检验法及析取Kriging内插法分析流域降雨量和降雨侵蚀力的时空变化特征.[结果]沂河流域降雨量和降雨侵蚀力空间分布上呈现出由西南向北逐级递减的变化趋势.多年平均降雨量为789.41 mm,多年平均降雨侵蚀力为2 626.09(MJ·mm)/(hm2·h·a),两者都在1965年产生突变;降雨量和降雨侵蚀力年内分布主要集中在夏季(6-8月),分别占全年比例的63.02%和71.22%,二者最大值都出现在7月,且秋季对流域多年降雨量的减少趋势贡献最多,夏季的降雨侵蚀力上升幅度最大.[结论]沂河流域的降雨量和降雨侵蚀力空间分布趋势相似,不同月份的降雨量与降雨侵蚀力差异不同.  相似文献   

7.
研究大汶河流域降雨侵蚀力(R)对土壤侵蚀的影响,可为流域水保工作提供科学依据。以大汶河流域6个雨量站1970—2019年逐日降雨数据为基础,通过Mann-kendall趋势检验和突变检验、累积距平、小波分析、逆距离加权插值和泰森多边形等多种方法分析了大汶河流域降雨侵蚀力的时间与空间的分布特征。结果表明:大汶河流域1970—2019年年均降雨侵蚀力范围为1 310.84~6 721.53 MJ·mm/(hm2·h·a),均值为3 808.83 MJ·mm/(hm2·h·a),年际变化比较剧烈且呈微弱下降趋势,存在着4~7 a,8~12 a,17~25 a共3类周期变化,突变年份为1979年; 年内分布集中在6—9月,7月、8月尤为突出,四季的年际变化趋势为先上升后下降再到上升; 空间上整体分布为中部>东部>西部,整个流域降雨侵蚀力的离散程度为东、西部较大,中部较小; 降雨侵蚀力与海拔、降雨量在不同的地区上都有较强的相关性。大汶河流域降雨侵蚀力空间分布差异显著,年际存在周期性且变化显著,年内集中于7月、8月。因此,7月、8月水土流失的预防和控制尤为重要。  相似文献   

8.
降雨侵蚀力(R)反映降雨引起土壤侵蚀的潜在能力,是进行土壤侵蚀预测预报及科学布置水土保持措施的重要依据。本文以南方红壤区典型流域——赣江上游潋水流域2000-2016年4个雨量站的降雨资料为基础,采用月雨量模型计算降雨侵蚀力,并采用统计学方法及ArcGIS空间分析技术对其时空特征进行分析。结果表明:1)流域的多年平均R值为5 899.0 MJ·mm/(hm~2·h·a),最大值为10 306.9MJ·mm/(hm~2·h·a)(2015年),最小值为2387.1 MJ·mm/(hm~2·h·a)(2003年),各站R值年际间变化无显著差异。2)研究期内流域各雨量站R值的统计值M均为正数,流域面临着不同程度的水土流失潜在危机。3)值和降雨量年内变化趋势一致,均表现为单峰型,集中分布在3-8月,约占R值全年的80.92%;最大值出现在6月,约占全年R值的23.8%。4)各站点年均R值分布范围为1 904.12~10 841.48 MJ·mm/(hm~2·h·a),空间上表现为从流域的东北部向西南部呈逐渐增加的趋势。潋水流域降雨侵蚀力的年内分布、年际变化特征与降雨量时空分布基本一致,时空特征除与降雨量分布密切相关外,还与降雨格局等因素有关。  相似文献   

9.
降雨侵蚀力表示降雨引起土壤侵蚀的潜在能力,对土壤侵蚀定量预报及评价研究有重要意义。利用三峡库区香溪河流域兴山气象站1990—2009年20 a的逐日降雨量资料,采用日降雨侵蚀力模型估算了研究区的降雨侵蚀力,分析了降雨侵蚀力的年内、年际演变特征,并以此为基准值建立了降雨侵蚀力简易算法模型。结果表明:香溪河流域年内降雨侵蚀力R主要集中在5—8月,占全年的71%,峰值与侵蚀性降雨峰值一致,均出现在7月;R值年际变化较大,变异系数达到0.36,多年平均降雨侵蚀力为4 361.55(MJ·mm)/(hm2·h),R值与年降雨量和年侵蚀性降雨量年际变化趋势基本一致,但也存在少数异常年份,多年降雨侵蚀力年际变化趋势系数为0.106,呈增加趋势;简易算法模型决定系数均在0.9以上,相对误差较小,均能满足要求,可应用于研究流域,但降雨侵蚀力精确值未知,模型参数有待进一步优化。  相似文献   

10.
基于侵蚀降雨特征的湘江流域R因子修正算法   总被引:2,自引:0,他引:2  
降雨侵蚀因子R表示由降雨引起的土壤侵蚀的潜在能力,能够反映气候因素对土壤侵蚀能力的作用.根据湘江流域18个水文气象站近50 a的降雨量数据,采用针对不同类型降雨资料的不同R值的计算方法,对湘江流域近50 a的降雨侵蚀力R值进行估算.结果表明:Wischmemier年降雨侵蚀力经验公式与福建省降雨侵蚀力计算公式分别计算出的R1、R2值与章文波日降雨量估算方法计算出的R3值有较大误差,分别达到35.99%和45.58%,不适用于直接计算该区域的降雨侵蚀力R值;经过侵蚀降雨特征因子修正后的Wischmemier年降雨侵蚀力经验公式与福建省降雨侵蚀力计算公式计算出的年降雨侵蚀力R值精度比修正前大大提高,其平均误差减小到9.59%和5.53%,表明在缺少日降雨量数据资料的情况下,采用根据侵蚀降雨特征因子侵蚀降雨量与侵蚀降雨时间修正后的降雨侵蚀力计算公式能够更加精确地估算出研究区内降雨侵蚀力R值.  相似文献   

11.
渭河流域降雨侵蚀力时空分布特征   总被引:2,自引:0,他引:2  
[目的]揭示渭河流域降雨侵蚀力的时空变化特征,为区域水土保持规划提供依据。[方法]根据渭河流域及其周边范围30个气象站点1957—2014年逐日降雨资料,采用章文波日降雨量侵蚀模型计算各站点的降雨侵蚀力,分析其空间分布规律和年内分布特征。[结果]渭河流域多年平均降雨侵蚀力值分布范围为806.25~3 510.81 MJ·mm/(hm2·h),平均值1 798.97 MJ·mm/(hm2·h),与多年平均侵蚀性降雨的空间分布基本一致,总体呈现西北低东南高的趋势。渭河流域降雨侵蚀力年内变化呈单峰型,主要集中在7—9月,占全年降雨侵蚀力的63.91%。北部黄土高原地区和关中平原发生水土流失的时期集中在7—9月,而秦岭北麓地区5—10月均有可能发生较大的水土流域,侵蚀风险由西北向东南递增。流域降雨侵蚀力年际波动较大,年际变率Cv值在34%~56%之间,整体而言,流域西北部地区的降雨侵蚀力年际变化幅度大于东南部地区。除洛川、长武、环县、平凉4个站点降雨侵蚀力在研究时段内有所增大外,其余地区降雨侵蚀侵蚀力呈不同速率的减小趋势。[结论]渭河流域降雨侵蚀力时空分布差异显著,尽管流域降雨侵蚀力呈减弱趋势,由于流域地处黄土高原,水土保持与水源涵养工作仍需高度重视。  相似文献   

12.
1980-2013年闽西地区降雨侵蚀力时空变化特征   总被引:2,自引:0,他引:2  
闽西地区是福建省土壤侵蚀重点防治区,为研究闽西地区降雨侵蚀力的时空分布格局,根据1980-2013年闽西地区9个站点的逐日降雨数据,利用日雨量模型来计算降雨侵蚀力,采用线性回归、气候倾向率、Mann-Kendall检验和反距离加权插值法(IDW)等方法对区域降雨侵蚀力的时空变化进行分析.结果表明:1)闽西地区多年平均降雨侵蚀力为9 504 MJ·mm/(hm2·h),与降雨量呈极显著正相关(P<0.o1);2)空间上西高东低,与降雨量分布规律基本一致;3)降雨侵蚀力的年内分布主要集中在3-8月,占到全年的80.12%;4)1980-2013年期间研究区降雨量呈微下降趋势,而整体上降雨侵蚀力呈略微增加趋势,但未达到显著水平(P>0.05),其中其在夏季呈现上升趋势,而在春秋冬3季呈现下降趋势;5)34年内降雨侵蚀力分别在1995和2002年发生突变.该研究可为该区域土壤侵蚀危险性评估和土壤侵蚀治理工作提供依据.  相似文献   

13.
赣江上游平江流域降雨侵蚀力的时空分布特征   总被引:1,自引:0,他引:1  
[目的]研究赣江上游平江流域降雨侵蚀力的时空变化规律,为流域治理措施的制定提供参考。[方法]利用平江流域内10个雨量站点1989—2018年共30 a的日降雨量数据,采用降雨侵蚀力日降雨简易计算模型和Mann-Kendall趋势检验等方法,对平江流域降雨侵蚀力的时间分布规律进行研究;借助ArcGIS 10.1中的克里金插值法对平江流域的降雨侵蚀力进行空间分析。[结果]平江流域降雨侵蚀力在1989—2018年间平均值为4 233 MJ·mm/(hm~2·h·a),最大值为6 766.5 MJ·mm/(hm~2·h)(2015年),最小值为2 191 MJ·mm/(hm~2·h)(2003年);流域内30 a降雨侵蚀力变化较为平稳,年际间呈现出不显著的增加趋势,年内分布同降水量一致,表现为双峰型,分别在6月和8月。降雨侵蚀力在空间上表现为由东北向中南方向递减,而后向西南方向递增,最大值出现在北部城冈站附近,最小值出现在中南部龙口站附近。[结论]平江流域降雨侵蚀力的时空分布特征与流域内降水时空分布基本一致。对流域水土流失防治工作而言,春季应尤其注意降雨侵蚀力较大且出现上升趋势的流域北部地区,夏季和冬季应更加注意流域西南部。  相似文献   

14.
1951-2018年韶关不同量级降雨侵蚀力变化   总被引:2,自引:2,他引:2       下载免费PDF全文
降雨是引起土壤水蚀的主要动力因子之一,为探讨韶关市不同量级降雨对土壤水蚀特征造成的影响,选取1951—2018年韶关市逐日降雨量数据,采用日降雨侵蚀力模型计算降雨侵蚀力,利用变异系数、趋势系数分析不同时间尺度各量级降雨侵蚀力的变化。结果表明:(1)68年来韶关市年均降雨侵蚀力为9 314(MJ·mm)/(hm~2·h·a),变异系数为0.29,属于中等变异;(2)年降雨量、降雨日数、侵蚀性降雨量和降雨日数均呈上升趋势,而非侵蚀性降雨量和降雨日数则呈下降趋势,且暴雨量和暴雨侵蚀力呈较明显上升趋势,说明韶关市降雨更为集中,降雨侵蚀力增加;(3)大雨以上量级的降雨日数和降雨量占总降雨日数和总降雨量的比例分别为43.91%,51.15%,而其引起的降雨侵蚀力占总降雨侵蚀力比例却高达77.05%。研究结果为韶关市的土壤侵蚀的监测和水土保持工作提供参考。  相似文献   

15.
河南省降雨侵蚀力时空变异与不同算法比较研究   总被引:1,自引:0,他引:1  
利用河南省119个气象台站自建站至2003年间不同年限的逐日降雨量资料,采用不同方法分别计算了河南省各县(市)不同时段的降雨侵蚀力,对不同算法的时空差异进行了比较。结果表明:河南省多年平均降雨侵蚀力总体趋势是由北向南、由西向东递增,最大值出现在南部的鸡公山、新县与商城;各地点的降雨侵蚀力在不同年份变异较大,无明显的周期性等规律;各种算法均可表现出时空变化特征,但具体数据差异较大。认为以逐日降雨量为基础的3种算法比较接近实际情况,其中CREAMS模型因其计算简便性可进行较广泛应用。  相似文献   

16.
基于日降雨的沂蒙山区降雨侵蚀力时空变化研究   总被引:3,自引:0,他引:3  
降雨侵蚀力是水土流失最为重要的外部驱动力,是土壤侵蚀相关领域的研究重点。以沂蒙山区及周边38个气象台站1971—2008年逐日降雨量资料为数据源,利用基于日降雨信息的月降雨侵蚀力模型,估算了研究区多年月、年降雨侵蚀力,并初步分析了降雨侵蚀力的时空分布规律。结果表明:沂蒙山区降雨侵蚀力总体趋势为西北、中南高,北部低,泗水县、曲阜市东部一带是研究区降雨侵蚀力的高值中心;R值与年降雨量和年侵蚀性降雨量的年际变化趋势基本一致,但也有部分异常年份;沂蒙山区降雨侵蚀力年内主要集中分布在6—9月份,占全年的97.07%,其中最大月降雨侵蚀力出现在7月份,占年降雨侵蚀力的51%。研究结果可为该区域水土流失预报、农业面源污染状况预报等提供理论依据。  相似文献   

17.
试验研究三峡库区大宁河流域降雨侵蚀力的时空变化   总被引:1,自引:0,他引:1  
[目的]分析流域降雨侵蚀力时空变化规律,为水土流失预报及水土保持措施科学配置提供依据。[方法]以三峡库区大宁河流域内13个雨量站41 a 日降雨资料为基础,采用侵蚀力简易模型,分析了该流域降雨侵蚀力的年内分配和年际变化规律,并在软件 ArcGIS 10.2支持下,探讨流域降雨侵蚀力时空变化特征。[结果]大宁河流域年均降雨侵蚀力为7245.55 MJ ? mm/(hm2? h ? a),它在空间上与流域降雨分布特征基本一致,呈现由东、西向流域中部逐渐减小的趋势,而南北差异较小;最大和最小降雨侵蚀力分别位于流域西北部的建楼站和南部的巫山站;降雨侵蚀力多年变化范围为3619.55~11109.14 MJ ? mm/(hm2? h ? a)。降雨侵蚀力的年内分布呈双峰型,集中程度高,4—10月占全年的95%。[结论]大宁河流域降雨侵蚀力和降雨变化年内分配一致,侵蚀力时空特征除与流域降雨量分布密切相关外,还与区域降雨格局及地形地貌等因素有关。  相似文献   

18.
1980-2009年闽东南地区降雨侵蚀力的时空分布特征   总被引:2,自引:1,他引:2  
[目的]揭示闽东南地区降雨侵蚀力的时空变异特征,为区域水土流失防治及水土保持规划提供依据。[方法]基于闽东南地区1980—2009年26个雨量站的逐日降雨数据,运用福建省降雨侵蚀力简易算法。[结果]闽东南地区降雨侵蚀力年内分布集中于5—8月,呈现双峰式分布;降雨侵蚀力年际间变化幅度较大。1982年年降雨侵蚀力(R值)低至253.82(MJ·mm)/(hm2·h),2006年R值高达725.39(MJ·mm)/(hm2·h),极值比为2.86;30a内的闽东南地区的降雨侵蚀力并未出现明显的突变现象。[结论]研究区内降雨侵蚀力R值空间分布不均匀,总体上呈现沿海向内陆增加,西南高东北低的趋势。  相似文献   

19.
河北省山区降雨侵蚀力的时空变化特征   总被引:1,自引:0,他引:1  
[目的] 探究河北省山区降雨侵蚀力时空变化特征,为该区水土流失治理措施的制定和实施提供科学依据。[方法] 应用时间变化分析和空间分布分析对河北省山区2000-2018年降雨侵蚀力进行分析。[结果] 时间趋势中燕山山区年降雨侵蚀力呈波动上升趋势,主周期为11 a,在2009年发生突变,春、秋两季呈波动下降趋势,主周期分别为8和11 a,春季无突变点,秋季在2001年发生突变,夏季呈波动波动上升趋势,9 a为主周期,在2010年发生突变;太行山区年降雨侵蚀力呈波动下降趋势,主周期为6 a,无突变点,夏、秋两季呈波动上升趋势,主周期分别为8和10 a,均无突变点,春季呈波动下降趋势,主周期为8 a,在2006年发生突变;空间分布中,年均降雨侵蚀力范围为1 063.39~5 127.44 MJ·mm/(hm2·h),燕山山区由西到东年及夏季平均降雨侵蚀力先增长后降低再增长,太行山区中由南向北年、夏季平均降雨侵蚀力逐渐降低,春、秋两季降雨侵蚀力分布规律较为多变。[结论] 通过对河北省山区降雨侵蚀力的分析,得出河北省山区夏季水土流失最为严重,燕山山区部分地区尤为突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号