首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Critical values of boron (B) for wheat nutrition in soil and plant were determined through a pot experiment with twenty-one surface soils of Alluvial flood plain and Red-latertic belt comprising three major soil orders (Entisols, Alfisols, Inceptisols) with four levels of boron. Application of boron significantly increased the dry matter yield as well as uptake of B by plants. Critical concentration of hot calcium chloride (CaCl2) extractable B in soil for wheat was found to be 0.53?mg?kg?1. The critical plant B concentration varied with growth stages and values were 7.4?mg?kg?1 at panicle initiation and 4.18?mg?kg?1 at maturity, respectively. The findings of this investigation also recommend the application of 2?kg?B?1?ha?1 for ensuring B sufficiency to wheat in Indo-gangetic alluvial and Red-Lateritic soils.  相似文献   

2.
ABSTRACT

To establish a critical limit in soils and plant, an experiment was conducted in red and lateritic soil (Alfisols) of farmer’s field in tribal-dominated Panchayat Kurum, Palkot block, Gumla district, Jharkhand, India. Based on the results of the field experiment, the critical limits were determined as 0.48, 0.50, 0.47, and 0.42 mg kg?1 in the soil, respectively, for hot water, hot calcium chloride, salicylic acid, and ammonium acetate-extractable B, while a critical limit of 12.00 mg kg?1 was observed in maize tissue using the graphical method. In an analysis of variance method, the critical limits of B in soils were found as 0.45, 0.54, 0.49, and 0.43 mg kg?1 using hot water, hot calcium chloride, salicylic acid, and ammonium acetate extractants, respectively. Maize plants were highly responsive to B application where soil B level was below the critical limit (0.50 mg kg?1). In a field experiment, grain yield of maize increased with increasing levels of B application, while soil application at 1.0 kg ha?1 + two foliar application (at the knee and pre-flowering stages) of borax at 0.2% were showed significantly higher grain yield of the maize crop. The hot water, hot calcium chloride, salicylic acid, and ammonium acetate-extractable B were significantly and positively correlated with organic carbon and negatively correlated with the electrical conductivity of soils.  相似文献   

3.
To establish critical limit in soils and plant, soil samples were collected from twenty; 12, 5 and 3 soil locations of low, medium and high boron (B) status from Madurai district of Tamil Nadu, India for pot culture experiment. Based on the results of pot culture experiment, the critical limit was determined to be 42.7 mg kg?1 for groundnut plants and 0.39 mg kg?1 in Madurai soils. Groundnut plants were highly responded to B application in soils below the critical limit whereas soils with B greater than 0.51 mg kg?1 did not respond. For the confirmation of pot culture results, a field experiment was conducted with different B treatments comprised of soil and foliar applications and results revealed that the pod yield of groundnut increased with increasing levels of B and the soil application of 20 kg ha?1 as borax has showed significantly higher pod yield in the district.  相似文献   

4.
A greenhouse experiment with soybean grown on sulfur (S) and boron (B) deficient calcareous soil was conducted for two years in northwest India to study the influence of increasing sulfur and boron levels on yield and its attributing characters at different growth stages (55 days, maturity). The treatments included four levels each of soil applied sulfur viz. 0, 6.5, 13.4, 20.1 mg S kg?1 and boron viz. 0, 0.22, 0.44, 0.88 mg B kg?1 at the time of sowing. The highest dry matter yield at 55 days after sowing, DAS (19.3 g pot?1) and maturity (straw yield ?25.2 g pot?1 and grain yield ?7.3 g pot?1) was recorded with B0.44 S13.4 treatment combination. The combined applications of sulfur and boron yielded highest oil content with B0.44S13.4 (21.7%) treatment level. Chlorophyll ‘a’ and ‘b’ increased significantly with successive levels of sulfur and boron addition at 55 DAS. The mean sulfur and boron uptake in straw and grains increased significantly with increasing levels of sulfur and boron up to 13.4 mg kg?1 and 0.44 mg kg?1 and decreased non-significantly thereafter. At both the growth stages, a synergistic interactive effect of combined application of sulfur and boron was observed with B0.44 S13.4 treatment level for sulfur and boron uptake in straw and grains.  相似文献   

5.
Productivity of resources on acid soils occupying one fourth of the total area in India is abysmally low. Lime is applied to such soils with the primary objective of increasing the productivity of crops by enhancing the availability of native and applied plant nutrients. Greenhouse pot experiments and laboratory experiments were conducted to evaluate the effects of lime and boron (B) on the availability of nutrients in soils and their uptake by plants. The application of lime enhanced the available nitrogen (N,), phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), and zinc (Zn) content in soils, which was reflected in their uptake by sunflower (Helianthus annus). On the contrary, availability of copper (Cu), iron (Fe), and manganese (Mn) in soil was reduced due to liming. Sunflower responded very well in terms of dry matter yield to B application to the extent of 175% and 188% under 1 and 2 mg kg?1 applied levels of B, respectively. Dry matter yield of sunflower was reduced to the tune of 29.2 and 42.7% under 2/3 and 1 lime requirement (LR), respectively, over control. Lime application at 1/3 LR with 2 mg kg?1 of applied B emerged as an optimum combination in acid soils.  相似文献   

6.
Field studies were conducted to assess boron (B) requirement, critical concentrations in diagnostic parts based on yield response curves and genotypic variation by growing three peanut (Arachis hypogaea L.) cultivars (‘Golden’, ‘BARD-479’, ‘BARI-2000’) on two B-deficient calcareous soils. Boron application significantly increased pod yield of all the cultivars over control. Maximum pod yield increases were: ‘Golden’, 16?23%; ‘BARD-479’, 21?27%; and ‘BARI-2000’, 25?31%. The cultivars varied in B efficiency and cv. ‘Golden’ was the most B efficient (81?86%) while cv. ‘BARI-2000’ was the least efficient (76?80%). Boron requirements for near-maximum (95%) dry pod yield were 0.65 kg ha?1 for ‘Golden’, 0.75 kg ha?1 for BARD-479 and 0.80 kg ha?1 for BARI-2000. Critical B concentrations in shoots and seeds were: ‘Golden’, 33 mg kg?1 and 26 mg kg?1; ‘BARD-479’, 38 mg kg?1 and 31 mg kg?1; and ‘BARI-2000’, 42 mg kg?1 and 33 mg kg?1.  相似文献   

7.
The adsorption isotherms indicated that the adsorption of boron (B) increased with its increasing concentration in the equilibrium solution. The Langmuir adsorption isotherm was curvilinear and it was significant when the curves were resolved into two linear parts. The maximum value of adsorption maxima (b1) was observed to be 7.968 mg B kg?1 in Garhi baghi soil and the bonding energy (k) constant was maximum at 0.509 L mg?1 in Jodhpur ramana soil. The Langmuir isotherm best explains the adsorption phenomenon at low concentrations of the adsorbent, which of course was different for different soils. There was significant correlation between b1 and clay (r = 0.905**), organic matter contents (r = 0.734*), and cation exchange capacity (CEC; r = 0.995**) of soils. A linear relationship was observed in all the soils at all concentration ranges between 0 and 100 mg B L?1, indicating that boron adsorption data conform to the Freundlich equation. Soils that have a higher affinity for boron adsorption, like Garhi baghi, tended to desorb less amount of boron, that is, 43.54%, whereas Ballowal saunkhari desorbed 48.00%, Jodhpur ramana 48.42%, and Naura soil 58.88% of the adsorbed boron. Boron desorption by these soils is positively and significantly correlated with the sand content (r = 0.714**) and negatively with clay content (r = ?0.502*) and CEC (r = ?0.623**). The maximum value of 37.59 mg kg?1 for desorption maxima (Dm) was observed in Garhi baghi soil and also a constant related to B mobility (Kd) was found to be maximum in Garhi baghi (0.222 L kg?1) soil Note: *P<0.05; **P<0.01.  相似文献   

8.
Boron (B) is an essential microelement, which is necessary for reproductive organs including pollen tube formation in wheat (Triticum aestivum L.), and flowering and boll formation in cotton (Gossypium hirsutum L.) The study was associated with wheat-cotton rotation in 80 farm fields, belonging to different soil series, in four districts of cotton belt of Punjab, Pakistan to assess concentrations of extractable B in soils [0.05 M hydrochloric acid (HCl) extractable B], and added fertilizer B and their relationship to some soil physico-chemical properties [pH, organic matter (OM), calcium carbonate (CaCO3) and clay content], yields and total B concentrations in wheat and cotton plants. All soils had alkaline pH (7.45 to 8.55), high CaCO3 content (2.14 to 8.65%), less than 1.0% OM (0.33 to 0.99%), low plant available-P (Olsen P less than 8 mg kg?1 soil) and medium ammonium acetate extractable potassium (K) (< 200 mg K kg?1 soil). Of the 80 soil samples, 65 samples (81%) were low in available B (<0.45 mg B kg?1, ranging from 0.11 to 0.43 mg B kg?1) Of the corresponding 80 plant samples, leaves B concentrations were below critical levels (<10 mg B kg?1 for wheat; <30 mg B kg?1 for cotton) for all the tested samples for wheat and cotton. The regression analysis between plant total B concentrations and soil extractable B concentrations showed strong linear positive relationships for both wheat (R2 = 0.509***, significant at P <0.001) and cotton (R2 = 0.525***, significant at P <0.001). Further regression analysis between extractable soil B and wheat grain yield as well as between wheat leaves total B and wheat grain yield also depicted strong linear relationships (R2 = 0.76 and 0.42, respectively). Boron fertilizer demonstration plots laid out at farmers’ fields low in extractable B, in each district not only enhanced grain yields of wheat crop but also contributed a significant increase towards seed cotton yield of succeeding cotton crop through residual B effect. In conclusion, the findings suggest that many soils in the cotton belt of Punjab may be low in extractable B for wheat and cotton, especially when these crops are grown on low OM soils with high CaCO3 content.  相似文献   

9.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   

10.
Abstract

Lucerne (Medicago sativa L.) is grown as a forage crop on many livestock farms. In calcareous soils in eastern Turkey, lucerne production requires boron (B) addition as the soils are naturally B deficient. Field experiments with four B-application rates (0, 1, 3, and 9 kg ha?1 B) were conducted in 2005 and 2006 to determine the optimum economic B rate (OEBR), critical soil test and tissue B values for dry matter (DM) production for lucerne grown on B-deficient calcareous aridisols in eastern Turkey. Boron application increased yield at each site in both years of production. The OEBR and critical soil and tissue B content were not impacted by location. Averaged over the two years and three locations, the OEBR was 6.8 kg B ha?1 with an average DM yield of 12.0 Mg ha?1. The average soil B content at the OEBR was 0.89 mg kg?1 while leaf and shoot tissue B content amounted to 51.8 and 35.5 mg kg?1, respectively. Boron application decreased tissue calcium (Ca), zinc (Zn), and copper (Cu), and increased tissue nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), iron (Fe), and manganese (Mn). Tissue and soil B increased without impacting yield at B levels up to 9 kg ha?1. We conclude that 7 kg ha?1 B is sufficient to elevate soil test B levels from 0.11 to 0.89 mg kg?1 and overcome B deficiency at each of the sites in the study. Similar studies with different soils and initial soil test B levels are needed to conclude if these critical soil and tissue values can be applied across the region.  相似文献   

11.
A greenhouse experiment was conducted in North-west India to study the effect of soil applied boron on yield of berseem (Trifolium alexandrium L.) and soil boron fractions in boron deficient calcareous soils. Three soils with varying calcium carbonate content viz. 0.75% (Soil I), 2.6% (Soil II), and 5.7% (Soil III) were collected from different sites of Ludhiana, Bathinda, and Shri Muktsar Sahib districts, Punjab, India. The treatments consisted of six levels of soil applied boron viz. 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 mg B kg?1 along with control. The green fodder yield and dry matter yield increased significantly at 0.75 mg B kg?1 soil treatment level in the first cutting, while these were significant at 1.0 mg B kg?1 soil treatment level in all soils at second, third, and fourth cuttings. Among all three calcareous soils, Soil I with lower calcium carbonate was the best soil in respect of mean yield in comparison to Soil II and Soil III. Combined effect of boron level and soils had significant effect on yield of berseem. There was a significant increase in mean dry root biomass at 1.0 mg B kg?1 soil level over control and then remained non-significant with further high levels of soil applied boron. The mean dry root biomass decreased significantly for the soils having 0.75%, 2.6%, and 5.7% calcium carbonate levels. Readily soluble fraction is considered to be easily available fraction of B for plant uptake and consisted of 0.47–0.62% in Soil I, 0.31–0.43% in Soil II, and 0.24–0.34% in Soil III of the total boron. Among all B fractions, mean readily soluble, specifically adsorbed, and oxide-bound fractions got increased significantly with increase in B levels. Readily soluble and organically bound B fractions were more in Soil I as compared to Soil II and Soil III. Specifically adsorbed boron, oxide bound fraction, residual and total boron were more in Soil III in comparison to Soil I and Soil II. Among all fractions, residual fraction accounted for the major portion of the total B. It comprised of 92.71–93.90% in Soil I, 94.51–95.40% in Soil II, and 94.91–95.25% in Soil III of the total boron.  相似文献   

12.
Boron (B) deficiency hampers cotton (Gossypium hirsutum L.) growth and productivity globally, especially in calcareous soils. The crop is known as a heavy feeder of B; however, its reported plant analysis diagnostic norms for B-deficiency diagnosis vary drastically. In a 2-year field experiment on a B-deficient [hydrochloric acid (HCl)–extractable 0.47 mg B kg?1], calcareous, Typic Haplocambid, we studied the impact of soil-applied B on cotton (cv. CIM-473) growth, productivity, plant tissue B concentration, and seed oil composition. Boron was applied at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kg B ha?1, as borax (Na2B4O7·10H2O), in a randomized complete block design with four replications, along with recommended rates of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Boron use improved crop growth, decreased fruit shedding, and increased boll weight, leading to seed cotton yield increases up to 14.7% (P < 0.05). Improved B nutrition of plants also enhanced seed oil content (P < 0.05) and increased seed protein content (P < 0.05). Fiber quality was not affected. Fertilizer B use was highly cost-effective, with a value–cost ratio of 12.3:1 at 1 kg B ha?1. Fertilizer B requirement for near-maximum (95% of maximum) seed cotton yield was 1.1 kg B ha?1 and HCl-extractable soil B requirement for was 0.52 kg ha?1. Leaf tissue B requirement varied with leaf age as well as with plant age. In 30-day plants (i.e., at squaring), B-deficiency diagnosis critical level was 45.0 mg kg?1 in recently matured leaves and 38.0 mg kg?1 in youngest open leaves; at 60 days old (i.e., at flowering), critical concentration was 55.0 mg kg?1 in mature leaves and 43.0 mg kg?1 in youngest leaves. With advancement in plant age critical B concentration decreased in both leaf tissues; that is, in 90-day-old plants (i.e., at boll formation) it was 43.0 mg kg?1 in mature leaves and 35.0 mg kg?1 in the youngest leaves. As critical concentration range was narrower in youngest leaves (i.e., 35–43 mg kg?1) compared with mature leaves (i.e., 43–55 mg kg?1), B concentration in youngest leaves is considered a better indicator for deficiency diagnosis.  相似文献   

13.
A screen-house experiment was conducted to study cadmium (Cd) and lead (Pb) phytoextraction using mustard and fenugreek as test crops. Cadmium was applied at a rate of 20 mg kg?1 soil for both crops, and Pb was applied at 160 and 80 mg kg?1 soil for mustard and fenugreek, respectively. The disodium salt of ethylenediamine tetraacetic acid (EDTA) was applied at 0, 0.5, 1.0, and 1.5 g kg?1 soil. Dry-matter yield (DMY) of both crops decreased with increasing rates of EDTA application. Application of 1.5 g EDTA kg?1 soil caused 23% and 70% declines in DMY of mustard and fenugreek shoots, respectively, in the soils receiving 20 mg Cd kg?1 soil. Similarly, in soil with 160 mg Pb kg?1 soil, application of 1.5 g EDTA kg?1 resulted in 25.4% decrease in DMY of mustard shoot, whereas this decrease was 55.4% in fenugreek grown on a soil that had received 80 mg Pb kg?1 soil. The EDTA application increased the plant Cd and Pb concentrations as well as shoot/root ratios of these metals in both the crops. Application of 1.5 g kg?1 EDTA resulted in a 1.50-fold increase in Cd accumulation and a 3-fold increase in Pb accumulation by mustard compared to the control treatment. EDTA application caused mobilization of Cd and Pb from carbonate, manganese oxide, and amorphous iron oxide fractions, which was evident from decrease in these fractions in the presence of EDTA as compared to the control treatment (no EDTA).  相似文献   

14.
ABSTRACT

Modern agriculture over the years has resulted in depletion of boron (B) from soil which has been emerged as a serious obstacle for sustainable agriculture. We studied the availability of B in soil and cauliflower (Brassica oleracea var. botrytis L.) productivity under different levels of B fertilization. A field experiment was conducted during 2013–2014 and 2014–2015, at experimental farm of Himachal Pradesh Agricultural University, Palampur on silt-clay loam soil (acid Alfisol) under mid hill wet temperate condition. Different levels of B for the study included 0, 0.75, 1.5, 2.5, 5, 10, 20 and 30 kg B ha?1 along with recommended dose (RD) of NPK and farmyard manure (FYM, 20 t ha?1). The application of B influenced biological yield significantly up to 5 kg ha?1. Highest curd yield in 2013–2014 (11.03 t ha?1) and 2014–2015 (12.93 t ha?1) was recorded in 1.5 and 0.75 kg ha?1 B along with NPK + FYM, respectively. At higher rates of boron i.e. 10, 20 and 30 kg ha?1, due to toxic effects, a reduction in curd yield was recorded in both years. Maximum mean uptake of N, P and K by leaves and curd was recorded with the application of boron at 1.5 kg ha?1, whereas mean B uptake was highest when boron was applied at 2.5 kg ha?1. The highest mean value (1.79 mg kg?1) of soil available boron was recorded with 30 kg B ha?1. Application of boron at 2.4 kg ha?1 was worked out as optimum dose for cauliflower.  相似文献   

15.
A field experiment was conducted to study the influence of boron (B) application on yield and B uptake of cotton (Gossypium hirsutum L.) in B-deficient calcareous soil of south-west Punjab. The treatments comprise six levels of soil-applied B (0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 mg B kg?1soil) and two levels of foliar-applied B (0.1% and 0.2% borax and granubor solution) along with the common control (no B application). The experiment was laid out in RBD factorial design with three replications. The seed cotton yield and its attributing characters (plant height, number of sympodial and monopodial branches, boll weight, and number of boll per plant) and root biomass increased significantly with increasing levels of boron up to 1.0 mg B kg?1 level over the control and then remained nonsignificant with further higher levels of soil-applied boron. Among foliar-applied boron levels, 0.1% borax solution was better than 0.2% borax solution. Soil-applied boron was at par with foliar-applied boron. The efficiency of borax and granubor was found to be equal in both sources of boron. The mean B content and its uptake by seed cotton and roots increased significantly up to 1.0 mg B kg?1 soil-applied B level and then recorded nonsignificant with further higher levels of boron. For the foliar method of B application, the mean B content and its uptake by seed cotton increased significantly over the control. The mean available B content in soils (0–15 cm) at 45, 75, 105, and 145 days after sowing increased significantly over the control for all soil-applied B levels, while it remained nonsignificant over the control for all growth stages of cotton in foliar method of B application. Further, it was positively correlated with root biomass (r = 0.91), boron uptake by root (r = 0.98), and sympodial branch per plant (r = 0.81). The interaction of B application levels and sources was not significant for all studied traits. Regardless of B sources, B application had a significant effect on yield, yield attributes, and B uptake up to 1.0 mg B kg?1 level for soil-applied B and 0.1% borax or granubor solution for foliar-applied B.  相似文献   

16.
Abstract

A field experiment was conducted at Horticultural Experimental Farm, Assam Agricultural University, Jorhat during the year 2015–17 to assess the impact of boron fertilization on dynamics of boron fractions in soil and crop yields in cauliflower–cowpea–okra cropping sequence. Five levels of boron (0, 0.5, 1.0, 1.5 and 2.0?kg ha?1) along with the recommended dose of NPK fertilizer were applied in soil in cauliflower once in each 2 years (2015–17) of experimentation to assess the direct effect of boron fertilization, while cowpea and okra were grown as a suceeding test crop to study the residual effects of boron fertilization in the cropping sequence. Among the different levels of boron, the highest content of all the boron fractions in soil was recorded at rate of 2?kg B ha?1 at different crop growth stages for all the three crops. Progressive decrease in content of all the boron fractions with crop ageing was noticed. The content of different boron fractions in soil follows the order readily soluble boron (RSB)<oxide bound boron (OXB)<organic bound boron (ORBB)<specifically adsorbed boron (SAB) <residual boron, respectively. The boron level of 2?kg B ha?1 was found to prominent in increasing the yield in all the crops. In respect of contributions of different boron fractions to yield of crops, oxide bound boron(2.10) was found to be the highest contributor of cauliflower yield, while the residual boron (1.10), contributed the highest to cowpea yield and organic bound boron fraction (1.24) was found to be most prominent contributor of boron in leveraging okra yield.  相似文献   

17.
A study was conducted with 24 piedmont soils of Arunachal Pradesh (India) to estimate the critical limit of available boron (B) in soil and cowpea plant for predicting the response of cowpea (Vigna unguiculata L. Walp.) to B application. The critical concentration of available B in these soils was established by graphical procedure at 0.48 mg kg?1 for soil and at 24.5 mg kg?1 in the plant tissues. Soil containing available B below the critical limit responded appreciably to B fertilization. A negative response to B application was also observed in soils at higher level of available B. The average dry matter yield increased with the increasing level of B application up to 1.5 mg kg?1. The yield response to B application in cowpea on B deficient soils was 34.5%. Based on the critical value of 0.48 mg kg?1, 10 soils were rated to be adequate and 20.0% soils belonging to this category responding to B application, whereas 85.7% soils below the critical value showed a positive response to B application. The hot water soluble B was significantly and positively correlated with organic carbon, cation exchange capacity and clay contents and negatively correlated with pH, silt and sand contents of soils.  相似文献   

18.
ABSTRACT

Soil fertility in many parts of the north?western Himalayan region (NWHR) has declined owing to accelerated nutrient mining under existing crop regime. Therefore, this study aimed to assess effect of the predominant horticulture?based land uses on soil fertility and health in mid and high hills of NWHR. Soil samples (0?20 cm) were collected, analyzed for different soil chemical attributes (pH, electrical conductivity, organic C, available primary-, secondary-, and micro-nutrients), and compared across five key land uses: perennial grass (PG), peach orchard (PO), apple orchard (AO), field vegetable farming (VF), and protected vegetable farming (PV). Soils of the investigated land uses were neutral to near neutral in soil reaction (6.3?6.8) except field vegetable and protected vegetable farming. Amount of soil organic C and labile organic C was significantly higher (p ≤ 0.05) in soils of apple orchards (18.6 g kg?1 and 687.3 mg kg?1, respectively) and peach orchards (20.4 g kg?1 and 731.3 mg kg?1, respectively) over others. An abrupt and significant increase in Olsen-P was recorded in soils of field vegetable farming (17.1 mg kg?1) and protected vegetable farming (13.0 mg kg?1), which shifted their nutrient index (NI) of P in to high category (≥ 2.33). The concentration of mineralizable-N in soil was statistically at par in soils under perennial grass and fruit orchards, while protected vegetable farming showed maximum soil mineralizable-N content (115.5 mg kg?1) and NI of nitrogen (1.83). The NI was in high category (≥ 2.33) for copper, iron, and manganese in majority of the land uses. In view of the results, temperate fruit?tree based land uses are benign in up?keeping soil fertility and soil health, and needs promotion on large scale. Additionally, policies to create incentives for the build-up of soil organic matter and replenishment of the depleted soil macro and micro nutrients in vegetable-farmed lands are warranted.  相似文献   

19.
Influence of boron (B) application to cauliflower (Brassica oleracea var. botrytis) was investigated in a pot experiment taking 15 Inceptisols with four levels of B. The critical levels of B for deficiency, adequacy and toxicity in soil and in cauliflower plant were also determined. Hot-calcium chloride (CaCl2) extractable B in these soils varied from 0.33 to 0.78 mg kg-1 and its content for deficiency to cauliflower was 0.48 mg kg-1. Boron application significantly increased cauliflower yield, plant B concentration and uptake of B. The critical plant B concentrations for deficiency, sufficiency and toxicity varied with the growth stages and the values being 26, 31 and 48 mg kg-1 at 50 days of growth and 17, 24 and 35.5 mg kg-1 at harvest, respectively. The study also recommends application of fertilizer B at the rate 0.9–4.5 kg ha-1 for optimum B nutrition to cauliflower in Inceptisols of the Gangetic plains of India.  相似文献   

20.
《Journal of plant nutrition》2013,36(12):2591-2602
ABSTRACT

No boron (B) deficiencies have been reported for rice (Oryza sativa L.) grown in the United States and, when occurring elsewhere, reports often lack details of deficiency symptoms and leaf-B critical values. An experiment was conducted to determine the effect of B and lime on yield, pollen viability, and to determine diagnostic symptoms of B deficiency in rice. Rice cv. “Bengal” was grown in the greenhouse on a soil acquired from a rice farm from SW Louisiana in the United States, a Caddo silt loam (Caddo sl) (Typic Glossaqualf, fine-silty, siliceous, thermic), treated with 0.44?mg?B?kg?1 (+B) or no B (?B). Split plots were limed at rates of (i) none; (ii) 224?mg?kg?1 CaO+40.3?mg?kg?1 MgO; and (iii) 673?mg?kg?1 CaO+121?mg?kg?1 MgO. Rice was also grown in ?B and +B potting media and in ?B sand culture using nutrient solution identical to that used in other studies of ours. Rough-rice yields from the +B Caddo sl treatment was 11% higher than from the ?B treatment (29.3 vs. 26.3?g?pot?1; P=0.02). The yield increase was likely due to fewer damaged pollen (8%) found from the +B than the ?B treatment (17%; P=0.014). Leaf-B at tillering was 11.3?mg?kg?1 for the B-treated rice and 7.1?mg?kg?1 from the ?B treatment. Liming did not significantly affect leaf B or yields. Boron deficiency symptoms were found only in the ?B sand-culture where yields were 1.1?g?pot?1, 96% less than that from the +B Caddo sl. Symptoms were like those found in our earlier hydroponic studies with twisted and whitish leaf tips starting at tillering and 1-cm white bands across the width of leaves. Maturity was delayed about four weeks. Boron deficiency from the Caddo sl and sand treatments occurred with leaf B≤7?mg?kg?1 and with a Caddo sl soil B of 0.18?mg?hws (hot-water soluble) B?kg?1. Given that no B deficiency symptoms were found in rice experiencing moderate yield loss grown on the rice soil, one must rely on soil and plant analyses to help detect likely candidates for moderate B deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号