首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inherent features of Acrisols with their increasing clay content with depth are conducive to reducing nutrient losses by nutrient adsorption on the matrix soil surfaces. Ammonium (NH4+) and nitrate (NO3?) adsorption by a Plinthic Acrisol from Lampung, Indonesia was studied in column experiments. The peak of the H218O breakthrough occurred at 1 pore volume, whereas the median pore volumes for NH4+ and NO3? ranged from 6.4 to 6.9 and 1.1 to 1.6, respectively. The adsorption coefficients (Ka in cm3 g–1) measured were 1.81, 1.51, 1.64 and 1.47 for NH4+ and 0.03, 0.09, 0.10 and 0.17 for NO3?, respectively, in the 0–0.2, 0.2–0.4, 0.4–0.6 and 0.6–0.8 m soil depth layers. The NH4+ and NO3? adsorption coefficients derived from this study were put in to the Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model to evaluate their effect on leaching in the context of several cropping systems in the humid tropics. The resulting simulations indicate that the inherent ‘safety‐net’ (retardation mechanism) of a shallow (0.8–1 m) Plinthic Acrisol can reduce the leaching of mineral N by between 5 and 33% (or up to 2.1 g m?2), mainly due to the NH4+ retardation factor, and that the effectiveness in reducing N leaching increases with increasing depth. However, the inherent ‘safety‐net’ is useful only if deep‐rooted plants can recover the N subsequently.  相似文献   

2.
Abstract

Increasing resources use efficiency in intensive cultivation systems of maize (Zea mays L.) can play an important role in increasing the production and sustainability of agricultural systems. The objectives of the present study were to evaluate DM yield and the efficiency of inputs uses under different levels of water, nitrogen (N) and phosphorus (P) in maize. Therefore, three levels of irrigation including 80 (ETc80), 100 (ETc100) and 120% (ETc120) of crop evapotranspiration were considered as the main plots, and the factorial combination of three levels of zero (N0), 200 (N200) and 400 (N400) kg N ha?1 with three levels of zero (P0), 100(P100) and 200 (P200) kg P ha?1 was considered as the sub plots. The results showed that increasing the consumption of water and P was led to the reduction of N and P utilization efficiency, while RUE increased. WUE was also increased in response to application of N and P, but decreased when ETC increased. DM yield under ETc80 treatment reduced by 11 and 12%, respectively, compared to ETc100 and ETc120 which was due to reduction of cumulative absorbed radiation (Rabs(cum)) and RUE. Under these conditions, changes of stomatal conductance (gs) had little effect on DM yield. It was also found that N limitation caused 11 and 20% reduction in DM yield compared to N200 and N400, respectively. This yield reduction was mainly the result of decrease in RUE. By decreasing Rabs(cum), P deficiency also reduced DM yield by 5 and 9%, respectively, relative to P100 and P200 treatments.  相似文献   

3.
This study evaluated the effect of competing copper, zinc, cadmium and nickel ions in 0.01 M Ca(NO3)2 on heavy metal sorption and desorption by soil clay fractions. Initial Cu addition levels varied from 99 mg kg-1 to 900 mg kg-1 and Zn, Cd and Ni levels were 94, 131 and 99 mg kg-1, respectively. Sorption of Cu conformed to a Freundlich equation. The amounts of metals not displaced by successive 48 h desorption cycles with 0.01 M Ca(NO3)2 were considered ‘specifically adsorbed’. Total sorption of Zn and Cd generally decreased in the order: Vertisol > Gleyic Acrisol > Planosol clay. More than 70% of the copper was specifically sorbed. Specific sorption of Zn was depressed by competition with Cu in the three clays investigated. At surface coverages higher than 200 mg Cu per kg of soil clay, zinc sorption in the Planosol and Gleyic Acrisol clays took place at low affinity sites. The exchangeable component of sorbed cadmium accounted for >:60% of the sorption in the Vertisol clay, >70% in the Gleyic Acrisol clay and was almost 100% in the Planosol clay. Nickel was not retained by the Planosol and Gleyic Acrisol clays and was ionexchangeably adsorbed by the Vertisol clay. At the conditions studied, Ni and Cd remain a ready source of pollution hazard.  相似文献   

4.
采用田间小区试验,研究了习惯施肥与接触施用包膜控释肥料对夏玉米生长、产量、根系分布和土壤无机氮残留的影响。结果表明,接触施用包膜控释肥料没有抑制玉米的出苗和幼苗生长;减氮1/3的控释肥处理(N 120kg/hm2)与习惯施肥处理(N180 kg/hm2)的玉米产量没有差异。在0—30 cm土层,与对照和习惯施肥处理相比,接触施用控释肥增加了距茎基部0—10 cm区域内玉米根长密度的分布,占总根长的59%~64%;玉米收获后,减量控释肥处理土壤剖面各个土层Nmin含量与对照相比无显著增加,习惯施肥和全量控释肥处理(N 180 kg/hm2)在60—90、90—120 cm土层的Nmin累积显著高于对照。综合考虑玉米生长、产量以及根系分布和氮素淋失风险,本试验条件下,接触施用控释肥N120 kg/hm2是夏玉米季较为理想的选择。  相似文献   

5.
Abstract

Field experiments were conducted to investigate nitrogen use efficiency and performance of maize (Zea mays L.) cultivars as influenced by calcium carbide (CaC2) and nitrogen (N) rates in a derived Savanna (2016 and 2017). Maize cultivars {SUWAN-I [open pollinated variety (OPV)] and OBA SUPER II (hybrid)}, rates of N (0, 60 and 90?kg ha?1) and CaC2 (0, 30 and 60?kg ha?1), were arranged in split-split plot respectively, fitted into a randomized complete block design in three replicates. N Partial factor productivity (PFPN), Agronomic Use Efficiency (both years) and Apparent recovery of N (2017) increased in the order 60?>?90?>?0?kg N ha?1, except N Internal use efficiency which was in the order 0?>?60?>?90?kg N ha?1 (2017). Grain yield increased with increasing rates of N in both years. OBA SUPER-II had significantly higher grain yield than SUWAN-I (2017). Similar pattern was observed on number of grains per cob, dry cob weight, PFPN and plant height (2017). Conversely in 2016, grain, total and shoot N uptakes were significantly higher in SUWAN-I than OBA SUPER-II. Increasing application of CaC2 increased grain N uptake and number of grains per cob. Number of leaves and stem girth increased in the order of 60?>?0?>?30?kg?CaC2 ha?1. Increased grain yield with N rates could be associated with NHI and N use efficiency. These evidences suggested that hybrid maize performed better than OPV in a derived Savanna.  相似文献   

6.
Copper adsorption and desorption under acid conditions by soil clay fractions separated from Vertisol, Planosol and Gleyic Acrisol has been studied in 0.01 M Ca(NO3)2. A Freundlich equation was appropriate to describe Cu adsorption. Within the range of 150 to 2600 mg of copper per kg of soil clay fraction the proportions of Cu not displaced during 5 successive 48-hour desorptions with 0.01 M Ca(NO3)2 decreased with increasing adsorption density and at the lower pHs. The proportions ranged from as high as 0.98 in th case of the Vertisol clay (pH 5.3) to as low as 0.12 (88% desorption) in the Planosol clay (pH 4.5). Measurement of separation factors (ga Cu/Ca) showed that the preference of the clay surface for Cu over Ca decreased in the order: Gleyic Acrisol > Planosol > Vertisol. A considerable amount of sorbed copper could be solubilized by decreasing pH values to 4 when in the Planosol clay 39% was desorbed and 45% was desorbed in the Gleyic Acrisol clay.  相似文献   

7.
In a long‐term maize–wheat rotation at the Punjab Agricultural University, Ludhiana, India (subtropical climate), the effects of nitrogen (N), phosphorus (P), and potassium (K) addition on soil fertility and forms of inorganic P and K in the plow layer of an alkaline sandy loam soil were measured after 11 and 22 years of cropping. The treatments comprised four rates of N (0, 60, 120, and 180 kg N ha?1) as urea, three rates of P (0, 17.5, and 35 kg P ha?1) as single superphosphate, and two rates of K (0 and 33 kg K ha?1) as muriate of potash. The treatments selected for the present study were N0P0K0, N120P0K0, N120P17.5K0, N120P35K0, N120P17.5K33, and N120P35K33. A significant year × treatment interaction in decreasing available N [alkaline potassium permanganate (KMnO4)–oxidizable N) status of soils was found in all the treatments. Available P (Olsen P) in the control plot decreased over time whereas in plots with added P, available P increased significantly after years 11 and 22, with the greatest increase in the N120P17.5Ko treatment. Compared to the initial values, continuous P fertilization resulted in greater total P and chloride P concentrations after 11 and 22 years. Although sodium hydroxide (NaOH) P and sulfuric acid (H2SO4) P increased in P‐treated plots from the start of the trial to year 11, they decreased from year 11 to year 22. Among these inorganic P forms, chloride P was significantly positively correlated with P uptake (r = 0.811*). When only N and P were applied, available K [ammonium acetate (NH4OAc)–extractable K] significantly decreased over time. In plots without K addition, water‐soluble and exchangeable K decreased from their initial status. Compared to year 11, water‐soluble K increased, whereas exchangeable K decreased after year 22 in plots receiving no K fertilizer. Compared with NPK treatments, a significant decrease of total K in NP treatment plots suggests the release and uptake of nonexchangeable K. Water‐soluble K and exchangeable K were not correlated with K uptake. These results suggest that long‐term application of P fertilizers resulted in the accumulation of P in the soil, which could have resulted in saturation of P binding sites. Of the soil inorganic P fractions, only chloride P appears to be a good indicator of plant‐available P. The gradual loss in native soil K and release of nonexchangeable K indicates the need for adding K fertilizer to maintain soil fertility.  相似文献   

8.
氮、硫配施对冬小麦氮素利用效率及产量的影响   总被引:6,自引:1,他引:6  
【目的】氮(N)、硫(S)是生物所必需的营养物质,对小麦籽粒产量和品质起着重要作用。硫素供应不足,特别是在当前大量氮素供应情况下引起的作物生理性缺硫将导致作物产量和含硫氨基酸蛋白质含量下降。本文旨在探索氮、硫配施对冬小麦氮素利用效率和籽粒产量的促进效果并提出合理的区域氮、硫施肥技术。【方法】20122013年,在河南温县以国审冬小麦品种豫麦49-198为供试材料,进行大田试验。设置不同施氮量0、120、180、240和360 kg/hm2(分别以N0、N120、N180、N240和N360表示)和施硫0和60 kg/hm2(S0和S60)试验,调查氮、硫对冬小麦干物质积累、氮素积累分配、籽粒产量和氮素利用效率的影响。【结果】对冬小麦生育后期干物质积累分析表明,干物质积累随施氮量增多而提高,相同施氮量条件下施硫较不施硫小麦干物质积累量显著提高,其中成熟期干物质积累量N180S60、N240S60和N360S60分别较N180S0、N240S0和N360S0提高2225、3607和3120 kg/hm2,而且氮素低的处理添加硫后干物质积累量高于氮素高不加硫处理,如N180S60N240S0、N240S60N360S0,处理间差异均达显著水平。随施氮量增多,冬小麦植株氮素积累总量增加,在N 240和360 kg/hm2水平,硫素供应显著增加小麦植株氮素积累。不同施氮量条件下施硫较不施硫均显著提高了小麦籽粒产量,分别提高了10.5%、18.3%、5.2%、5.6%和4.9%。随施氮量增多,氮肥偏生产力下降,氮回收效率、生理效率和农学效率则均以N 180达最高值。不同施氮水平下,施硫均显著提高了冬小麦氮素回收效率,但对氮生理效率影响不显著,其中在施N量为120、180和240kg/hm2时,施硫较不施硫氮肥偏生产力和农学效率均显著提高。【结论】在当前小麦生产中,采用控氮或减氮增硫技术措施,可实现小麦氮利用效率和籽粒产量的同步提高。在本试验地区小麦生产中,达到冬小麦稳产高效或增产高效的适宜施氮量为180 240 kg/hm2配合60 kg/hm2硫肥施用。  相似文献   

9.
Field experiments were conducted at the Teaching and Research Farm, Ladoke Akintola University of Technology, Ogbomoso, Nigeria in 2007 and 2008 to determine the effects of phosphorus fertilizer application on performance of intercropped maize and soybean. The experiments, arranged as a split plot in a randomized complete block design, replicated four times. A cropping system with sole maize, sole soybean and maize/soybean intercrop formed the main plot treatments while P rates with 0, 15 and 30 kg P2O5 ha?1 were the subplot treatments. For both years, neither P fertilizer application nor cropping systems had a significant effect on maize grain yield. However, soybean grain yield was significantly higher (92.3% in 2007 and 44.5% in 2008) under sole cropping than under maize/soybean intercropping. On average, N fixed by soybean increased with the increase in P rate (from 51.8% without P to 60.5% with 30 P), but there was no significant difference in N fixed by sole soybean and soybean/maize intercrop. However, the interaction effect on N fixed between cropping systems and P rates was significant (P ≤ 0.05). N, P and K contents in maize grain were significantly higher (>100%) in intercropped maize than in sole maize. The cropping systems had no significant effect on post-harvest soil chemical characteristics. The land equivalent ratio was 1.52 in 2007 and 1.78 in 2008. The result shows that in utilizing legumes for N enrichment, the alleviation of P deficiency can enhance N2-fixation by legumes. Furthermore, P replenishment in a maize/soybean intercrop may improve maize grain quality even though yield is not increased.  相似文献   

10.
探讨秸秆还田与施氮对高纬度黑土区春玉米产量与温室气体排放特性的影响,对促进粮食增产和降低环境代价具有重要意义。本研究通过位于黑土区的大田定位试验,利用静态箱-气相色谱计数方法,在秸秆还田与不还田和3个氮素用量(纯N:120 kg·hm~(-2),240 kg·hm~(-2)和300 kg·hm~(-2))条件下,研究了春玉米不同生育时期农田土壤CO2、N2O和CH4综合温室效应与排放强度,以及土壤过氧化氢酶和脲酶活性的变化。结果表明:无秸秆还田时,高氮用量处理春玉米产量最高;秸秆还田后,中等氮用量处理(240 kg·hm~(-2))春玉米产量最高,且与无秸秆还田的高氮处理间无显著差异。无秸秆还田时,随施氮量增加,CO2、N2O和CH4排放量均显著提高,综合温室效应和土壤温室气体排放量与强度显著增加(P0.05);增施氮肥配合秸秆还田,增加了CO2和N2O的排放量,而土壤CH4的碳汇功能增强,温室气体排放量与强度未显著提高(P0.05)。无秸秆还田,增施氮肥降低了土壤过氧化氢酶活性但提高了土壤脲酶活性;而秸秆还田使得增施氮肥引起的土壤过氧化氢酶活性降低的幅度加大但土壤脲酶活性提高的幅度变小。因此,秸秆还田后配合中等用量氮处理(240 kg·hm~(-2))玉米产量最高,且能够抑制单纯增施氮肥对综合温室效应和土壤温室气体排放强度的促进作用,推荐在生产中参考使用。  相似文献   

11.
Upland rice is an important crop in South America, including Brazil. Nutrient interactions are important in determining crop yields. A greenhouse experiment was conducted to evaluate interaction among nitrogen (N), phosphorus (P), and potassium (K) in upland rice production. The treatments applied to upland rice grown on an Oxisol were three levels of N (N0, N150 and N300 mg kg?1), three levels of P (P0, P100 and P200 mg kg?1) and three levels of K (K0, K100 and K200 mg kg?1). These treatments were tested in a 3 × 3 × 3 factorial arrangement. Grain yield, shoot dry weight, plant height, root dry weight, maximum root length, panicle number, 1000-grain weight, and grain harvest index were significantly influenced by N, P, and K treatments. The treatment that did not receive P fertilization did not produce panicle or grain. Hence, P was most yield-limiting nutrient compared to two other nutrients. At the N0P0K0 treatment, rice did not produce grains, indicating severe deficiency of these nutrients in Brazilian Oxisols. Maximum grain yield was obtained with the N300P200K200 treatment. Grain yield had significant positive association with plant height, shoot dry weight, root dry weight, maximum root length, 1000-grain weight, panicle number, and grain harvest index. Among these growth and yield components, shoot dry weight had the highest positive association with grain yield and root length minimum positive association with grain yield. Hence, adopting adequate soil and crop management practices can improve growth and yield components and increase grain yield of upland rice.  相似文献   

12.
ABSTRACT

A long-term field experiment was performed to assess the effects of fertilization regimes on greenhouse gas emissions, soil properties, soil denitrifies, and maize (Zea mays) grain yield on Mollisols of Northeastern China. Chemical nitrogen (N), phosphorus (P), and potassium (K) fertilizers plus pig manure (MNPK) treatment significantly increased soil N2O emissions by 29.9–226.4% and global warming potential (GWP) by 29.8–230.7% compared to unfertilized control (CK), chemical N fertilizer only (N), chemical N, P, and K fertilizers (NPK) and chemical N, P, and K fertilizers plus corn straw (SNPK) treatments. However, the MNPK treatment yielded similar greenhouse gas intensity (GHGI) as compared with other treatments, mainly due to higher maize grain yield. There were also higher gene copy numbers of nirK, nirS, and nosZ in topsoil (0–20 cm depth) under MNPK treatment. Automatic linear modeling analysis indicated that main factors influencing soil N2O emissions were soil organic carbon (SOC), NO3? content, and nirK gene abundance. Although the application of chemical fertilizers plus organic manure increases N2O emissions due to higher N and C availability and nirK gene activity in the soil, this is still a promising fertilizer management due to its notable enhancement of maize grain yield and SOC content.  相似文献   

13.
Water and nitrogen (N) are two major factors limiting cotton growth and yield. The ability of plants to absorb water and nutrients is closely related to the size of the root system and the rooting space. Better understanding of the physiological mechanisms by which cotton (Gossypium hirsutum L.) adapts to water and N supply when rooting volume is restricted would be useful for improving cotton yield. In this study, cotton was grown in soil columns to control rooting depth to either 60 cm (root‐restriction treatment) or 120 cm (no‐root‐restriction treatment). Four water–N combinations were applied to the plants: (1) deficit irrigation and no N fertilizer (W0N0), (2) deficit irrigation and moderate N fertilizer rate (W0N1), (3) moderate irrigation and no N fertilizer (W1N0), and (4) moderate irrigation and moderate N fertilizer rate (W1N1). Results revealed that root restriction reduced root length density (RLD), root volume density (RVD), root mass density (RMD), superoxide dismutase (SOD) activity, nitrate reductase (NR) activity, total plant biomass, and root : shoot ratio. In contrast, root restriction increased aboveground biomass and yield. The RLD, RVD, RMD, and root : shoot ratio decreased in the order W0N0 > W1N0 > W0N1 > W1N1 in both the root‐restriction and no‐root‐restriction treatments. However, the opposite order (i.e., W1N1 > W0N1 > W1N0 > W0N0) was observed for SOD activity, NR activity, aboveground biomass, and seed yield. Our results suggest that, when N and water supplies are adequate, root restriction increases both root activity and the availability of photosynthates to aboveground plant parts. This increases shoot growth, the shoot : root ratio, and yield.  相似文献   

14.
In the present study a pot experiment was carried out in 2009 where different nitrogen (N) and phosphorus (P) combinations with soil (N0P0, N20P30, N20P60, N40P30, and N40P60) were taken into pots. Nutritional growth and yield such as length, fresh and dry weight, leaf area, leaf number, pedicle length, fruit length, fruit number, and seed content were significant at P?≤?0.05. Evaluation of data reveals that plant growth parameters and yield of chilli significantly increased in wastewater treatment with 20 kg ha?1 N and 30 kg ha?1 P in comparison to groundwater treatments. It was also found that higher dose of fertilizers with wastewater decreases plant growth and development of Capsicum annuum L. Thus it was concluded that wastewater reuse as a source of nutrient may not only solves the problems of the more use of chemical fertilizers but also decreases the fresh water scarcity in agriculture land.  相似文献   

15.
华北地区采用无机氮测试和植株速测进行夏玉米氮肥推荐   总被引:2,自引:0,他引:2  
A field experiment with a split-plot design was carried out at Dongbeiwang Farm in Beijing Municipality to establish reliable N fertilizer recommendation indices for summer maize (Zea mays L.) in northern China using the soil Nmin(mineral N) test as well as the plant nitrate and SPAD (portable chlorophyll meter readings) tests. The results showed that Nrnin sollwert (NS) 60 kg N ha^-1 at the third leaf stage and N rate of 40 to 120 kg N ha^-1 at the tenth leaf stage could meet the N requirement of summer maize with a target yield of 5.5-6 t ha^-1. Sap nitrate concentrations and SPAD chlorophyll meter readings in the latest expanded maize leaves at the tenth leaf stage were positively correlated with NS levels, indicating that plant nitrate and SPAD tests reflected the N nutritional status of maize well. Considering that winter wheat subsequently utilized N after the summer maize harvest, the 0-90 cm soil Nmin (74 kg N ha^-1) and apparent N loss (12 kg N ha^-1) in the NS60+40 treatment were controlled at environmentally acceptable levels. Therefore NS60+40, giving a total N supply of 100 kg N ha^-1, was considered the optimal N fertilizer input for summer maize under these experimental conditions.  相似文献   

16.
Controlled‐release urea (CRU) is a new type of urea, which may increase crop nitrogen (N)‐use efficiency compared with conventional urea (CU), but the conditions where it outperforms urea are not well defined. A field experiment assessing responses of plant growth and grain yield of maize to CRU and irrigation was conducted on a typical agricultural farm in Shandong, China. Five treatments of the two types of urea (75, 150 kg N ha–1, 0 kg N ha–1) were applied as basal fertilizer when sowing maize, and two water treatments (W0 and W1) were used 23 d after anthesis. Net photosynthetic rate (PN) and chlorophyll concentration as well as leaf‐area index (LAI) increased significantly by both CRU and CU application, with the increases being larger in CRU‐treated plants than in CU‐treated plants at grain filling and maturing stages. CRU significantly enhanced the maximum photochemical efficiency (Fv / Fm), PSII coefficient of photochemical fluorescence quenching (qP), and actual quantum yield of PSII electron transformation (ΦPSII) but decreased the nonphotochemical quenching (NPQ). Cob‐leaf N concentration of CRU‐treated plants was significantly higher than that of CU‐treated plants under no irrigation, but not in the irrigation treatment 30 d after anthesis. Significant positive correlations were found between cob‐leaf N concentration and PN both with and without irrigation. Grain yield of maize was significantly higher in the CRU treatment than in the CU treatment under both irrigation conditions. In conclusion, CRU as a basal application appeared to increase the N‐use efficiency for maize relative to CU especially by maintaining N supply after anthesis.  相似文献   

17.
The intensive winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) cropping systems in the North China Plain (NCP) rely on the heavy use of mineral nitrogen (N) fertilizers. As the fertigated area of wheat and maize in the NCP has grown rapidly during recent years, developing N management strategies is required for sustainable wheat and maize production. Field experiments were conducted in Hebei Province during three consecutive growth seasons in 2012–2015 to assess the influence of different N fertigation rates on N uptake, yield, and nitrogen use efficiency [NUE: recovery efficiency (REN) and agronomic efficiency (AEN)]. Five levels of N application, 0 (FN0), 40 (FN40%), 70 (FN70%), 100 (FN100%), and 130% (FN130%) of the farmer practice rate (FP: 250 kg N ha?1 and 205.5 kg N ha?1 for wheat and maize, respectively), corresponding to 0, 182.2, 318.9, 455.5, and 592.2 kg N ha?1 y?1, respectively, were tested. Nitrogen in the form of urea was dissolved in irrigation water and split into six and four applications for wheat and maize, respectively. In addition, the treatment “drip irrigation + 100% N conventional broadcasting” (DN100%) was also conducted. All treatments were arranged in a randomized complete block design with three replications. The results revealed the significant influence of both N fertigation rate and N application method on grain yield and NUE. Compared to DN100%, FN100% significantly increased the 3‐year averaged N recovery efficiency (REN) by 0.09 kg kg?1 and 0.04 kg kg?1, and the 3‐year averaged N agronomic efficiency (AEN) by 2.43 kg kg?1 and 1.62 kg kg?1 for wheat and maize, respectively. Among N fertigation rates, there was no significant increase in grain yield in response to N applied at a greater rate than 70% of FP due to excess N accumulation in vegetative tissues. Compared to FN70%, FN100%, and FN130%, FN40% increased the REN by 0.17–0.57 kg kg?1 and 0.03–0.34 kg kg?1and the AEN by 4.60–27.56 kg kg?1 and 2.40–10.62 kg kg?1 for wheat and maize, respectively. Based on a linear‐response relationship between the N fertigation rate and grain yield over three rotational periods it can be concluded that recommended N rates under drip fertigation with optimum split applications can be reduced to 46% (114.6 kg N ha?1) and 58% (116.6 kg N ha?1) of FP for wheat and maize, respectively, without negatively affecting grain yield, thereby increasing NUE.  相似文献   

18.
施氮和豌豆/玉米间作对土壤无机氮时空分布的影响   总被引:4,自引:1,他引:3  
为探明甘肃河西走廊绿洲灌区豌豆/玉米间作体系土壤无机氮时空分布现状和过量施用氮肥对环境的影响,2011年在田间试验条件下,采用土钻法采集土壤剖面样品,采用Ca Cl2溶液浸提、流动分析仪测定土壤无机氮含量的方法,研究了不同氮水平[0 kg(N)·hm?2、75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2、450 kg(N)·hm?2]下豌豆/玉米间作体系土壤无机氮时空分布规律。结果表明:作物整个生育期内,灌漠土无机氮以硝态氮为主,其含量是铵态氮的7.55倍。在玉米整个生育期内,与不施氮相比,75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2和450 kg(N)·hm?2处理的土壤硝态氮含量分别增加29.7%、67.5%、88.2%和134.3%。与豌豆收获期相比,在玉米收获时土壤硝态氮含量平均降低44.2%。间作豌豆和间作玉米分别比对应的单作在0~120 cm土层硝态氮含量降低6.1%和5.1%。豌豆/玉米间作体系土壤无机氮累积量在不同施氮量和不同生育时期都是表层(0~20 cm)最高。豌豆收获后,0~60 cm土层土壤无机氮累积量间作豌豆和间作玉米分别比相应单作降低4.9%和1.9%,60~120 cm土层降低10.8%和9.2%;玉米收获后0~60 cm土层平均降低28.2%和9.4%,60~120 cm土层平均降低23.5%和12.5%。土壤无机氮残留量间作豌豆比单作豌豆在0~60 cm土层降低4.9%,60~120 cm降低10.9%。因此,施用氮肥显著增加了土壤无机氮含量和累积量,且主要影响土壤硝态氮。过量的氮肥投入会因作物不能及时全部吸收而被大水漫灌和降雨等途径淋洗到土壤深层,造成氮肥损失和农田环境污染。间作能显著降低土壤无机氮浓度和累积量,特别在作物生长后期对土壤无机氮累积的降低作用更加明显。  相似文献   

19.
Summary The use of N and P by mixed and by sole cropping (crop rotation) of maize and cowpeas were compared in a field experiment on an Alfisol at the Nyankpala Agricultural Experiment Station in the northern Guinea Savanna of Ghana, using two levels of N (0 and 80 kg N ha-1 year-1 as urea) and P application (0 and 60 kg P ha-1 year-1 as Volta phosphate rock). Maize grain yields were significantly reduced in the mixed cropping system. This yield difference became smaller with the application of N and P fertilizer. The N and P concentrations in maize ear leaves at silking indicated that a deficiency in N and P contributed to the maize yield depression in mixed cropping. Competition for soil and fertilizer N between maize and cowpeas was suggested by: (1) A similarity in total N uptake between the two cropping systems; (2) efficient use of soil nitrate by the cowpeas; and (3) low N2 fixation by the cowpeas, calculated with the aid of an extended-difference method. In general, N2 fixation was low, with the highest values in the sole cropping (53 kg ha-1) and a substantial reduction in the mixed cropping system. The application of N fertilizer further reduced N2 fixation. This was substantiated by nodule counts. The lower N2 fixation in the mixed cropping system was only partly explained by the lower density of cowpeas in this system. In addition, dry spells during the cropping season and shading by the maize component could have reduced the nodulation efficiency. No N transfer from the legume/rhizobium to the non-legume crop was observed. Impaired P nutrition in the mixed compared with the sole-cropped maize might have been due to less P mobility in the soil. This was indicated by lower soil moisture contents in the topsoil under mixed cropping, especially during the dry year of 1986. The results show that mixed cropping of maize and cowpeas did not lead to improved use of soil and fertilizer N and P or to an enhanced N2 fixation. On the contrary, an annual rotation of maize and cowpeas was clearly superior.  相似文献   

20.
不同氮素用量对杭白菊养分累积、转运及产量的影响   总被引:3,自引:2,他引:1  
通过田间小区试验,研究不同施氮量对杭白菊养分积累、转运及产量的影响,以确定杭白菊最佳氮肥用量。试验设5个处理,氮素用量分别为0、90 kg/hm2、120 kg/hm2、150 kg/hm2、180 kg/hm2,以N0、N1、N2、N3、N4表示,5次重复。结果表明,不同氮素用量影响杭白菊不同时期干物质和养分的阶段积累量,但不影响其积累趋势,整个生育期内杭白菊氮、磷、钾积累量为钾氮磷。不同施氮量影响茎叶氮、磷、钾的转移效率和在不同器官中的分配比率,以不施肥处理最高,N3(150 kg/hm2)次之。在氮、磷、钾三种元素中,转运效率磷氮钾。收获期氮、磷、钾在不同器官的分配比率不同,氮素、钾素分配比率为茎花叶根,磷素分配比率为茎花根叶。各处理杭白菊花的产量在1746.232~211.3 kg/hm2之间,以N3(150 kg/hm2)处理产量最高。在本实验条件下,杭白菊的推荐施氮量为150 kg/hm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号