首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Acrylamide in French fries: influence of free amino acids and sugars   总被引:8,自引:0,他引:8  
The free amino acid profile and sugar (fructose, glucose, and sucrose) composition were determined in potato samples selected to give a large range of variation (a total of 66 samples). From these samples French fries were produced in a laboratory-scale simulation of an industrial process followed by a finish fry at 180 degrees C for 3.5 min using a restaurant fryer. The final product was blast frozen and analyzed for acrylamide. Acrylamide was detected in all samples, but its concentration varied significantly from 50 to 1800 ng/g. For isotope dilution (13C3) acrylamide analysis, samples were extracted with water, cleaned up on HLB Oasis polymeric and Accucat mixed mode anion and cation exchange SPE columns, and analyzed by LC-MS/MS. Statistical analysis of the data indicates that the effect of sugars and asparagine on the concentration of acrylamide in French fries is positive and significant (p < 0.001). It appears that one of the ways acrylamide formation in French fries can be effectively controlled is by the use of raw products with low sugar (and to a lesser degree, asparagine) content.  相似文献   

2.
A number of parameters linked to storage of potatoes were evaluated with regard to their potential to influence the acrylamide formation in French fries. Acrylamide, which is a potential human carcinogen, is reported to be formed during the frying of potatoes as a result of the reactions between asparagine and reducing sugars. This study was conducted using three potato varieties (Bintje, Ramos, and Saturna) typically used in Belgium, The Netherlands, and the northern part of France for French fry and crisp production. Saturna, mainly used in crisp production, appeared to be the least susceptible for acrylamide formation during frying. Especially storage at low temperatures (4 degrees C) compared to storage at 8 degrees C seemed to enhance acrylamide formation due to a strong increase in reducing sugars caused by low-temperature storage. Because of the reversible nature of this physiological reaction, it was possible to achieve a significant reduction of the reducing sugars after a reconditioning of the cold-stored potatoes for 3 weeks at 15 degrees C. All changes in acrylamide concentrations could mainly be explained by the reducing sugar content of the potato (R2 = 0.84, n = 160). This means that, by ensuring a low reducing sugar content of the potato tuber, the risk for acrylamide formation will largely be reduced. Finally the use of a sprout inhibitor did not influence the composition of the potato, and thus acrylamide formation was not susceptible to this treatment.  相似文献   

3.
In this study, the effect of employing an oil temperature program during frying on the acrylamide content of French fries was investigated. The frying conditions that could lead to lower acrylamide levels in French fries were first simulated by means of an experimentally validated frying model. Then, experiments were conducted to test the simulated conditions in real frying process. Different time/temperature combinations (4 min at 170 degrees C, 2 min at 170 degrees C + 2 min at 150 degrees C, 1 min at 170 degrees C + 3 min at 150 degrees C, 1 min at 190 degrees C + 3 min at 150 degrees C) were employed for frying potato strips (8.5 x 8.5 x 70 mm), and the resultant acrylamide levels were determined with a gas chromatography-mass spectrometry (GC-MS) method. The results indicated that acrylamide levels in French fries can be reduced by half if the final stage of the frying process employs a lower oil temperature. Therefore, the method appears to be an effective way of controlling the acrylamide level in the final product.  相似文献   

4.
Acrylamide is formed via the Maillard reaction between reducing sugars and asparagine in a number of carbohydrate-rich foods during heat treatment. High acrylamide levels have been found in potato products processed at high temperatures. To examine the impact of harvest year, information on weather conditions during growth, that is, temperature, precipitation, and light, was collected, together with analytical data on the concentrations of free amino acids and sugars in five potato clones and acrylamide contents in potato chips (commonly known as crisps in Europe). The study was conducted for 3 years (2004-2006). The contents of acrylamide precursors differed between the clones and the three harvest years; the levels of glucose were up to 4.2 times higher in 2006 than in 2004 and 2005, and the levels of fructose were 5.6 times higher, whereas the levels of asparagine varied to different extents. The high levels of sugars in 2006 were probably due to the extreme weather conditions during the growing season, and this was also reflected in acrylamide content that was approximately twice as high as in preceding years. The results indicate that acrylamide formation is dependent not only on the content and relative amounts of sugars and amino acids but also on other factors, for example, the food matrix, which may influence the availability of the reactants to participate in the Maillard reaction.  相似文献   

5.
Fried potato products such as French fries and chips may contain substantial amounts of acrylamide. Numerous efforts are undertaken to minimize the acrylamide content of these products while sensory properties such as color and flavor have to be respected as well. An optimization of the frying process can be achieved if the basic kinetic data of the browning and acrylamide formation are known. Therefore, heating experiments with potato powder were performed under controlled conditions (moisture, temperature, and time). Browning and acrylamide content both increased with heating time at all temperatures and moisture contents tested. The moisture content had a strong influence on the activation energy of browning and acrylamide formation. The activation energy strongly increased at moisture contents below 20%. At higher moisture contents, it was very similar for both parameters. At low moisture contents, the activation energy of acrylamide formation was larger as compared to the one for browning. This explains why the end of the frying process is very critical. Therefore, a lower temperature toward the end of frying reduces the acrylamide content of the product while color development is still good.  相似文献   

6.
Added (glucose addition) versus accumulated (in situ sugar development via cold-temperature storage) sugar treatments were investigated in relation to acrylamide formation within fried potato strips at standardized levels of finish-fried color (Agtron color scores ranged from 36 to 84). The added sugar treatment exhibited a relatively reduced rate of acrylamide formation and generally possessed a lower and less variable acrylamide content (61-1290 ng/g) than the accumulated sugar scheme (61-2191 ng/g). In a subsequent experiment, added fructose applied to strip surfaces via dipping prior to frying favored acrylamide formation over color development relative to added glucose, for which the reverse trend was observed. Thus, where acrylamide differences were noted between added and accumulated sugar treatments (given equivalent Agtron color scores), this result was likely aided by the relative higher fructose content in strips of the accumulated sugar scheme rather than simply a greater relative concentration of total reducing sugars.  相似文献   

7.
This study evaluated various additives or process aids on the industrial production of French fries, based on their acrylamide mitigation potential and other quality parameters. The application of acetic and citric acid, calcium lactate and asparaginase was investigated on the production of frozen par-fried French fries at the beginning and end of the 2008 and 2009 potato storage season. Despite the fact that some of these treatments significantly reduced acrylamide content of the final product in preliminary laboratory experiments, their application on the industrial production of French fries did not result in additional acrylamide reductions compared to the standard product. Asparaginase was additionally tested in a production line of chilled French fries (not par-fried). Since for this product a longer enzyme-substrate contact time is allowed, a total asparagine depletion was observed for the enzyme treated fries after four days of cold storage. French fries upon final frying presented acrylamide contents below the limit of detection (12.5 μg kg?1) with no effects on the sensorial properties of the final product.  相似文献   

8.
Acrylamide in foods: occurrence,sources, and modeling   总被引:24,自引:0,他引:24  
Acrylamide in food products-chiefly in commercially available potato chips, potato fries, cereals, and bread-was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples were homogenized with water/dichloromethane, centrifuged, and filtered through a 5 kDa filter. The filtrate was cleaned up on mixed mode, anion and cation exchange (Oasis MAX and MCX) and carbon (Envirocarb) cartridges. Analysis was done by isotope dilution ([D(3)]- or [(13)C(3)]acrylamide) electrospray LC-MS/MS using a 2 x 150 mm (or 2 x 100 mm) Thermo HyperCarb column eluted with 1 mM ammonium formate in 15% (or 10% for the 2 x 100 mm column) methanol. Thirty samples of foods were analyzed. Concentrations of acrylamide varied from 14 ng/g (bread) to 3700 ng/g (potato chips). Acrylamide was formed during model reactions involving heating of mixtures of amino acids and glucose in ratios similar to those found in potatoes. In model reactions between amino acids and glucose, asparagine was found to be the main precursor of acrylamide. Thus, in the reaction between nitrogen-15 (amido)-labeled asparagine and glucose, corresponding (15)N-labeled acrylamide was formed. The yield of the model reaction is approximately 0.1%.  相似文献   

9.
The effects of adding amino acids on the content of acrylamide in potato crisps, French fries, flat breads, and bread crusts were investigated. Addition of glycine or glutamine during blanching of crisps reduced the amount of acrylamide by approximately 30% compared to no addition. No effect was found in French fries. Addition of glycine during doughmaking significantly reduced acrylamide in both flat breads and bread crusts. In bread crusts the reduction of acrylamide ranged from 50 to >90% depending on the baking condition. In flat breads the reduction varied between 60 and >95%.  相似文献   

10.
Fried potato products may accumulate substantial amounts of acrylamide due to high precursor contents, namely reducing sugars and asparagine. In a two-factorial experiment increasing N supply, increased the contents of reducing sugars in most cases, and resulted in higher contents of free amino acids. α -amino-N, which was tightly correlated with the contents of free amino acids, can be regarded a suitable rapid test for free asparagine for a given variety. Increasing K addition always raised the citrate contents, but lessened the contents of reducing sugars. Selected treatments were processed into French fries. Highest acrylamide contents were observed in tubers grown with high N and inadequate K supply, which also contained the highest contents of precursors. The experiment clearly demonstrates that nutrient supply has significant impact on the contents of acrylamide precursors and thus for the acrylamide formation during frying.  相似文献   

11.
The influence of water activity on the formation and elimination reactions of acrylamide was examined by means of multiresponse modeling on two different levels of complexity: basic equimolar asparagine-glucose systems and equimolar potato-based asparagine-glucose systems. To this end, model systems were first equilibrated to initial water activities in the range of 0.88-0.99 (corresponding roughly to the moisture gradient observed in French fries) and then heated at temperatures between 120 and 200 degrees C during different reaction times. For each sample, the concentration of acrylamide, glucose, asparagine, and aspartic acid was measured, as well as the extent of browning. A mechanistic model was proposed to model the five measured responses simultaneously. For both types of model systems, the model prediction was quite adequate, with the exception of the extent of browning, especially in the case of the potato-based model system. Moreover, the corresponding estimated kinetic parameters for acrylamide formation and elimination did not change significantly (based on a 95% confidence level) within the range of water activities tested, nor between the systems in the absence or presence of the potato matrix. The only remarkable difference was observed for the activation energy of acrylamide elimination, which was lower in the presence of the potato matrix, although not always significant. In general, these results confirm the generic nature of the model proposed and show that the influence of different moisture levels on acrylamide formation and elimination is minimal and that the addition of a potato matrix has little or no influence on the kinetic model and corresponding kinetic parameters.  相似文献   

12.
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degrees C, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials.  相似文献   

13.
The present study was to demonstrate the efficiency of antioxidant of bamboo leaves (AOB) on the reduction of acrylamide during thermal processing and to summarize the optimal level of AOB applied in potato-based products. Potato crisps and French fries were immersed into different contents of AOB solution, and the frying processing parameters were optimized. The acrylamide content was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sensory evaluation was performed in double blind manner. Our results showed that nearly 74.1% and 76.1% of acrylamide in potato crisps and French fries was reduced when the AOB addition ratio was 0.1% and 0.01% (w/w), respectively. The maximum inhibitory rate was achieved when the immersion time was designed as 60 s. Sensory evaluation results showed that the crispness and flavor of potato crisps and French fries processed by AOB solution had no significant difference compared to normal potato matrixes (P > 0.05) when the AOB addition ratio was <0.5% (w/w). These results suggested that AOB could significantly reduce acrylamide formation in potato-based foods and keep original crispness and flavor of potato matrixes. This study could be regarded as a pioneer contribution on the reduction of acrylamide in various foods by natural antioxidants.  相似文献   

14.
The quality of the potato has been found to vary, when grown under different agricultural and environmental conditions, such as the level of fertilization. Consequently these factors may influence the acrylamide formation during the preparation of French fries. These assumptions were studied on three varieties: Bintje, Ramos, and Saturna from the harvest of 2003. Decreasing N fertilization caused increases in the reducing sugar concentration from 60% up to 100% on DM for all varieties studied. Due to a high correlation between the reducing sugar content and the generation of acrylamide during frying, this resulted in a parallel increase in the acrylamide concentration of the French fries. Thus by lowering the amount of N fertilizer, an increase of 30-65% of the acrylamide generation during frying could be observed. It seems of extreme importance to find an appropriate balance between the level of N fertilizer in order to diminish acrylamide formation but on the other hand to obtain an acceptable tuber and to consider the environmental impact. All results reported should be seen in the perspective of the warm growing season of 2003.  相似文献   

15.
Glucose, fructose, sucrose, free asparagine, and free glutamine were analyzed in 74 potato samples from 17 potato cultivars grown in 2002 at various locations in Switzerland and different farming systems. The potential of these potatoes for acrylamide formation was measured with a standardized heat treatment. These potentials correlated well with the product of the concentrations of reducing sugars and asparagine. Glucose and fructose were found to determine acrylamide formation. The cultivars showed large differences in their potential of acrylamide formation which was primarily related to their sugar contents. Agricultural practice neither influenced sugars and free asparagine nor the potential of acrylamide formation. It is concluded that acrylamide contents in potato products can be substantially reduced primarily by selecting cultivars with low concentrations of reducing sugars.  相似文献   

16.
Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.  相似文献   

17.
A number of parameters linked to the selection of potato tubers were evaluated with regard to their potential to influence acrylamide formation in French fries. The formation of acrylamide, which is a potential human carcinogen, can be minimized for a big extent by the selection of an appropriate tuber. This study focused on the following selection criteria: variety as influenced by storage time and soil type, underwater weight, and tuber size. A total of 16 varieties were compared, concerning their potential for acrylamide formation. From that survey, certain varieties, such as Tebina and Quincy, could be appointed as unsuitable for frying. The differences in the potential of acrylamide formation between the varieties could mainly be explained by the reducing sugar content of the potato (R2 = 0.82, n = 96). The investigated type of soil and storage time at 8 degrees C appeared to have a minor influence on the acrylamide formation during frying. On the other hand, the tuber size of the potato did contribute in a significant manner to the acrylamide formation. Smaller tubers were more susceptible to acrylamide formation and should be avoided in the frying process. The last selection parameter, the underwater weight, appeared to be of minor importance in the acrylamide formation. On the basis of these simple selection criteria, it is possible to make a first screening of potatoes to reduce the acrylamide formation during frying.  相似文献   

18.
The formation of acrylamide in crystalline model systems based on asparagine and reducing sugars was investigated under low-moisture reaction conditions. The acrylamide amounts were correlated with physical changes occurring during the reaction. Molecular mobility of the precursors turned out to be a critical parameter in solid systems, which is linked to the melting behavior and the release of crystallization water of the reaction sample. Heating binary mixtures of asparagine monohydrate and anhydrous reducing sugars led to higher acrylamide amounts in the presence of fructose compared to glucose. Differential scanning calorimetry measurements performed in open systems indicated melting of fructose at 126 degrees C, whereas glucose and galactose fused at 157 and 172 degrees C, respectively. However, glucose was the most reactive and fructose the least efficient sugar in anhydrous liquid systems, indicating that at given molecular mobility the chemical reactivity of the sugar was the major driver in acrylamide formation. Furthermore, reaction time and temperature were found to be covariant parameters: acrylamide was preferably formed by reacting glucose and asparagine at 120 degrees C for 60 min, whereas 160 degrees C was required at shorter reaction time (5 min). These results suggest that, in addition to the chemical reactivity of ingredients, their physical state as well as reaction temperature and time would influence the formation of acrylamide during food processing.  相似文献   

19.
Consistent evidence suggests that the probable human carcinogen acrylamide is formed in starch-rich foodstuffs through heat-induced interaction of asparagine and reducing sugars during Maillard browning. However, information regarding the influence of processing parameters on acrylamide formation is scarce. We investigated the impact of temperature, heating time, browning level, and surface-to-volume ratio (SVR) on acrylamide generation in fried potatoes. Acrylamide content was determined by liquid chromatography (LC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). In potato shapes with low SVR, acrylamide content consistently increased with increasing temperature and processing times. By contrast, in shapes with intermediate to high SVR, maximal acrylamide formation occurred at 160-180 degrees C, while higher temperatures or prolonged processing times caused a decrease of acrylamide levels. Moreover, browning levels were not a reliable measure of acrylamide content in large-surface products.  相似文献   

20.
A range of commercially available cereals (mainly rye and wheat) used to manufacture U.K. bakery products were obtained, and the levels of free amino acids and sugars were measured. Selected samples were cooked as flours and doughs to generate acrylamide and the data compared with those obtained from a model system using dough samples that had been additionally fortified with asparagine (Asn) and sugars (glucose, fructose, maltose, and sucrose). In cooked flours and doughs, Asn was the key determinant of acrylamide generation. A significant finding for biscuit and rye flours was that levels of Asn were correlated with fructose and glucose. The results suggest that for these commercial cereals, selection based on low fructose and glucose contents, and hence low asparagine, could be beneficial in reducing acrylamide in products (e.g., crackers and crispbreads) that have no added sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号