首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Profiles of semi-arid-zone soils in Punjab, northwestern India, were investigated for different forms of copper (Cu), including total Cu, diethylenetriaminepentaacetic acid (DTPA)–extractable Cu, soil solution plus exchangeable Cu, Cu adsorbed onto inorganic sites, Cu bound by organic sites, and Cu adsorbed onto oxide surfaces. When all soils were considered, total Cu content ranged from 7 to 37 mg kg?1, while DTPA-extractable and soil solution plus exchangeable Cu contents ranged from 0.30 to 3.26 mg kg?1 and from 0.02 to 0.43 mg kg?1, respectively. Copper adsorbed onto inorganic sites ranged from 0.62 to 2.6 mg kg?1 and that onto oxide surfaces ranged from 2.0 to 13.2 mg kg?1. The Cu bound by organic sites ranged from 1.2 to 12.2 mg kg?1. The magnitudes of different forms of Cu in soils did not exhibit any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Cu. The content of all forms of Cu was generally greater in the fine-textured Alfisols and Inceptisols than coarse-textured Entisols. Soil solution plus exchangeable Cu, Cu held onto organic sites, and and Cu adsorbed onto inorganic sites (crystalline) had significant positive correlations with organic carbon and silt contents.The DTPA Cu was positively correlated with organic carbon, silt, and clay contents. Total Cu content strongly correlated with silt and clay contents of soils. Among the forms, Cu held on the organic site, water soluble + exchangeable Cu, and Cu adsorbed onto oxide surface were positively correlated with DTPA-extractable Cu. The DTPA-extractable Cu and soil solution plus exchangeable Cu seems to be good indices of Cu availability in soils and can be used for correction of Cu deficiency in the soils of the region. The uptake of Cu was greater in fine-textured Inceptisols and Alfisols than coarse-textured Entisols. Among the different forms only DTPA-extractable Cu was positively correlated with total uptake of Cu.  相似文献   

2.
Soil pH influences the chemistry, dynamics and biological availability of phosphorus (P), but few studies have isolated the effect of pH from other soil properties. We studied phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg?1). Soil organic phosphorus represented a consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. However, organic phosphorus concentrations increased by about 20% in the most acidic soils (pH < 4.0), through an accumulation of inositol hexakisphosphate, DNA and phosphonates. The increase in organic phosphorus in the most acidic soils was not related to organic carbon, because organic carbon concentrations declined at pH < 4.0. Thus, the organic carbon to organic phosphorus ratio declined from about 70 in neutral soils to about 50 in strongly acidic soils. In contrast to organic phosphorus, inorganic phosphorus was affected strongly by soil pH, because readily‐exchangeable phosphate extracted with anion‐exchange membranes and a more stable inorganic phosphorus pool extracted in NaOH–EDTA both increased markedly as soil pH declined. Inorganic orthophosphate concentrations were correlated negatively with amorphous manganese and positively with amorphous aluminium oxides, suggesting that soil pH influences orthophosphate stabilization via metal oxides. We conclude that pH has a relatively minor influence on the amount of organic phosphorus in soil, although some forms of organic phosphorus accumulate preferentially under strongly acidic conditions.  相似文献   

3.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

4.
This study investigated phosphorus (P) dynamics and kinetics in calcareous soil under inorganic, organic, and integrated (inorganic+organic) fertilizer systems during two growing seasons of maize in two soil depths (0–0.15 and 0.15–0.30 m). A field experiment was conducted with 150, 300, and 400 kg ha?1 triple superphosphate (TSP), 7.5 and 15.0 ton ha?1 (on dry matter basis) farmyard manure (FYM), and integrated systems. In order to analyze Olsen P, soil samples were collected in 30-day-intervals after planting. The results showed that at the end of the two growing seasons of maize, the lowest magnitudes of Olsen P0–0.15 m were 6.0, 6.8, 7.4, and 7.6 mg kg?1 for the control, 7.5 FYM, 15 FYM, and 150 TSP, respectively. The highest magnitudes of Olsen P0–0.15 m were 12.4, 11.5, 11.4, and 11.1 mg kg?1 for 300 TSP+15 FYM, 400 TSP+7.5 FYM, 400 TSP+15 FYM, and 300 TSP+7.5 FYM, respectively. The same trends were observed for Olsen P0.15–0.30 m. Heterogeneous diffusion model demonstrated that Elovich equation could best describe the experimental data (mean; R2 = 0.98, SE = 0.29). The highest P supply rates (PSR) were 4.73, 3.91, and 3.86 mg kg?1day?1 (days after application) for 400 TSP, 400 TSP+15 FYM, and 300 TSP, respectively. The models of P supply capacity of soil could estimate P supply of soil under different fertilizer systems (R2 = 0.84–0.95). The present study improved the understanding of the capacity and rate of P supply by considering P uptake by grain maize. Fertilizer recommendations depend on the accessibility of fertilizer types suggested to help choose the best fertilizer systems.  相似文献   

5.
The potential of Nostoc 9v for improving the nitrogen (N)2–fixing capacity and nutrient status of semi‐arid soils from Tanzania, Zimbabwe, and South Africa was studied in a laboratory experiment. Nostoc 9v was inoculated on nonsterilized and sterilized soils. Inoculum rates were 2.5 mg dry biomass g?1 soil and 5 mg dry biomass g?1 soil. The soils were incubated for 3 months at 27 °C under 22 W m2 illumination with a photoperiod of 16 h light and 8 h dark. The moisture was maintained at 60% of field capacity. In all soils, Nostoc 9v proliferated and colonized the soil surfaces very quickly and was tolerant to acidity and low nutrient availability. Cyanobacteria promoted soil N2 fixation and had a pronounced effect on total soil organic carbon (SOC), which increased by 30–100%. Total N also increased, but the enrichment was, in most soils, comparatively lower than for carbon (C). Nitrate and ammonium concentrations, in contrast, decreased in all the soils studied. Increases in the concentration of available macronutrients were produced in most soils and treatments, ranging from 3 to 20 mg phosphorus (P) kg?1 soil, from 5 to 58 mg potassium (K) kg?1 soil, from 4 to 285 mg calcium (Ca) kg?1, and from 12 to 90 mg magnesium (Mg) kg?1 soil. Positive effects on the levels of available manganese (Mn) and zinc (Zn) were also observed.  相似文献   

6.
The mobility of mercury (Hg) deposited on soils controls the concentration and toxicity of Hg within soils and in nearby streams and lakes, but has rarely been quantified under field conditions. We studied the in situ partitioning of Hg in the organic top layer (mor) of podsols at two boreal forest sites differing in Hg deposition and climatic regime (S. and N. Sweden, with pollution declining to the north). Soil solution leaching from the mor layer was repeatedly sampled using zero-tension lysimeters over 2 years, partly in parallel with tension lysimeters. Concentrations of Hg and dissolved organic carbon (DOC) were higher while pH was lower at the southern site (means ± SD: Hg?=?44?±?15 ng L?1, DOC?=?63.0?±?31.3 mg L?1, pH?=?4.05?±?0.53) than at the northern site (Hg?=?22?±?6 ng L?1, DOC?=?41.8?±?12.1 mg L?1, pH?=?4.28?±?0.43). There was a positive correlation over time between dissolved Hg and DOC at both sites, even though the DOC concentration peaked during autumn at both sites, while the Hg concentration remained more constant. This correlation is consistent with the expected strong association of Hg with organic matter and supports the use of Hg/C ratios in assessments of Hg mobility. In the solid phase of the overlying Of layer, both Hg concentrations and Hg/C ratios were higher at the southern site (means ± SD: 0.34?±?0.06 μg g?1 dw and 0.76?±?0.14 μg g?1 C, respectively) than at the northern site (0.31?±?0.05 μg g?1 dw and 0.70?±?0.12 μg g?1 C, respectively). However, concentrations in the solid phase differed less than might be expected from the difference in current atmospheric input, suggesting that the fraction of natural Hg is still substantial. At both sites, Hg/C ratios in the upper half of the mor layer were only about two thirds of those in the lower half, suggesting that the recent decrease in anthropogenic Hg deposition onto the soil is offset by a natural downward enrichment of Hg due to soil decomposition or other processes. Most interestingly, comparison with soil leachate showed that the average Hg/C ratios in the dissolved phase of the mor layers at both sites did not differ from the average Hg/C ratios in the overlying solid organic matter. These results indicate a simple mobilisation with negligible fractionation, despite differences in Hg deposition patterns, soil chemistry and climatic regimes. Such a straight-forward linkage between Hg and organic matter greatly facilitates the parameterisation of watershed models for assessing the biogeochemical fate, toxic effect and critical level of atmospheric Hg input to forest soils.  相似文献   

7.
Different forms of manganese (Mn) were investigated, including total, diethylenetriamine penta-acetic acid (DTPA) extractable, soil solution plus exchangeable (Mn), Mn adsorbed onto inorganic sites, Mn bound by organic sites, and Mn adsorbed onto oxide surfaces, from four soil taxonomic orders in northwestern India. The total Mn content was 200–950 mg kg?1, DTPA-extractable Mn content was 0.60–5.80 mg kg?1, soil solution plus exchangeable Mn content was 0.02–0.80 mg kg?1, Mn adsorbed onto inorganic sites was 2.46–90 mg kg?1, and Mc adsorbed onto oxide surfaces was 6.0–225.0 mg kg?1. Irrespective of the different fractions of Mn their content was generally greater in the fine-textured Alfisols and Inceptisols than in coarse-textured Entisols and Aridisols. The proportion of the Mn fractions extracted from the soil was in the order as follows: Adsorbed onto oxide surfaces > adsorbed onto inorganic site > organically bound > DTPA > soil solution + exchangeable. Based on coefficient of correlation, the soil solution plus exchangeable Mn, held onto organic site and oxide surface (amorphous) and DTPA-extractable Mn, increased with increase in organic carbon of the soil. The two forms, adsorbed onto inorganic site (crystalline) and DTPA extractable, along with organic carbon, increased with increase in clay content of the soil. DTPA-Mn and Mn adsorbed onto oxide surfaces and held on organic site decreased with increased with an increase in calcium carbonate and pH. Total Mn was strongly correlated with organic carbon and clay content of soil. Among the forms, Mn held on the organic site, water soluble + exchangeable and adsorbed onto oxide surface were positively correlated with DTPA-extractable Mn. DTPA-extractable Mn seems to be a good index of Mn availability in soils and this form is helpful for correction of Mn deficiency in the soils of the region. The uptake of Mn was greater in fine-textured Inceptisols and Alfisols than in coarse-textured Entisols and Aridisols. Among the different forms only DTPA-extractable Mn was positively correlated with total uptake of Mn. Among soil properties Mn uptake was only significantly affected by pH of the soil.  相似文献   

8.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   

9.
Tropical acid soils are highly weathered as they exist under tropical environment with high rainfall and temperature throughout the year, which affects nitrogen availability. Soil organic nitrogen is important in estimating soil nitrogen availability. The combined use of urea and compost in this study was carried out to decrease sole dependence on urea, buffer soil acidification, and reduce nitrogen losses through leaching. Thus, soil buffering capacity, incubation, and organic nitrogen fractionation studies were conducted to determine soil buffering capacity, availability of total nitrogen, organic fractions nitrogen, and inorganic nitrogen in soil after 90 days of incubation following compost. Soil pH, buffering capacity, total nitrogen, organic nitrogen fractions, exchangeable ammonium, and available nitrate were higher in all treatments with compost and combined use of urea and compost. Total hydrolyzable nitrogen, ammonium-nitrogen, (ammonium + amino sugar)-nitrogen, amino sugar-nitrogen, and amino acid-nitrogen were higher in soils with urea and compost suggesting that decomposition of soil organic fractions nitrogen into inorganic nitrogen (ammonium and available nitrate was affected by the addition of urea and compost. Urea can be amended with compost to regulate availability nitrogen in soil for crop use.  相似文献   

10.
In this study, 24 years (1990–2013) of data from a long-term experiment, in Stillwater, Oklahoma (OK), were used to determine the effect of beef manure on soil test phosphorus (STP), soil organic carbon (SOC), and winter wheat (Triticum aestivum L.) yield. Beef manure was applied every 4 years at a rate of 269 kg nitrogen (N) ha?1, while inorganic fertilizers were applied annually at 67 kg N ha?1, 14.6 kg phosphorus (P) ha?1, and 27.8 kg potassium (K) ha?1 for N, P, and K, respectively. Averaged across years, application of beef manure, and inorganic P maintained STP above 38 mg kg?1 of Mehlich-3 extractable P, a level that is far beyond crop requirements. A more rapid decline in SOC was observed in the check plot compared to the manure-treated plot. This study shows that the application of animal manure is a viable option to maintaining SOC levels, while also optimizing grain yield.  相似文献   

11.
Abstract

Accurate measurement and characterization of phosphate rock dissolution are important for a better understanding of phosphorus (P) availability in soils. An incubation study was carried out on two New Zealand topsoils (0–15 cm; high P buffering capacity Craigieburn and low P buffering capacity Templeton) amended with North Carolina phosphate rock (NCPR) and water‐soluble phosphate (WSP) at 218 mg P kg?1 (equivalent to 60 kg P ha?1). Isotopic exchange kinetics was carried out after 12 h and 28 days of incubation to characterize P availability. This study showed that sensitivity of capacity factors (r1/R, n) to explain changes in E1min values was affected by the P buffering capacity of the soils. The recovery of applied P in the E pool (RecinE%) with extended incubation time was similar from the NCPR and WSP treatments (3.1–3.3%) in the Craigieburn soil compared with the Templeton soil in which RecinE% values were greater in WSP (9%) than NCPR (1.3%) treatment. The higher values of P derived from the applied P fertilizers in the E pool (PdffinE%>80%) suggested that the NCPR application in both soils would be efficient for increasing P availability to plants.  相似文献   

12.
In Central Vietnam, and more especially in Thua Thien Hue Province, aquatic plants are used empirically by some farmers as an external source of organic matter to improve fertility of sandy soils. The fertilization capacities of aquatic plant species [Najas indica (Willid.) Cham., Najas minor All., Vallisneria spiralis L. (Michx.) Torr., Hydrilla verticillata (L.f.) Royle, Potamogetum malaianus Miq., Myriophyllum spicatum L., Enteromorpha flexuosa (Wulfen) J. Agardh, Rhizoclonium kerneri Stockmayer, and Eichhornia crassipes (Mart) Solms] were assessed from a pot trial including soils amended with aquatic plants (5 g dry matter kg?1 soil) and soils supplied with increasing rates of urea nitrogen (N) fertilizers. Rice (Oryza sativa L.) at a vegetative stage was used as a convenient bio‐extractor. The fertilization capacity of aquatic plant amendments was calculated from aboveground biomass and from N accumulated in shoots as compared to treatments receiving only inorganic N fertilizers. Najas indica (Willid.) Cham. and Hydrilla verticillata (L.f.) Royle showed the greatest fertilization capacity, equivalent to 170–180 mg urea‐N kg?1 soil as estimated from biomass yield, whereas a lesser fertilization capacity, equivalent to less than 100 mg urea‐N kg?1 soil, was observed for Myriophyllum spicatum L., Enteromorpha flexuosa (Wulfen) J. Agardh, Rhizoclonium kerneri Stockmayer, and Eichhornia crassipes (Mart) Solms. This study provides quantitative data on the fertilization capacity of aquatic plants found in the coastal area of central Vietnam, which can improve this empirical practice and alleviate local agro‐environmental constraints related to the lack of organic matter in farming systems.  相似文献   

13.
Abstract. Nitrogen (N) loss by leaching poses great challenges for N availability to crops as well as nitrate pollution of groundwater. Few studies address this issue with respect to the role of the subsoil in the deep and highly weathered savanna soils of the tropics, which exhibit different adsorption and drainage patterns to soils in temperate environments. In an Anionic Acrustox of the Brazilian savanna, the Cerrado, dynamics and budgets of applied N were studied in organic and inorganic soil pools of two maize (Zea mays L.) – soybean (Glycine max (L.) Merr.) rotations using 15N tracing. Labelled ammonium sulphate was applied at 10 kg N ha?1 (with 10 atom%15N excess) to both maize and soybean at the beginning of the cropping season. Amounts and isotopic composition of N were determined in above‐ground biomass, soil, adsorbed mineral N, and in soil solution at 0.15, 0.3, 0.8, 1.2 and 2 m depths using suction lysimeters throughout one cropping season. The applied ammonium was rapidly nitrified or immobilized in soil organic matter, and recovery of applied ammonium in soil 2 weeks after application was negligible. Large amounts of nitrate were adsorbed in the subsoil (150–300 kg NO3?‐N ha?1 per 2 m) matching total N uptake by the crops (130–400 kg N ha?1). Throughout one cropping season, more applied N (49–77%; determined by 15N tracers) was immobilized in soil organic matter than was present as adsorbed nitrate (2–3%). Most of the applied N (71–96% of 15N recovery) was found in the subsoil at 0.15–2 m depth. This coincided with an increase with depth of dissolved organic N as a proportion of total dissolved N (39–63%). Hydrophilic organic N was the dominant fraction of dissolved organic N and was, together with nitrate, the most important carrier for applied N. Most of this N (>80%) was leached from the topsoil (0–0.15 m) during the first 30 days after application. Subsoil N retention as both adsorbed inorganic N, and especially soil organic N, was found to be of great importance in determining N losses, soil N depletion and the potential of nitrate contamination of groundwater.  相似文献   

14.
石灰性土壤中硫形态组分及其影响因素   总被引:8,自引:1,他引:8  
对陕西 ,湖南等 7省 (市 ) 22个农田耕层土壤硫形态组分的分析表明 ,供试土壤总硫平均为405.5 111.8mg/kg ,总有机硫占总硫 85.4 % 10.0%。供试土壤中酯键硫 (C -O-S)、碳键硫(C -S)、惰性硫平均含量分别为 130.3 64.6、65.5 29.4、152.5 96.7mg/kg ,分别占总硫的31.4 % 12.9%、18.0 % 10.7%、36.0 %17.8% ;分别占总有机硫的 36.6 % 14.4 %、21.8 13.8%、41.5 % 19.1%。石灰性土壤C -O -S、C -S形态硫与土壤有机碳之间分别呈极显著 (r =0.7334* * )和显著 (r =0.4426*)正相关。石灰性母质发育土壤C -O -S含量显著大于黄土母质发育的土壤。供试土壤无机硫组分中主要是难溶硫 ,其平均含量达 28.4mg/kg ,占总无机硫 50.7%。土壤中难溶硫与总无机硫 (r =0.6040* *)和CaCO3(r =0.6800* *)之间呈极显著正相关 ,而与总有机硫 (r =- 0.5286*)、C-O -S (r =- 0.4417*)和有机碳 (r =-0.4786*)之间呈显著负相关。黄土母质发育土壤难溶硫含量 ,占总硫和占总无机硫的比例显著或极显著高于石灰性母质发育的土壤。为了全面评价石灰性土壤硫素供应潜力 ,有必要开展石灰性土壤难溶硫形成及转化规律和生物有效性的研究。  相似文献   

15.
We analyzed in soils with contrasting cultivation histories the depletion of P following sequential extractions with soil testing solutions. Soil samples were collected in three experiments in eastern Canada (L’Acadie, Lévis, and Normandin) and P was sequentially extracted 16 times, once daily, using Mehlich-3 (M3) or Olsen (Ol) solution. The cumulative amount of P extracted was 252 mg PM3 kg?1 and 77 mg kg?1 POl for L’Acadie, 212 mg PM3 kg?1 and 66 mg POl kg?1 for Lévis, and 424 mg PM3 kg?1 and 83 mg POl kg?1 for Normandin. The depletion of P was described by a logarithmic function (Y = a ln (N+ b) for PM3, and a power function (Y = αNβ) for POl. The inorganic P pool decreased in the three soils. The organic P pool did not decrease possibly because soil testing solutions did not directly extract P from this pool. This study demonstrated that laboratory soil testing analysis using M3 or Ol solution principally target P from the inorganic pool, suggesting that P fertilizer recommendations to mineral soils relying on these methods do not account for the potential of the organic P pool to contribute to soil P availability.  相似文献   

16.
Samples of two soils and two sediments collected at sites originating from mangrove forests in Thailand, were examined in terms of buffering capacity to organic compounds. Atrazine and linuron were used as representative hydrophobic organic compounds for estimating the buffering capacity by observing their adsorptive and desorptive behavior. The buffering capacity could be represented by the distribution of the adsorption ratio (AR) and desorption ratio (DR) as follows: AR (%) = (amount of herbicide adsorbed per unit weight of soil)/(initial amount of herbicide) x 100, and DR (%) = (amount of herbicide desorbed per unit weight of soil after herbicide desorption experiments) / (initial amount of adsorbed herbicide on soil) x 100. The soil under mangrove forests displayed a larger buffering capacity to atrazine and linuron. Compared with 42 soils from Japan, in terms of the adsorption proparty of atrazine and linuron, the mangrove soil ranked in a higher category on the classification of the Japanese soils. Thus, the importance of maintaining or recovering the mangrove forests to promote environmental conservation was emphasized.  相似文献   

17.
Poland has the largest agricultural area within the Baltic Sea drainage basin and reducing the risk of phosphorus (P) and nitrogen (N) leaching from Polish soils to water is therefore essential. Increased acidity is known to reduce soil fertility and may trigger P leaching from non-calcareous soils. As part of advisor training, 25 farms each in Pomerania and north-western Mazovia were visited and 1500?ha arable soil, including 180?ha grassland soil, were monitored in 2013–2014. The soil was mainly coarse textured, but 25% of the Pomeranian farms were dominated by silty or clayey soils. More or less regular drainage systems were found on 20% of the farms, while 50% had simpler, older (>30 years) systems with a few single pipes. The farmers often used only ammonium sulphate or other acidifying N mineral fertiliser. Median pH on the Pomeranian farms, analysed in potassium chloride solution [pH(KCl)], was 5.2 and liming was advised for fields on most (72%) of these farms. Soil P content, measured by double-lactate extraction (PDL), was positively and significantly correlated (Pearson coefficient 0.57; p?DL (P given in elemental form) tended to be lower on dairy farms and arable farms and was significantly lower (mean 51?mg?PDL?kg?1 soil) on mixed farms (with just a few cows and poultry) than on pig farms (mean 122?mg?PDL?kg?1 soil). Farm-gate balances indicated deficits of P and potassium (K) on many of the small mixed farms in Pomerania and the soil can be expected to be nutrient depleted. In contrast, the pig farms demonstrated surplus farm-gate P balances (mean 27?kg?ha?1). The P leaching risk is discussed relative to soil threshold values and to results from Swedish long-term field experiments.  相似文献   

18.
In this study, soils on 17 ski pistes in the Sierra Nevada, Spain, were investigated to identify changes induced by ski management practices and also to determine the effectiveness of grass seeding in restoring soil quality. When compared with unaffected reference soils, those of ski runs had substantial loss of organic carbon (?34%, ?11.9 ± 3.6 t ha?1) and micropore volume and size (?33%, ?0.07 ± 0.01 cm3 cm?3 and ?48%, ?1.62 ± 0.28 μm). Microstructure showed a dramatic reduction in organic cements and fungal hyphae. The organic content of soil seeded with grass significantly improved compared with soil not seeded or seeded unsuccessfully (P < 0.05), especially where the topsoil was reinstated. Organic C content, microporosity and soil respiration increased by 200% (+21 ± 5 t ha?1), 70% (+0.07 ± 0.03 cm3 cm?3) and 140% (+0.10 ± 0.04 mg CO2 g?1 day?1), respectively. Average micropore size in aggregates which in undisturbed soils was 3.40 ± 0.28 μm reverted to 3.52 ± 0.36 μm. However, the microstructure of the revegetated soils did not attain the levels of organic cements and fungal hyphae in the natural soils. Dolomite and salts were added to the soil to aid slope stabilization, fertility and de‐icing of access tracks. As a consequence, there were increases in pH, exchangeable sodium percentage (ESP), electrical conductivity, calcium carbonate equivalent and base saturation. The influence of management on soil properties was found to be greater than that of environmental factors.  相似文献   

19.
ABSTRACT

Soil fertility in many parts of the north?western Himalayan region (NWHR) has declined owing to accelerated nutrient mining under existing crop regime. Therefore, this study aimed to assess effect of the predominant horticulture?based land uses on soil fertility and health in mid and high hills of NWHR. Soil samples (0?20 cm) were collected, analyzed for different soil chemical attributes (pH, electrical conductivity, organic C, available primary-, secondary-, and micro-nutrients), and compared across five key land uses: perennial grass (PG), peach orchard (PO), apple orchard (AO), field vegetable farming (VF), and protected vegetable farming (PV). Soils of the investigated land uses were neutral to near neutral in soil reaction (6.3?6.8) except field vegetable and protected vegetable farming. Amount of soil organic C and labile organic C was significantly higher (p ≤ 0.05) in soils of apple orchards (18.6 g kg?1 and 687.3 mg kg?1, respectively) and peach orchards (20.4 g kg?1 and 731.3 mg kg?1, respectively) over others. An abrupt and significant increase in Olsen-P was recorded in soils of field vegetable farming (17.1 mg kg?1) and protected vegetable farming (13.0 mg kg?1), which shifted their nutrient index (NI) of P in to high category (≥ 2.33). The concentration of mineralizable-N in soil was statistically at par in soils under perennial grass and fruit orchards, while protected vegetable farming showed maximum soil mineralizable-N content (115.5 mg kg?1) and NI of nitrogen (1.83). The NI was in high category (≥ 2.33) for copper, iron, and manganese in majority of the land uses. In view of the results, temperate fruit?tree based land uses are benign in up?keeping soil fertility and soil health, and needs promotion on large scale. Additionally, policies to create incentives for the build-up of soil organic matter and replenishment of the depleted soil macro and micro nutrients in vegetable-farmed lands are warranted.  相似文献   

20.
土壤肥力对于水利水电工程、水土保持和生态修复建设中具有重要意义。本研究采用地统计学、GIS和模糊数学方法,系统地调查分析了白鹤滩水电站项目区土壤肥力状况及其空间变异特征,旨在为项目区陆生生态修复和水土流失预防提供理论依据。研究结果显示,研究区的碱解氮和速效钾具有较强的空间变异性,有机质和速效钾的空间变异性为中等水平,而阳离子交换量和Chao1变异系数的空间变异性最小,为较弱水平。0~10cm和 10~20 cm土壤中碱解氮、有机质、阳离子交换量、速效钾、速效磷和Chao1的平均值分别为14.08mg/kg、14.02g/kg、8.04cmol/kg、98.53mg/kg、0.65mg/kg、0.9732 和 12.14mg/kg、12.7g/kg、8.02cmol/kg、109.78mg/kg、0.74mg/kg、0.927。碱解氮和速效磷的平均含量低于土壤养分分级标准的6级水平,而有机质和阳离子交换量处于4级水平,速效钾处于3级水平。深层速效钾在空间上呈现较弱的自相关性,而碱解氮、有机质、阳离子交换量、表层Chao1和深层速效磷块金系数均小于25%,在空间上呈现较强的自相关性。通过空间插值图可以看出,研究区土壤综合肥力指标、碱解氮和有机质呈现由西北向东南逐渐降低的趋势,而其它肥力指标则具有不同的空间分布特征。研究区整体土壤肥力水平较低,其中速效磷和碱解氮是主要的限制因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号